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Chapter

Intelligent Information-Guided 
Robotic Surgery
Ryu Nakadate and Makoto Hashizume

Abstract

Laparoscopic surgery is minimally invasive, providing various benefits for 
patients. On the other hand, it is technically demanding for physicians due to lim-
ited dexterity of tools, limited vision. In order to cope with those limitations, recent 
various engineering technologies are trying to help surgeon. Robotics is one of the 
major technologies in this field. Until today, da Vinci has been only one such robot. 
But recently, many other robotic systems are under development. Those new robots 
are introduced in this chapter first. Other than robotics, or in conjunction with 
robotics, navigation technologies are getting popularity in clinical use. Navigation 
is a technology that provides useful information such as preoperative images or 
distance between tool and lesion, etc. to surgeon. Our experience in clinical use of 
navigation system in robotic surgery is introduced. Finally, technologies applied for 
the training of surgeon are introduced and described.

Keywords: robotic surgery, navigation surgery, computer-aided surgery,  
surgical training, endoscope

1. Introduction

In order to access the lesion, large incision on the healthy part of the patient, such 
as body surface is inevitable in the conventional (so-called open surgery) surgery. 
One of the modalities of the surgery which tries to minimize the incision on the 
healthy organ is laparoscopic surgery. The access to the lesion in the abdominal cavity 
is through several small incisions which sizes are about 5–10 mm. A long, slim camera 
and surgical devices are inserted from those incisions to the abdominal cavity. The 
surgeons perform surgical procedures such as incision, dissection, and suturing by 
manipulating those surgical devices watching a display of camera image. Compared 
with the conventional open surgery in which the large incision on the patient skin 
is made, the laparoscopic surgery provides the patients less postoperative pain and 
shorter hospital stay, which are the major benefits to the patients. On the other hand, 
the laparoscopic surgery demands high level technical skills of the surgeons because 
of several reasons. The surgeons lose direct vision, and only two-dimensional indirect 
vision through the display is available [1]. The indirect vision sometimes takes the 
sense of orientation and ability of the depth perception away from surgeons. All 
surgical devices are slim and long. The precise manipulation of the tip of those 
devices is very difficult. Also the mirror effect, the phenomenon in which the device 
in the patient body goes opposite direction to the handle outside the body, makes 
those manipulations more difficult [2]. The surgeons cannot directly touch the organs 
in the body. Palpation or feeling the applied force is not possible. Most of the surgical 
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devices are straight, do not have bending wrist. Those devices provide surgeon much 
less dexterity than the fingers and hands. In order to cope with those restrictions, long 
training time, experience, and practices are required for the laparoscopic surgeons. 
However, as those limitations are mainly technical issue, we believe the technologies 
can contribute to overcome those limitations. In this chapter, we introduce recent 
various technologies for laparoscopic surgery. First, we will overview the current 
worldwide surgical robotics. There is a dominant player in this field, da Vinci surgi-
cal system. However, several new robots by start-ups are in the pipeline. Then, we 
will introduce the robotics with the flexible endoscope as a new trend in the robotic 
surgery. They are also in the pipeline of the many companies, about to launch to the 
market. We think this field is promising as future minimally invasive surgery. After 
that, the technologies in the navigation and training are described.

2. Robotics for the laparoscopic surgery

In this field, the da Vinci surgical system (Figure 1) [3] of Intuitive Surgical, Inc. 
(US) has been a dominant robot since its FDA approval in 2000. As of August 1, 
2018, 4666 units are installed in the world. Nearly 1 million procedures in the world 
are performed annually by using da Vinci [4]. Majority of da Vinci applications are 
urology and gynecology which are about one-third of the total procedures each [4]. 
Including the colorectal application in the other one-third, you can find that the 
da Vinci surgery is mostly used in the pelvic cavity. This is probably because pelvic 
cavity is narrow and deep, thus laparoscopic approach is challenging for those 
organs such as prostate, uterus, colon, and rectum.

Generally speaking, the robot for laparoscopic surgery provides three-
dimensional vision, dexterity, and intuitiveness. In fact, three-dimensional vision 
is not a robot specific feature. However, it is inevitable in order to exert the robotic 
dexterity. To understand the dexterity, let us explain the degrees of freedom. For 
example, in order to perform full dexterity by a grasping device, it requires seven 
degrees of freedom. First, the tip of the grasper has to be reached at desired posi-
tion in three-dimensional space (X-Y-Z axis). Therefore, at least three degrees of 
freedom are required. Then, the tip of the grasper also has to change orientation 
at the desired position. The orientation is defined by rotations around X, Y, Z axis. 
Thus, it requires another three (rotational) degrees of freedom. Last, one degree 
of freedom is open/close motion of the grasper. Conventional laparoscopic forceps 
have only five degrees of freedom (three positional, one rotational around the shaft, 

Figure 1. 
da Vinci surgical system ©2018 Intuitive Surgical, Inc.
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and one grasping), resulting limited dexterity. da Vinci has wrist at the tip of the 
forceps, providing seven degrees of freedom. This is one of the key technologies of 
the laparoscopic surgical robot. Intuitiveness means that the operator’s hand and 
device tip are synchronized in the three-dimensional vision. The computer of the 
robot calculates the device position, so that the direction of the device movement 
in the display is the same as surgeon’s hand. Furthermore, the computer calculation 
is considering the line of sight in order to secure the hand-eye coordination. Those 
features are basically the same in the other emerging new robots.

There exist a lot of researches on surgical robots in academic institutes. However, 
sometimes they are very early stage, and it is unknown how long they take time until 
they reach at clinically usable phase. Here, we will introduce surgical robots which 
have already been in the market or are in the pipeline of the industrial companies.

2.1 Senhance surgical platform

Senhance surgical robotic system (Figure 2) [5–7] was originally developed in 
Europe under the name of “ALF-X”, and then sold to US company TransEnterix, Inc. It 
received CE mark and cleared FDA for major laparoscopic surgery. The Senhance sys-
tem has three independent robotic arms for instruments and camera. Each arm stands 
on the floor, has long beam as seen in Figure 2. Various types of the forceps are available 
and can be attached to the robotic arms. Unique features which are different from da 
Vinci are gaze control system of camera and force feedback. At the control cockpit, the 
eye motion of the operator is monitored and is used for the camera motion. If the opera-
tor moves head forward, the camera moves closer to the object. The company claims 
cost effectiveness as other emerging robot company than intuitive surgical do so [7].

2.2 Versius surgical robotic system

Versius surgical robotics system (CMR Surgical Ltd., UK) also contains inde-
pendent robotic arms for each instruments, but the size of the robotic arms are 
designed smaller (Figure 3). As the foot print of each robotic arm is 38 × 38 cm, it is 
portable, does not require large space, and setting up is easy. Comparing with 8 mm 
da Vinci instrument, CMR provides thinner, 5.8 mm instrument with wrist. It is 
under development, and not yet CE Marked nor 510(k) cleared.

2.3 Verb surgical

Johnson & Johnson (Ethicon) and Google (Verily Life Sciences) have jointly 
established Verb Surgical Inc. (US). Their goal is not only robotics but also 

Figure 2. 
Senhance surgical robotic system (©2018 TransEnterix, Inc.).
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visualization, advanced instrumentation, data analytics, and connectivity. The 
details of the appearance of the robot, function, cost, etc. have not been published.

2.4 MiroSurge system

German aerospace center (DLR) developed MiroSurge system (Figure 4) [8, 9]. 
It also has independent, light weight, and compact robotic arms for each instrument, 
which could be fixed directly on the operating bed. Force feedback feature is imple-
mented to the instruments. Unique feature is that the operator can move the robotic 
arm directly by hand touching the arm. By using this function, for example, an 
assistant operator can easily make a room at bed side. Medtronic is licensed this robot.

2.5 da Vinci SP

da Vinci SP (Intuitive Surgical) is a single port surgical system [10–13]. A 
camera and three 6-mm instruments are bundled inside a 25-mm cannula. Thus, 
they can be inserted into the patient body from single incision. Each instrument 
has seven degrees of freedom, including “elbow” and “shoulder”. The camera also 
has multi-bending neck, so that the camera head movement is independent of 
instruments, and operator can look down the devices. Although initial position of 

Figure 3. 
Versius surgical robotic system (©2018 CMR Surgical Ltd., UK).

Figure 4. 
MiroSurge system. Reprinted by permission from Springer Nature: Springer Nature [8].



5

Intelligent Information-Guided Robotic Surgery
DOI: http://dx.doi.org/10.5772/intechopen.82191

the instruments inside the cannula is straight, the “elbow” and “shoulder” make 
triangulation possible inside the body. It has cleared FDA for urologic procedures. 
The other applications which the company is aiming at are rectum [11], laryngeal 
[12, 13] (through natural orifice), and other abdominal procedures.

2.6 SPORT surgical system

SPORT surgical system (TITAN Medical, Canada) is also a single port surgical 
system. It has two articulating instruments and a camera, in a cannula (Figure 5). It 
is under development, and the company expects its FDA clearance in 2019.

2.7 Endoscope holding robot

In the history of the surgical robot, AESOP (Computer Motion, Inc., US) [15], 
an endoscope holding robot, was one of the pioneers, which was launched in 
1994. Although AESOP discontinued, there are some new camera holding robots. 
Their purpose is mainly to solve the issue of human resources in hospital. Viky 
(EndoControl, France) [16] is a compact camera holder which can be mounted 
on the operation bed (Figure 6). Freehand (Freehand 2010 Ltd., UK) [17] is also 
mounted on bed. SoloAssist (AKTORmed, Germany) [18], MTG-H100 (Hiwin 
Technologies Corp, Taiwan), and EMARO (Riverfield Inc., Japan) stands on the 
floor. Various control methods are employed, such as voice, head movement, and 
joystick.

Figure 5. 
SPORT surgical system. Reprinted by permission from Springer Nature: Springer Nature [14].
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3. Robotics for the flexible endoscopic surgery

Natural orifice transluminal endoscopic surgery (NOTES) was introduced in 
2004 [19]. It is the surgery using flexible endoscope instead of rigid laparoscope. As 
access to the lesion is through the natural orifice (mouth and anus), no incision on 
the patient skin, but on the organ inside body such as gastrointestinal wall instead 
is required. Conventional flexible endoscopes and instruments were not enough 
effective to perform this surgical procedure. So, several companies developed 
multi-tasking platform [20–25] (Figure 7). They basically contain flexible endo-
scope, articulating instruments, and grasping and cutting devices. They were not 
motorized, but manually actuated using wire transmission. However, NOTES is still 
in the experimental phase because this procedure was still technically difficult even 
using those platforms. Most of those platforms are discontinued. However, if new, 
effective device were introduced in the future, NOTES could be clinically accepted.

Endoscopic submucosal dissection (ESD) is another surgical procedure using 
flexible endoscope [28, 29]. ESD is applied only for gastrointestinal mucosal cancer. 
Therefore, it has limited coverage of organ compared with NOTES. ESD has been 
clinically accepted and prevailing especially in Asian countries. Although ESD 

Figure 6. 
Viky, reprinted by permission from Springer Nature: Springer Nature [16].

Figure 7. 
Examples of manually driven multi-tasking platform. (A) ANUBISCOPE (IRCAD & Karl Storz Endoskope), 
reprinted by permission from Springer Nature: Springer Nature [26]. (B) EndoSAMURAI (Olympus, Japan), 
reprinted by permission from Springer Nature: Springer Nature [27].
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procedure is easier than NOTES, it still requires high skill of flexible endoscope and 
long training time like laparoscopy [30, 31]. Some of the recent robotic surgical 
systems for flexible endoscope are aiming at ESD procedure.

In this section, recent surgical robots for flexible endoscope are introduced. At 
present, there is no major robot in this field. But many are under development or 
just have been launched. We believe flexible endoscope surgery will be next major 
target of surgical robot industry.

3.1 STRAS

ANUBISCOPE (IRCAD & Karl Storz Endoskope) [20, 21] was developed for 
NOTES and ESD procedure. The system composed of a custom made flexible 
endoscope with two articulating instruments. It was not motor driven but manually 
driven system. Strasburg University jointly developed motorized version, STRAS 
with Karl Storz and IRCAD [32–35]. By using vision computation technology, they 
applied automated target tracking [32] and position detection of the instruments 
[33]. This project is still in the phase of academic research. Some animal trials have 
been carried out [34, 35].

3.2 Endomaster

Endomaster (Endomaster Pte Ltd., Singapore) has also two articulating robotic 
instruments. It has “shoulder” and “elbow” joints in its instruments instead that 
all other platforms have consecutive bending section. The prototype (Figure 8) 
uses a conventional two channel endoscope but latest version uses custom made 

Figure 8. 
EndoMaster prototype, reprinted by permission from Springer Nature: Springer Nature [36].
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endoscope. This company is a spin-off of Nanyang Technological University, 
Singapore. HOYA Corporation, Japan, one of the endoscope manufacturers joined 
the project. It is still under development. ESD, endoscopic full thickness dissection, 
NOTES trials in animal model, and a human trial have been carried out [36–40].

3.3 Medrobotics

Flex robotic system (Medrobotics Corporation, US) has also two 4-mm articu-
lating arm and endoscope (Figure 9). Unique feature is the snake-like endoscope 
[41–44]. By using two sets of shape-locking sheath, the endoscope can move 
follow-the-leader manner like snake. As the length of the endoscope is short, it can 
be applied for larynx, rectum from natural orifice, and percutaneously abdominal 
cavity. Flex robotic system has already cleared FDA for colorectal surgery.

3.4 K-Flex

Korea Advanced Institute of Science and Technology (KAIST), South Korea 
has been developing K-Flex [45]. Two 3.7-mm articulating instruments and an 
endoscope are in a flexible sheath. The sheath has wire driven bending section at 
the end. This bending section has two independently controllable bending parts, 
so that view angle can be changed. They established a spin-off company, EasyEndo 
Surgical Inc., to commercialize this system.

3.5 Monarch platform

Auris Health, Inc. (US) is a potential company which can develop flexible endo-
scopic robot [46]. They have already cleared FDA and launched the Monarch plat-
form in 2018, which is a bronchoscopy treatment robot. They previously acquired 
Hansen Medical, which had technology for bending catheter for cardiovascular use. 
At the moment, they focus on lung treatment.

Figure 9. 
Flex robotic system, reprinted by permission from Springer Nature: Springer Nature [41].
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3.6 Kyushu University ESD robot

We have also been developing flexible endoscopic platforms for ESD in manu-
ally driven version [47, 48] (Figure 10) and motorized version [49] (Figure 11). 
They composed of conventional flexible endoscope, two 2.6-mm articulating 
instruments, and an additional channel. By using standard endoscope for ESD, 
total system cost is minimized. The diameter of instruments is very thin because 
the standard endoscope has 2.8 mm channel. Control part on a stand is designed, 
so that both handles of the instruments and endoscope are close to the operator. 
Animal experiments have been carried out [47, 48].

4. Other robotic application

4.1 Teleoperation

Telesurgery is one of the possible applications of surgical robot for the purpose 
of medicine in rural area, space, and battle field. In principle of surgical robot, mas-
ter controller (operator site) and surgical robot (patient site) are connected only by 

Figure 10. 
ESD platform (manually driven) of Kyushu University, Japan.

Figure 11. 
ESD platform (motorized) of Kyushu University, Japan.
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Figure 13. 
MRI image-guided surgical system, reprinted by permission from Springer Nature: Springer Nature [53].

signal. So even if the whole system is in a room like da Vinci, they are teleoperation 
robot in nature. In the case of long distance between operator site and patient site, 
delay in the signal transmission is not negligible. Therefore, fast transmission lines 
are chosen and employed. Marescaux et al. demonstrated telesurgery experiment on 
human patient between US and France [50]. We also have also successfully carried 
out animal telesurgery experiments several times between Japan and Korea, Japan 
and Thailand by using our own robot system (Figure 12) [51, 52]. In this study, we 
have employed relatively low cost ISDN line and low latency CODEC technology.

4.2 MRI compatible robot

Anatomy identification is sometimes difficult during laparoscopic surgery. If 
surgeon can see vessel, nerve, and lesion under the organ surface, it will be strong 
merit for safety and quality of the operation. For this purpose, we used intraopera-
tive open bore type MRI for real-time image acquisition and developed a laparo-
scopic surgical robot which can be placed inside the MRI gantry (Figure 13) [53]. 
As MRI has strong magnetic field, no magnetic metal such as stainless steel cannot 
be used. Our robot was made of mainly engineering plastic and titanium alloy. 
Also, we chose ultrasonic motors instead of magnetic motors. The system consists 
of two forceps and a camera. Additionally, needle insertion device can be attached. 
The surgeon console display shows the camera view, pre-operative MR image, and 
intraoperative real-time MR image. We have successfully demonstrated animal 
experiment by live porcine model.

Figure 12. 
(Left) Master console (right) patient site of the teleoperation robot.
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5. Navigation

Navigation in surgery includes various techniques. In brain and ENT surgery 
where the organ deformation are relatively small, the navigation system which 
detects the real-time position of the instrument in the preoperative three-
dimensional image by using optical position sensors is often used. In laparoscopic 
surgery, as the organ movement is large, such precise position detection is not 
required. But sometimes surgeon requires to refer to the segmented preoperative 
image during the procedure in order to confirm anatomical structure. The prob-
lem was that it is very difficult to compare current two-dimensional camera image 
and preoperative three-dimensional image. In order to solve this problem, we have 
developed real-time viewer software and sensor system especially for da Vinci 
partial nephrectomy (Figure 14) [54, 55]. This system detects the robot camera 
angle by position sensor mounted to the da Vinci arm by our own attachment 
(because da Vinci does not allow to output such data). According to the camera 
angle, the system computes corresponding view in the three-dimensional preop-
erative image and displays at the small sub-display under the main display. By this 
navigation system, the surgeon can see the preoperative image in the same angle of 
current camera image. We found it very useful, and it is clinically used every time 
in our hospital.

6. Training

Training in laparoscopic surgery is important for surgeons. Also, studies about 
effective training method are important for better learning curve. There are many 
surgical simulators using computer graphics, rubber phantom, and harvested 
animal organ. However, measuring surgical skill quantitatively was very difficult. 
Quantification of skill is important not only for qualifying each surgeon but also 
for evaluating the effectiveness of training method. We have developed a suture 
simulator and evaluation software (Figure 15) [56, 57]. The phantom mimicking 
small intestine, made of four layers and string braided rubber, is used for the task. 
The task is anastomosis of the defect on the intestine by three interrupted sutures. 
The result is evaluated by five category including completion time, air leakage test, 
etc. The trainees can be fed back each time by score. Scoring system was developed 
using data previously obtained from skilled surgeons performing suture on this 
phantom. By using this simulator, significant difference between the trainees’ 
scores before and after training was observed [57].

Figure 14. 
Navigation system for da Vinci surgery.
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7. Conclusion

In this chapter, we introduced current and near future available laparoscopic/
flexible endoscopic surgical robots, examples of other advanced robotic applica-
tions, and technology of navigation and training.
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Figure 15. 
Training simulator.
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