256 research outputs found

    Development and evaluation of a master-slave robot system for single-incision laparoscopic surgery

    Get PDF
    Single-incision laparoscopic surgery (SILS) brings cosmetic benefits for patients, but this procedure is more difficult than laparoscopic surgery. In order to reduce surgeons' burden, we have developed a master-slave robot system which can provide robot-assisted SILS as if it were performing conventional laparoscopic surgery and confirmed the feasibility of our proposed system. The proposed system is composed of an input device (master side), a surgical robot system (slave side), and a control PC. To perform SILS in the same style as regular laparoscopic surgery, input instruments are inserted into multiple incisions, and the tip position and pose of the left-sided (right-sided) robotic instrument on the slave side follow those of the right-sided (left-sided) input instruments on the master side by means of a control command from the PC. To validate the proposed system, we defined four operating conditions and conducted simulation experiments and physical experiments with surgeons under these conditions, then compared the results. In the simulation experiments, we found learning effects between trials (P = 0.00013 0.1), and the task time of our system was significantly shorter than the simulated SILS (P = 0.011 < 0.05). In the physical experiments, our system performed SILS more easily, efficiently, and intuitively than the other operating conditions. Our proposed system enabled the surgeons to perform SILS as if they were operating conventionally with laparoscopic techniques.ArticleINTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY. 7(2):289-296 (2012)journal articl

    A novel locally operated master-slave robot system for single-incision laparoscopic surgery

    Get PDF
    Purpose: Single-incision laparoscopic surgery (SILS) provides more cosmetic benefits than conventional laparoscopic surgery but presents operational difficulties. To overcome this technical problem, we have developed a locally operated master-slave robot system that provides operability and a visual field similar to conventional laparoscopic surgery. Material and methods: A surgeon grasps the master device with the left hand, which is placed above the abdominal wall, and holds a normal instrument with the right hand. A laparoscope, a slave robot, and the right-sided instrument are inserted through one incision. The slave robot is bent in the body cavity and its length, pose, and tip angle are changed by manipulating the master device; thus the surgeon has almost the same operability as with normal laparoscopic surgery. To evaluate our proposed system, we conducted a basic task and an ex vivo experiment. Results: In basic task experiments, the average object-passing task time was 9.50 sec (SILS cross), 22.25 sec (SILS parallel), and 7.23 sec (proposed SILS). The average number of instrument collisions was 3.67 (SILS cross), 14 (SILS parallel), and 0.33 (proposed SILS). In the ex vivo experiment, we confirmed the applicability of our system for single-port laparoscopic cholecystectomy. Conclusion: We demonstrated that our proposed robot system is useful for single-incision laparoscopic surgery.ArticleMINIMALLY INVASIVE THERAPY & ALLIED TECHNOLOGIES. 23(6):326-332 (2014)journal articl

    Concept of Virtual Incision for Minimally Invasive Surgery

    Get PDF
    Minimally invasive surgery has been introduced to various surgical fields for its benefits such as smaller scars and less pain as compared to open surgery. Highly skilled surgical techniques are required for surgeons to conduct minimally invasive surgery with fewer ports, whereas minimally invasive surgery has a number of advantages for patients. Single-incision laparoscopic surgery (SILS), in which surgical instruments and a laparoscope are inserted through a single port, has better cosmetic results than conventional multi-incision surgery; moreover, the scar is invisible when the port is opened in navel. However, instrument collisions and visual defects often occur due to the limited space of the single opening. We propose a new surgical approach entitled “virtual incision” that enables surgeons to increase the number of openings virtually. Using our approach, we have developed two types of master-slave surgical robot systems for SILS—remote-operated and local-operated systems—which have operability close to that of multiple-incision surgery. Through evaluation of these systems, we demonstrated that the visual field and operability during virtual incision surgery are similar to those of conventional multi-incision surgery. Our surgical approach can be applied to not only single-incision surgery but also multi-incision surgery, and is very likely to improve operability

    Realization of a demonstrator slave for robotic minimally invasive surgery

    Get PDF
    Robots for Minimally Invasive Surgery (MIS) can improve the surgeon’s work conditions with respect to conventional MIS and to enable MIS with more complex procedures. This requires to provide the surgeon with tactile feedback to feel forces executed on e.g. tissue and sutures, which is partially lost in conventional MIS. Additionally use of a robot should improve the approach possibilities of a target organ by means of instrument degrees of freedom (DoFs) and of the entry points with a compact set-up. These requirements add to the requirements set by the most common commercially available system, the da Vinci which are: (i) dexterity, (ii) natural hand-eye coordination, (iii) a comfortable body posture, (iv) intuitive utilization, and (v) a stereoscopic ’3D’ view of the operation site. The purpose of Sofie (Surgeon’s operating force-feedback interface Eindhoven) is to evaluate the possible benefit of force-feedback and the approach of both patient and target organ. Sofie integrates master, slave, electronic hardware and control. This thesis focusses on the design and realization of a technology demonstrator of the Slave. To provide good accuracy and valuable force-feedback, good dynamic behavior and limited hysteresis are required. To this end the Slave includes (i) a relatively short force-path between its instrument-tips and between tip and patient, and (ii) a passive instrument-support by means of a remote kinematically fixed point of rotation. The incision tissue does not support the instrument. The Slave is connected directly to the table. It provides a 20 DoF highly adaptable stiff frame (pre-surgical set-up) with a short force-path between the instrumenttips and between instrument-tip and patient. During surgery this frame supports three 4 DoF manipulators, two for exchangeable 4 DoF instruments and one for an endoscope. The pre-surgical set-up of the Slave consists of a 5 DoF platform-adjustment with a platform. This platform can hold three 5 DoF manipulator-adjustments in line-up. The set-up is compact to avoid interference with the team, entirely mechanical and allows fast manual adjustment and fixation of the joints. It provides a stiff frame during surgery. A weight-compensation mechanism for the platformadjustment has been proposed. Measurements indicate all natural frequencies are above 25 Hz. The manipulator moves the instrument in 4 DoFs (??, , ?? and Z). Each manipulator passively supports its instrument with a parallelogram mechanism, providing a kinematically fixed point of rotation. Two manipulators have been designed in consecutive order. The first manipulator drives with a worm-wormwheel, the second design uses a ball-screw drive. This ball-screw drive reduces friction, which is preferred for next generations of the manipulator, since the worm-wormwheel drive shows a relatively low coherence at low frequencies. The compact ??Zmanipulator moves the instrument in ?? by rotating a drum. Friction wheels in the drum provide Z. Eventually, the drum will be removable from the manipulator for sterilization. This layout of the manipulator results in a small motion-envelope and least obstructs the team at the table. Force sensors measuring forces executed with the instrument, are integrated in the manipulator instead of at the instrument tip, to avoid all risks of electrical signals being introduced into the patient. Measurements indicate the separate sensors function properly. Integrated in the manipulator the sensors provide a good indication of the force but do suffer from some hysteresis which might be caused by moving wires. The instrument as realized consists of a drive-box, an instrument-tube and a 4 DoF tip. It provides the surgeon with three DoFs additional to the gripper of conventional MIS instruments. These DoFs include two lateral rotations (pitch and pivot) to improve the approach possibilities and the roll DoF will contribute in stitching. Pitch and roll are driven by means of bevelgears, driven with concentric tubes. Cables drive the pivot and close DoFs of the gripper. The transmissions are backdriveable for safety. Theoretical torques that can be achieved with this instrument approximate the requirements closely. Further research needs to reveal the torques achieved in practice and whether the requirements obtained from literature actually are required for these 4 DoF instruments. Force-sensors are proposed and can be integrated. Sofie currently consists of a master prototype with two 5 DoF haptic interfaces, the Slave and an electronic hardware cabinet. The surgeon uses the haptic interfaces of the Master to manipulate the manipulators and instruments of the Slave, while the actuated DoFs of the Master provide the surgeon with force-feedback. This project resulted in a demonstrator of the slave with force sensors incorporated, compact for easy approach of the patient and additional DoFs to increase approach possibilities of the target organ. This slave and master provide a good starting point to implement haptic controllers. These additional features may ultimately benefit both surgeon and patient

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Anthropomorphic surgical system for soft tissue robot-assisted surgery

    Get PDF
    Over the past century, abdominal surgery has seen a rapid transition from open procedures to less invasive methods such as laparoscopy and robot-assisted minimally invasive surgery (R-A MIS). These procedures have significantly decreased blood loss, postoperative morbidity and length of hospital stay in comparison with open surgery. R-A MIS has offered refined accuracy and more ergonomic instruments for surgeons, further minimising trauma to the patient.This thesis aims to investigate, design and prototype a novel system for R-A MIS that will provide more natural and intuitive manipulation of soft tissues and, at the same time, increase the surgeon's dexterity. The thesis reviews related work on surgical systems and discusses the requirements for designing surgical instrumentation. From the background research conducted in this thesis, it is clear that training surgeons in MIS procedures is becoming increasingly long and arduous. Furthermore, most available systems adopt a design similar to conventional laparoscopic instruments or focus on different techniques with debatable benefits. The system proposed in this thesis not only aims to reduce the training time for surgeons but also to improve the ergonomics of the procedure.In order to achieve this, a survey was conducted among surgeons, regarding their opinions on surgical training, surgical systems, how satisfied they are with them and how easy they are to use. A concept for MIS robotic instrumentation was then developed and a series of focus group meetings with surgeons were run to discuss it. The proposed system, named microAngelo, is an anthropomorphic master-slave system that comprises a three-digit miniature hand that can be controlled using the master, a three-digit sensory exoskeleton. While multi-fingered robotic hands have been developed for decades, none have been used for surgical operations. As the system has a human centred design, its relation to the human hand is discussed. Prototypes of both the master and the slave have been developed and their design and mechanisms is demonstrated. The accuracy and repeatability of the master as well as the accuracy and force capabilities of the slave are tested and discussed

    Design of a novel bimanual robotic system for single-port laparoscopy

    Get PDF
    Abstract—This paper presents the design and fabrication of Single-Port lapaRoscopy bImaNual roboT (SPRINT), a novel tele-operated robotic system for minimally invasive surgery. SPRINT, specifically designed for single-port laparoscopy, is a high-dexterity miniature robot, able to reproduce the movement of the hands of the surgeon, who controls the system through a master interface. It comprises two arms with six degrees of freedom (DOFs) that can be individually inserted and removed in a 30-mm-diameter umbilical access port. The system is designed to leave a central lumen free during operations, thus allowing the insertion of other laparoscopic tools. The four distal DOFs of each arm are actuated by on-board brushless dc motors, while the two proximal DOFs of the shoulder are actuated by external motors. The constraints gen-erated by maximum size and power requirements led to the design of compact mechanisms for the actuation of the joints. The wrist is actuated by three motors hosted in the forearm, with a peculiar differential mechanism that allows us to have intersecting roll– pitch–roll axes. Preliminary tests and validations were performed ex vivo by surgeons on a first prototype of the system. Index Terms—Bimanual robot, miniature robotic arm, mini-mally invasive surgery, robotic surgery, single-port laparoscopy (SPL). I

    Intelligent Information-Guided Robotic Surgery

    Get PDF
    Laparoscopic surgery is minimally invasive, providing various benefits for patients. On the other hand, it is technically demanding for physicians due to limited dexterity of tools, limited vision. In order to cope with those limitations, recent various engineering technologies are trying to help surgeon. Robotics is one of the major technologies in this field. Until today, da Vinci has been only one such robot. But recently, many other robotic systems are under development. Those new robots are introduced in this chapter first. Other than robotics, or in conjunction with robotics, navigation technologies are getting popularity in clinical use. Navigation is a technology that provides useful information such as preoperative images or distance between tool and lesion, etc. to surgeon. Our experience in clinical use of navigation system in robotic surgery is introduced. Finally, technologies applied for the training of surgeon are introduced and described
    corecore