135 research outputs found

    Phonetic Temporal Neural Model for Language Identification

    Get PDF
    Deep neural models, particularly the LSTM-RNN model, have shown great potential for language identification (LID). However, the use of phonetic information has been largely overlooked by most existing neural LID methods, although this information has been used very successfully in conventional phonetic LID systems. We present a phonetic temporal neural model for LID, which is an LSTM-RNN LID system that accepts phonetic features produced by a phone-discriminative DNN as the input, rather than raw acoustic features. This new model is similar to traditional phonetic LID methods, but the phonetic knowledge here is much richer: it is at the frame level and involves compacted information of all phones. Our experiments conducted on the Babel database and the AP16-OLR database demonstrate that the temporal phonetic neural approach is very effective, and significantly outperforms existing acoustic neural models. It also outperforms the conventional i-vector approach on short utterances and in noisy conditions.Comment: Submitted to TASL

    A Review of Accent-Based Automatic Speech Recognition Models for E-Learning Environment

    Get PDF
    The adoption of electronics learning (e-learning) as a method of disseminating knowledge in the global educational system is growing at a rapid rate, and has created a shift in the knowledge acquisition methods from the conventional classrooms and tutors to the distributed e-learning technique that enables access to various learning resources much more conveniently and flexibly. However, notwithstanding the adaptive advantages of learner-centric contents of e-learning programmes, the distributed e-learning environment has unconsciously adopted few international languages as the languages of communication among the participants despite the various accents (mother language influence) among these participants. Adjusting to and accommodating these various accents has brought about the introduction of accents-based automatic speech recognition into the e-learning to resolve the effects of the accent differences. This paper reviews over 50 research papers to determine the development so far made in the design and implementation of accents-based automatic recognition models for the purpose of e-learning between year 2001 and 2021. The analysis of the review shows that 50% of the models reviewed adopted English language, 46.50% adopted the major Chinese and Indian languages and 3.50% adopted Swedish language as the mode of communication. It is therefore discovered that majority of the ASR models are centred on the European, American and Asian accents, while unconsciously excluding the various accents peculiarities associated with the less technologically resourced continents

    Transfer learning of language-independent end-to-end ASR with language model fusion

    Full text link
    This work explores better adaptation methods to low-resource languages using an external language model (LM) under the framework of transfer learning. We first build a language-independent ASR system in a unified sequence-to-sequence (S2S) architecture with a shared vocabulary among all languages. During adaptation, we perform LM fusion transfer, where an external LM is integrated into the decoder network of the attention-based S2S model in the whole adaptation stage, to effectively incorporate linguistic context of the target language. We also investigate various seed models for transfer learning. Experimental evaluations using the IARPA BABEL data set show that LM fusion transfer improves performances on all target five languages compared with simple transfer learning when the external text data is available. Our final system drastically reduces the performance gap from the hybrid systems.Comment: Accepted at ICASSP201

    Multilingual representations for low resource speech recognition and keyword search

    Get PDF
    © 2015 IEEE. This paper examines the impact of multilingual (ML) acoustic representations on Automatic Speech Recognition (ASR) and keyword search (KWS) for low resource languages in the context of the OpenKWS15 evaluation of the IARPA Babel program. The task is to develop Swahili ASR and KWS systems within two weeks using as little as 3 hours of transcribed data. Multilingual acoustic representations proved to be crucial for building these systems under strict time constraints. The paper discusses several key insights on how these representations are derived and used. First, we present a data sampling strategy that can speed up the training of multilingual representations without appreciable loss in ASR performance. Second, we show that fusion of diverse multilingual representations developed at different LORELEI sites yields substantial ASR and KWS gains. Speaker adaptation and data augmentation of these representations improves both ASR and KWS performance (up to 8.7% relative). Third, incorporating un-transcribed data through semi-supervised learning, improves WER and KWS performance. Finally, we show that these multilingual representations significantly improve ASR and KWS performance (relative 9% for WER and 5% for MTWV) even when forty hours of transcribed audio in the target language is available. Multilingual representations significantly contributed to the LORELEI KWS systems winning the OpenKWS15 evaluation

    Is Attention always needed? A Case Study on Language Identification from Speech

    Full text link
    Language Identification (LID) is a crucial preliminary process in the field of Automatic Speech Recognition (ASR) that involves the identification of a spoken language from audio samples. Contemporary systems that can process speech in multiple languages require users to expressly designate one or more languages prior to utilization. The LID task assumes a significant role in scenarios where ASR systems are unable to comprehend the spoken language in multilingual settings, leading to unsuccessful speech recognition outcomes. The present study introduces convolutional recurrent neural network (CRNN) based LID, designed to operate on the Mel-frequency Cepstral Coefficient (MFCC) characteristics of audio samples. Furthermore, we replicate certain state-of-the-art methodologies, specifically the Convolutional Neural Network (CNN) and Attention-based Convolutional Recurrent Neural Network (CRNN with attention), and conduct a comparative analysis with our CRNN-based approach. We conducted comprehensive evaluations on thirteen distinct Indian languages and our model resulted in over 98\% classification accuracy. The LID model exhibits high-performance levels ranging from 97% to 100% for languages that are linguistically similar. The proposed LID model exhibits a high degree of extensibility to additional languages and demonstrates a strong resistance to noise, achieving 91.2% accuracy in a noisy setting when applied to a European Language (EU) dataset.Comment: Accepted for publication in Natural Language Engineerin

    Sentiment Analysis of Assamese Text Reviews: Supervised Machine Learning Approach with Combined n-gram and TF-IDF Feature

    Get PDF
    Sentiment analysis (SA) is a challenging application of natural language processing (NLP) in various Indian languages. However, there is limited research on sentiment categorization in Assamese texts. This paper investigates sentiment categorization on Assamese textual data using a dataset created by translating Bengali resources into Assamese using Google Translator. The study employs multiple supervised ML methods, including Decision Tree, K-nearest neighbour, Multinomial Naive Bayes, Logistic Regression, and Support Vector Machine, combined with n-gram and Term Frequency-Inverse Document Frequency (TF-IDF) feature extraction methods. The experimental results show that Multinomial Naive Bayes and Support Vector Machine have over 80% accuracy in analyzing sentiments in Assamese texts, while the Unigram model performs better than higher-order n-gram models in both datasets. The proposed model is shown to be an effective tool for sentiment classification in domain-independent Assamese text data
    • …
    corecore