51 research outputs found

    FUNCODE: Effective Device-to-System Analysis of Field Coupled Nanocomputing Circuit Designs

    Get PDF
    Many beyond-CMOS technologies, based on different switching mechanisms, are arising. Field-coupled technologies are the most promising as they can guarantee an extremely low-power consumption and combine logic and memory into the same device. However, circuit-level explorations, like layout verification and analysis of the circuit performance, considering the constraints of the target technology, cannot be done using existing tools. Here, we propose a methodology to take on this challenge. We present FUNCODE (FUNction & COnnection DEtection), an algorithm that can detect element connections, functions and errors of custom-layouts and generate its corresponding VHDL netlist. It is proposed for in-plane and perpendicular Nano Magnetic Logic as a case study. FUNCODE netlists, which take into account the physical behavior of the technology, were verified using circuits with increasing complexity, from 6 up to 1400 gates with a number of layout elements varying from 200 to 2.3e6

    Writing 3D Nanomagnets Using Focused Electron Beams.

    Get PDF
    Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures

    Writing 3D nanomagnets using focused electron beams

    Get PDF
    Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures

    Investigation into MQCA based low power Digital logic Design Methodology

    Get PDF
    The use of the phenomenon of magnetism for information processing goes back to the end of XIX century. In 1888, Oberlin Smith suggested the use of permanent magnetic impressions for the recording of sound. The recording of the human voice on a steel piano wire was first carried out in 1898 by a Danish inventor Valdemar Poulsen, whose invention gave rise some 30 years later to a magnetic tape recording industry

    Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications.

    Get PDF
    Three-dimensional magnetic nanostructures hold great potential to revolutionize information technologies and to enable the study of novel physical phenomena. In this work, we describe a hybrid nanofabrication process combining bottom-up 3D nano-printing and top-down thin film deposition, which leads to the fabrication of complex magnetic nanostructures suitable for the study of new 3D magnetic effects. First, a non-magnetic 3D scaffold is nano-printed using Focused Electron Beam Induced Deposition; then a thin film magnetic material is thermally evaporated onto the scaffold, leading to a functional 3D magnetic nanostructure. Scaffold geometries are extended beyond recently developed single-segment geometries by introducing a dual-pitch patterning strategy. Additionally, by tilting the substrate during growth, low-angle segments can be patterned, circumventing a major limitation of this nano-printing process; this is demonstrated by the fabrication of ‘staircase’ nanostructures with segments parallel to the substrate. The suitability of nano-printed scaffolds to support thermally evaporated thin films is discussed, outlining the importance of including supporting pillars to prevent deformation during the evaporation process. Employing this set of methods, a set of nanostructures tailored to precisely match a dark-field magneto-optical magnetometer have been fabricated and characterized. This work demonstrates the versatility of this hybrid technique and the interesting magnetic properties of the nanostructures produced, opening a promising route for the development of new 3D devices for applications and fundamental studies

    Enabling Design and Simulation of Massive Parallel Nanoarchitectures

    Get PDF
    A common element in emerging nanotechnologies is the increasing complex- ity of the problems to face when attempting the design phase, because issues related to technology, specific application and architecture must be evalu- ated simultaneously. In several cases faced problems are known, but require a fresh re-think on the basis of different constraints not enforced by standard design tools. Among the emerging nanotechnologies, the two-dimensional structures based on nanowire arrays is promising in particular for massively parallel architec- tures. Several studies have been proposed on the exploration of the space of architectural solutions, but only a few derived high-level information from the results of an extended and reliable characterization of low-level structures. The tool we present is of aid in the design of circuits based on nanotech- nologies, here discussed in the specific case of nanowire arrays, as best candi- date for massively parallel architectures. It enables the designer to start from a standard High-level Description Languages (HDL), inherits constraints at physical level and applies them when organizing the physical implementation of the circuit elements and of their connections. It provides a complete simu- lation environment with two levels of refinement. One for DC analysis using a fast engine based on a simple switch level model. The other for obtaining transient performance based on automatic extraction of circuit parasitics, on detailed device (nanowire-FET) information derived by experiments or by existing accurate models, and on spice-level modeling of the nanoarray. Re- sults about the method used for the design and simulation of circuits based on nanowire-FET and nanoarray will be presente

    MULTIFERROIC NANOMAGNETIC LOGIC: HYBRID SPINTRONICS-STRAINTRONIC PARADIGM FOR ULTRA-LOW ENERGY COMPUTING

    Get PDF
    Excessive energy dissipation in CMOS devices during switching is the primary threat to continued downscaling of computing devices in accordance with Moore’s law. In the quest for alternatives to traditional transistor based electronics, nanomagnet-based computing [1, 2] is emerging as an attractive alternative since: (i) nanomagnets are intrinsically more energy-efficient than transistors due to the correlated switching of spins [3], and (ii) unlike transistors, magnets have no leakage and hence have no standby power dissipation. However, large energy dissipation in the clocking circuit appears to be a barrier to the realization of ultra low power logic devices with such nanomagnets. To alleviate this issue, we propose the use of a hybrid spintronics-straintronics or straintronic nanomagnetic logic (SML) paradigm. This uses a piezoelectric layer elastically coupled to an elliptically shaped magnetostrictive nanomagnetic layer for both logic [4-6] and memory [7-8] and other information processing [9-10] applications that could potentially be 2-3 orders of magnitude more energy efficient than current CMOS based devices. This dissertation focuses on studying the feasibility, performance and reliability of such nanomagnetic logic circuits by simulating the nanoscale magnetization dynamics of dipole coupled nanomagnets clocked by stress. Specifically, the topics addressed are: 1. Theoretical study of multiferroic nanomagnetic arrays laid out in specific geometric patterns to implement a “logic wire” for unidirectional information propagation and a universal logic gate [4-6]. 2. Monte Carlo simulations of the magnetization trajectories in a simple system of dipole coupled nanomagnets and NAND gate described by the Landau-Lifshitz-Gilbert (LLG) equations simulated in the presence of random thermal noise to understand the dynamics switching error [11, 12] in such devices. 3. Arriving at a lower bound for energy dissipation as a function of switching error [13] for a practical nanomagnetic logic scheme. 4. Clocking of nanomagnetic logic with surface acoustic waves (SAW) to drastically decrease the lithographic burden needed to contact each multiferroic nanomagnet while maintaining pipelined information processing. 5. Nanomagnets with four (or higher states) implemented with shape engineering. Two types of magnet that encode four states: (i) diamond, and (ii) concave nanomagnets are studied for coherence of the switching process

    SCERPA: a Self-Consistent Algorithm for the Evaluation of the Information Propagation in Molecular Field-Coupled Nanocomputing

    Get PDF
    Among the emerging technologies that are intended to outperform the current CMOS technology, the field-coupled nanocomputing (FCN) paradigm is one of the most promising. The molecular quantum-dot cellular automata (MQCA) has been proposed as possible FCN implementation for the expected very high device density and possible room temperature operations. The digital computation is performed via electrostatic interactions among nearby molecular cells, without the need for charge transport, extremely reducing the power dissipation. Due to the lack of mature analysis and design methods, especially from an electronics standpoint, few attempts have been made to study the behavior of logic circuits based on real molecules, and this reduces the design capability. In this article, we propose a novel algorithm, named self-consistent electrostatic potential algorithm (SCERPA), dedicated to the analysis of molecular FCN circuits. The algorithm evaluates the interaction among all molecules in the system using an iterative procedure. It exploits two optimizations modes named Interaction Radius and Active Region which reduce the computational cost of the evaluation, enabling SCERPA to support the simulation of complex molecular FCN circuits and to characterize consequentially the technology potentials. The proposed algorithm fulfills the need for modeling the molecular structures as electronic devices and provides important quantitative results to analyze the information propagation, motivating and supporting further research regarding molecular FCN circuits and eventual prototype fabrication
    corecore