2,457 research outputs found

    The clinical application of PET/CT: a contemporary review

    Get PDF
    The combination of positron emission tomography (PET) scanners and x-ray computed tomography (CT) scanners into a single PET/CT scanner has resulted in vast improvements in the diagnosis of disease, particularly in the field of oncology. A decade on from the publication of the details of the first PET/CT scanner, we review the technology and applications of the modality. We examine the design aspects of combining two different imaging types into a single scanner, and the artefacts produced such as attenuation correction, motion and CT truncation artefacts. The article also provides a discussion and literature review of the applications of PET/CT to date, covering detection of tumours, radiotherapy treatment planning, patient management, and applications external to the field of oncology

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging

    Advances in Clinical Molecular Imaging Instrumentation

    Get PDF
    In this article, we describe recent developments in the design of both single-photon emission computed tomography (SPECT) and positron emission tomography (PET) instrumentation that have led to the current range of superior performance instruments. The adoption of solid-state technology for either complete detectors [e.g., cadmium zinc telluride (CZT)] or read-out systems that replace photomultiplier tubes [avalanche photodiodes (APD) or silicon photomultipliers (SiPM)] provide the advantage of compact technology, enabling flexible system design. In SPECT, CZT is well suited to multi-radionuclide and kinetic studies. For PET, SiPM technology provides MR compatibility and superior time-of-flight resolution, resulting in improved signal-to-noise ratio. Similar SiPM technology has also been used in the construction of the first SPECT insert for clinical brain SPECT/MRI

    The future of hybrid imaging—part 3: PET/MR, small-animal imaging and beyond

    Get PDF
    Since the 1990s, hybrid imaging by means of software and hardware image fusion alike allows the intrinsic combination of functional and anatomical image information. This review summarises in three parts the state of the art of dual-technique imaging with a focus on clinical applications. We will attempt to highlight selected areas of potential improvement of combined imaging technologies and new applications. In this third part, we discuss briefly the origins of combined positron emission tomography (PET)/magnetic resonance imaging (MRI). Unlike PET/computed tomography (CT), PET/MRI started out from developments in small-animal imaging technology, and, therefore, we add a section on advances in dual- and multi-modality imaging technology for small animals. Finally, we highlight a number of important aspects beyond technology that should be addressed for a sustained future of hybrid imaging. In short, we predict that, within 10 years, we may see all existing multi-modality imaging systems in clinical routine, including PET/MRI. Despite the current lack of clinical evidence, integrated PET/MRI may become particularly important and clinically useful in improved therapy planning for neurodegenerative diseases and subsequent response assessment, as well as in complementary loco-regional oncology imaging. Although desirable, other combinations of imaging systems, such as single-photon emission computed tomography (SPECT)/MRI may be anticipated, but will first need to go through the process of viable clinical prototyping. In the interim, a combination of PET and ultrasound may become available. As exciting as these new possible triple-technique—imaging systems sound, we need to be aware that they have to be technologically feasible, applicable in clinical routine and cost-effective

    PET/MR — a rapidly growing technique of imaging in oncology and neurology

    Get PDF
    INTRODUCTION: The combination of positron emission tomography (PET) and magnetic resonance (MR) has become a subject of interest for researchers in the recent several years. Positron emission tomography in combination with magnetic resonance (PET/MR) is the most recent imaging technique classified in the so called hybrid systems category. AIM: This review briefly discusses the development history of PET/MR scanners, the principle of their operation, of tandem systems, as well as fully integrated devices. Further, it summarizes recent reports on the application of PET/MR scans and their possible future role in oncological and non-oncological diagnostics. CONCLUSIONS: Recent reports regarding the application of PET/MR scanners show huge potential of simultaneously received images, which exceed the advantages of either of those scans used separately. However, the results so far remain uncertain and require further investigations, especially in terms of clinical studies, not only for scientific purposes.      INTRODUCTION: The combination of positron emission tomography (PET) and magnetic resonance (MR) has become a subject of interest for researchers in the recent several years. Positron emission tomography in combination with magnetic resonance (PET/MR) is the most recent imaging technique classified in the so called hybrid systems category. AIM: This review briefly discusses the development history of PET/MR scanners, the principle of their operation, of tandem systems, as well as fully integrated devices. Further, it summarizes recent reports on the application of PET/MR scans and their possible future role in oncological and non-oncological diagnostics. CONCLUSIONS: Recent reports regarding the application of PET/MR scanners show huge potential of simultaneously received images, which exceed the advantages of either of those scans used separately. However, the results so far remain uncertain and require further investigations, especially in terms of clinical studies, not only for scientific purposes

    Non-Invasive Imaging for the Assessment of Cardiac Dose and Function Following Focused External Beam Irradiation

    Get PDF
    Technological advances in imaging and radiotherapy have led to significant improvement in the survival rate of breast cancer patients. However, a larger proportion of patients are now exhibiting the less understood, latent effects of incidental cardiac irradiation that occurs during left-sided breast radiotherapy. Here, we examine the utility of four-dimensional computed tomography (4D-CT) for the accurate assessment of cardiac dose; and a hybrid positron emission tomography (PET) magnetic resonance imaging (MRI) system to longitudinally study radiation-induced cardiac effects in a canine model. Using 4D-CT and deformable dose accumulation, we assessed the variation caused by breathing motion in the estimated dose to the heart, left-ventricle, and left anterior descending artery (LAD) of left-sided breast cancer patients. The LAD showed substantial variation in dose due to breathing. In light of this, we suggest the use of 4D-CT and dose accumulation for future clinical studies looking at the relationship between LAD dose and cardiac toxicity. Although symptoms of cardiac dysfunction may not manifest clinically for 10-15 years post radiation, PET-MRI can potentially identify earlier changes in cardiac inflammation and perfusion that are typically asymptomatic. Using PET-MRI, the progression of radiation-induced cardiac toxicity was assessed in a large animal model. Five canines were imaged using 13N-ammonia and 18F-fluorodeoxyglucose (FDG) PET-MRI to assess changes in myocardial perfusion and inflammation, respectively. All subjects were imaged at baseline, 1 week, 4 weeks, 3 months, 6 months, and 12 months after focused cardiac irradiation. To the best of our knowledge PET has not been previously used to assess cardiac perfusion following irradiation. The delivered dose to the heart, left ventricle, LAD, and left circumflex artery were comparable to what has been observed during breast radiotherapy. Relative to baseline, a transient increase in myocardial perfusion was observed followed by a gradual return to baseline. However, a persistent increase in FDG uptake was observed throughout the entire left ventricle, including both irradiated and less-irradiated portions of the heart. In light of these findings, we suggest the use of this imaging approach for future human studies to assess mitigation strategies aimed at minimizing cardiac exposure and long-term toxicity subsequent to left-sided breast irradiation

    Hybrid PET/CT and SPECT/CT Imaging

    Get PDF
    corecore