56 research outputs found

    A Biomimetic steering robot for Minimally invasive surgery application

    Get PDF
    International audienceMinimally Invasive Surgery represents the future of many types of medical inter- ventions such as keyhole neurosurgey or transluminal endoscopic surgery. These procedures involve insertion of surgical instruments such as needles and endoscopes into human body through small incision/ body cavity for biopsy and drug delivery. However, nearly all surgical instruments for these procedures are inserted manually and there is a long learning curve for surgeons to use them properly. Many research efforts have been made to design active instruments (endoscope, needles) to improve this procedure during last decades. New robot mechanisms have been designed and used to improve the dexterity of current endoscope. Usually these robots are flexible and can pass the constrained space for fine manipulations. In recent years, a con- tinuum robotic mechanism has been investigated and designed for medical surgery. Those robots are characterized by the fact that their mechanical components do not have rigid links and discrete joints in contrast with traditional robot manipula- tors. The design of these robots is inspired by movements of natural animals such as tongues, elephant trunks and tentacles. The unusual compliance and redundant degrees of freedom of these robots provide strong potential to achieve delicate tasks successfully even in cluttered and unstructured environments. This chapter will present a complete application of a continuum robot for Mini- mally Invasive Surgery of colonoscopy. This system is composed of a micro-robotic tip, a set of position sensors and a real-time control system for guiding the explo- ration of colon. Details will be described on the modeling of the used pneumatic actuators, the design of the mechanical component, the kinematic model analysis and the control strategy for automatically guiding the progression of the device inside the human colon. Experimental results will be presented to check the perfor- mances of the whole system within a transparent tube

    Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook

    Get PDF
    Since the emergence of soft robotics around two decades ago, research interest in the field has escalated at a pace. It is fuelled by the industry's appreciation of the wide range of soft materials available that can be used to create highly dexterous robots with adaptability characteristics far beyond that which can be achieved with rigid component devices. The ability, inherent in soft robots, to compliantly adapt to the environment, has significantly sparked interest from the surgical robotics community. This article provides an in-depth overview of recent progress and outlines the remaining challenges in the development of soft robotics for minimally invasive surgery

    Nonparametric Online Learning Control for Soft Continuum Robot: An Enabling Technique for Effective Endoscopic Navigation.

    Get PDF
    Bioinspired robotic structures comprising soft actuation units have attracted increasing research interest. Taking advantage of its inherent compliance, soft robots can assure safe interaction with external environments, provided that precise and effective manipulation could be achieved. Endoscopy is a typical application. However, previous model-based control approaches often require simplified geometric assumptions on the soft manipulator, but which could be very inaccurate in the presence of unmodeled external interaction forces. In this study, we propose a generic control framework based on nonparametric and online, as well as local, training to learn the inverse model directly, without prior knowledge of the robot's structural parameters. Detailed experimental evaluation was conducted on a soft robot prototype with control redundancy, performing trajectory tracking in dynamically constrained environments. Advanced element formulation of finite element analysis is employed to initialize the control policy, hence eliminating the need for random exploration in the robot's workspace. The proposed control framework enabled a soft fluid-driven continuum robot to follow a 3D trajectory precisely, even under dynamic external disturbance. Such enhanced control accuracy and adaptability would facilitate effective endoscopic navigation in complex and changing environments

    Soft Pneumatic Actuator Skin with Embedded Sensors

    Get PDF
    Soft Pneumatic Actuator skin (SPA-skin) is a novel concept of ultra-thin (< 1 mm) sensor embedded actuators with distributed actuation points that could cover soft bodies. This highly customizable and flexible SPA-skin is ideal for providing proprioceptive sensing by covering pre-existing structures and robots bodies. Having few limitation of the surface quality, dynamics, or shape, these mechanical attributes allow potential applications in autonomous flexible braille, active surface pattern reconfiguration, distributed actuation and sensing for tactile interface improvements. In this paper, the authors present a proof-of-concept SPA-skin. The mechanical parameters, design criteria, sensor selection, and actuator construction process are illustrated. Two control schemes, actuation mode and force sensing mode, are also demonstrated with the latest prototype

    A disposable continuum endoscope using piston-driven parallel bellow actuator

    Get PDF
    This paper presents a novel low cost disposable continuum endoscope based on a piston-driven parallel bellow actuator design. The parallel bellow actuator achieves motion by being pressurized via displacement-controlled pistons. The displacements are generated by rack-and-pinion mechanisms using inexpensive stepper motors. The design concept provides a potential alternative solution to upper gastrointestinal (UGI) diagnosis. The modularity and the use of inexpensive components allow for low fabrication costs and disposability. The use of robotic assistance could facilitate the development of an easier interface for the gastroenterologists, avoiding the nonintuitive manipulation mapping of the traditional UGI endoscopes. We adapt existing kinematic solutions of multi-backbone continuum robots to model continuum parallel bellow actuators. An actuation compensation strategy is presented and validated to address the pneumatic compressibility through the transmission lines. The design concept was prototyped and tested with a custom control platform. The experimental validation shows that the actuation compensation was demonstrated to significantly improve orientation control of the endoscope end-effector. This paper shows the feasibility of the proposed design and lays the foundation toward clinical scenarios

    Single-Site Colectomy With Miniature \u3ci\u3eIn Vivo\u3c/i\u3e Robotic Platform

    Get PDF
    There has been a continuing push to reduce the invasiveness of surgery by accessing the abdominal cavity through a single incision, such as with laparoendoscopic single-site (LESS) surgery. Although LESS procedures offer significant benefits, added complexities still inhibit the procedures. Robotic surgery is proving to be an excellent option to overcome these limitations. This paper presents the experimental results of the single-incision in vivo surgical robot (SISR), a multifunctional, dexterous, twoarmed robot capable of performing surgical tasks while overcoming the issues associated with manual LESS operations. In vivo surgical procedures have been used to demonstrate the efficacy of using a robotic platform over traditional laparoscopic tools. The most recent experimental test resulted in the first successful in vivo robotic LESS colectomy utilizing a robot completely contained within the abdominal cavity. In this test, SISR showed significant benefits including access to all quadrants in the peritoneal cavity and improved dexterity

    Toward Intrinsic Force Sensing and Control in Parallel Soft Robots

    Get PDF
    With soft robotics being increasingly employed in settings demanding high and controlled contact forces, recent research has demonstrated the use of soft robots to estimate or intrinsically sense forces without requiring external sensing mechanisms. While this has mainly been shown in tendon-based continuum manipulators or deformable robots comprising of push–pull rod actuation, fluid drives still pose great challenges due to high actuation variability and nonlinear mechanical system responses. In this work, we investigate the capabilities of a hydraulic, parallel soft robot to intrinsically sense and subsequently control contact forces. A comprehensive algorithm is derived for static, quasi-static, and dynamic force sensing, which relies on fluid volume and pressure information of the system. The algorithm is validated for a single degree-of-freedom soft fluidic actuator. Results indicate that axial forces acting on a single actuator can be estimated with mean error of 0.56 ± 0.66 N within the validated range of 0–6 N in a quasi-static configuration. The force sensing methodology is applied to force control in a single actuator as well as the coupled parallel robot. It can be seen that forces are controllable for both systems, with the capability of controlling directional contact forces in case of the multidegree-of-freedom parallel soft robot
    • …
    corecore