6,886 research outputs found

    The Economics of the Internet of Things in the Global South

    Get PDF
    While the Internet of Things (IoT) is not new, its key components are becoming increasingly affordable now, which makes the technology extremely attractive for the Global South. By collecting data from various IoT sources, combining them with data from other sources and using big data analytics, decisions can be made and actions can be taken that can have important economic, social, ecological and environmental implications in these countries. The most visible impacts of the IoT in these countries include improvements in agricultural and food systems, enhancement of environmental security and resource conservation, achievement of better healthcare, public health and medicine, and enhancement of the efficiency of key industries. This paper provides an overview of how the IoT is currently being used in the Global South. It also discusses the opportunities and challenges that IoT initiatives present there. The analysis indicates that the IoT may address some of the institutional bottlenecks, technological challenges and key sources of high transaction costs. On the other hand, various sources of underdevelopment may act as barriers to full utilisation of the IoT

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Situation fencing: making geo-fencing personal and dynamic

    Get PDF
    Geo-fencing has recently been applied to multiple applications including media recommendation, advertisements, wildlife monitoring, and recreational activities. However current geo-fencing systems work with static geographical boundaries. Situation Fencing allows for these boundaries to vary automatically based on situations derived by a combination of global and personal data streams. We present a generic approach for situation fencing, and demonstrate how it can be operationalized in practice. The results obtained in a personalized allergy alert application are encouraging and open door for building thousands of similar applications using the same framework in near future

    MATLAB-based Graphic User Interface for Monitoring and Control of Wireless Sensor Networks: MATLAB-based Graphic User Interface for Monitoring and Control of Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are becoming more popular to remote sensing applications due to their high mobility, speed, security, and cost effective. A smart sensing network can be setup with XBee modules, sensors, actuators connected to microcontrollers. However due to the limited memory and speed, embedded microcontrollers cannot perform completed and sophisticated calculations needed in a modern sensing system. Further, the design of the remote human-machine interface, interaction and control for this system is also a challenge. This paper develops a new application for a wireless smart sensor network using XBee modules and microcontrollers LPC2148. The network interfaces to the personal computer’s Matlab software for data archiving, processing and exchanging in order to improve the ability of calculation, visualization, and control of remote embedded microcontrollers via this wireless network

    Launching the Grand Challenges for Ocean Conservation

    Get PDF
    The ten most pressing Grand Challenges in Oceans Conservation were identified at the Oceans Big Think and described in a detailed working document:A Blue Revolution for Oceans: Reengineering Aquaculture for SustainabilityEnding and Recovering from Marine DebrisTransparency and Traceability from Sea to Shore:  Ending OverfishingProtecting Critical Ocean Habitats: New Tools for Marine ProtectionEngineering Ecological Resilience in Near Shore and Coastal AreasReducing the Ecological Footprint of Fishing through Smarter GearArresting the Alien Invasion: Combating Invasive SpeciesCombatting the Effects of Ocean AcidificationEnding Marine Wildlife TraffickingReviving Dead Zones: Combating Ocean Deoxygenation and Nutrient Runof

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201

    Development of an Adaptive Environmental Management System for Lejweleputswa District: A Participatory Approach through Fuzzy Cognitive Maps

    Get PDF
    Published ThesisEnvironmental pollution caused by mines within the district of Lejweleputswa in Free State is a major contributor to health issues and the inability to grow crops within the mining communities. Mining industries continue to develop environmental management systems/plans to mitigate the impact their operations has on the society. Even with these plans, there are still issues of environmental pollution affecting the society. Though there are Information Communication and Technology (ICT) based pollution monitoring solutions, their use is dismal due to lack of appreciation or understanding of how they disseminate information. Furthermore, non-adopting community members are being regarded as inherently conservative or irrational, but these community members argue that the recommendations and technologies brought to them are not always appropriate to their circumstances. There was concern that local people’s knowledge of their environment, farming systems, and their social as well as economic situation had been ignored and underestimated when ICTs solutions are being implemented (Warburton & Martin, 1999). Another challenge is that there is no station to monitor pollution for small communities such as Nyakallong in the district. This result in mining communities depending on their own local knowledge to observe and monitor mining related environmental pollution. However, this local knowledge has never been tested scientifically or analysed to recognize its usability or effectiveness. Mining companies tend to ignore this knowledge from the communities as it is treated like common information with no much scientific value. As a step towards verifying or validating this local knowledge, fuzzy cognitive maps were used to model, analyse and represent this linguistic local knowledge. Although this local knowledge assists in mitigating environmental pollution, incorporating it with scientific knowledge will improve its relevance, trustworthiness and acceptability by majority of community members and policy-makers. Information and Communication Technologies (ICTs) can accelerate this integration; this is the focus of this research. The increased usages of Information Technology being witnessed today makes it the most important factor for the world to depend on for solutions to many of today’s and tomorrow’s problems. These solutions make use of various forms for dissemination purposes, one of the most versatile dissemination device is a mobile phone since majority of the world’s population do own a mobile phone. In this way information is easily accessible by almost everyone that needs it. A novel environmental management solution was designed to work within the mining communities of Lejweleputswa. The research started off by designing a unique integration framework that creates the much-needed link between local knowledge and scientific knowledge. The framework was then converted into an adaptable environmental pollution management system prototype made up of three components; (1) gathering environmental pollution knowledge; (2) environmental monitoring and; (3) environmental dissemination and communication. To achieve sustainability, relevance and acceptability, local knowledge was integrated in each of the three components while mobile phones were used as both input and output devices for the system. In order to facilitate collection and conservation of local knowledge on environmental monitoring, an elaborate android-based mobile application was developed. Wireless sensor-based gas sensor boards were acquired, and deployed as a compliment to conventional monitoring stations, they were used to gather scientific knowledge. To allow for public access to the system’s data, a web portal and an SMS-based component were also implemented. In order to collect local knowledge from community, a case study of Nyakallong community in Lejweleputswa was carried out. On completion of the system prototype, it was evaluated by participants from the community; 90% of respondents gave a score of ‘excellent ‘

    Towards a Sustainable City for Cyclists: Promoting Safety through a Mobile Sensing Application

    Get PDF
    [EN] Riding a bicycle is a great manner to contribute to the preservation of our ecosystem. Cycling helps to reduce air pollution and traffic congestion, and so, it is one of the simplest ways to lower the environmental footprint of people. However, the cohabitation of cars and vulnerable road users, such as bikes, scooters, or pedestrians, is prone to cause accidents with serious consequences. In this context, technological solutions are sought that enable the generation of alerts to prevent these accidents, thereby promoting a safer city for these road users, and a cleaner environment. Alert systems based on smartphones can alleviate these situations since nearly all people carry such a device while traveling. In this work, we test the suitability of a smartphone based alert system, determining the most adequate communications architecture. Two protocols have been designed to send position and alert messages to/from a centralized server over 4G cellular networks. One of the protocols is implemented using a REST architecture on top of the HTTP protocol, and the other one is implemented over the UDP protocol. We show that the proposed alarm system is feasible regarding communication response time, and we conclude that the application should be implemented over the UDP protocol, as response times are about three times better than for the REST implementation. We tested the applications in real deployments, finding that drivers are warned of the presence of bicycles when closer than 150 m, having enough time to pay attention to the situation and drive more carefully to avoid a collision.This work was partially supported by the "Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018", Spain, under Grant RTI2018-096384-B-I00.Boronat, P.; Pérez-Francisco, M.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J. (2021). Towards a Sustainable City for Cyclists: Promoting Safety through a Mobile Sensing Application. Sensors. 21(6):1-18. https://doi.org/10.3390/s2106211611821
    corecore