52 research outputs found

    Modified Dynamic Time Warping for Hierarchical Clustering

    Get PDF
    Time series clustering is the process of grouping sequential correspondences in similar clusters. The key feature behind clustering time series data lies on the similarity/distance function used to identify the sequential matches. Dynamic Time Warping (DTW) is one of the common distance measures that have demonstrated competitive results compared to other functions. DTW aims to find the shortest path in the process of identifying sequential matches. DTW relies on dynamic programming to obtain the shortest path where the smaller distance is being computed. However, in the case of equivalent distances, DTW is selecting the path randomly. Hence, the selection could be misguided in such randomization process, which significantly affects the matching quality. This is due to randomization may lead to the longer path which drifts from obtaining the optimum path. This paper proposes a modified DTW that aims to enhance the dynamic selection of the shortest path when handling equivalent distances. Experiments were conducted using twenty UCR benchmark datasets. Also, the proposed modified DTW result has been compared with the state of the art competitive distance measures which is based on precision, recall and f-measure including the original DTW, Minkowski distance measure and Euclidean distance measure. The results showed that the proposed modified DTW reveal superior results in compared to the standard DTW, either using Minkowski or Euclidean. This can demonstrate the effectiveness of the proposed modification in which optimizing the shortest path has enhanced the performance of clustering. The proposed modified DTW can be used for having good clustering method for any time series data

    Accelerated aging-related transcriptome changes in the female prefrontal cortex

    Get PDF
    Human female life expectancy is higher than that of males. Intriguingly, it has been reported that women display faster rates of age-related cognitive decline and a higher prevalence of Alzheimers disease (AD). To assess the molecular bases of these contradictory trends, we analyzed differences in expression changes with age between adult males and females, in four brain regions. In the superior frontal gyrus (SFG), a part of the prefrontal cortex, we observed manifest differences between the two sexes in the timing of age-related changes, that is, sexual heterochrony. Intriguingly, age-related expression changes predominantly occurred earlier, or at a faster pace, in females compared to men. These changes included decreased energy production and neural function and up-regulation of the immune response, all major features of brain aging. Furthermore, we found that accelerated expression changes in the female SFG correlated with expression changes observed in AD, as well as stress effects in the frontal cortex. Accelerated aging-related changes in the female SFG transcriptome may provide a link between a higher stress exposure or sensitivity in women and the higher prevalence of AD

    Dynamical structure in neural population activity

    Get PDF
    The question of how the collective activity of neural populations in the brain gives rise to complex behaviour is fundamental to neuroscience. At the core of this question lie considerations about how neural circuits can perform computations that enable sensory perception, motor control, and decision making. It is thought that such computations are implemented by the dynamical evolution of distributed activity in recurrent circuits. Thus, identifying and interpreting dynamical structure in neural population activity is a key challenge towards a better understanding of neural computation. In this thesis, I make several contributions in addressing this challenge. First, I develop two novel methods for neural data analysis. Both methods aim to extract trajectories of low-dimensional computational state variables directly from the unbinned spike-times of simultaneously recorded neurons on single trials. The first method separates inter-trial variability in the low-dimensional trajectory from variability in the timing of progression along its path, and thus offers a quantification of inter-trial variability in the underlying computational process. The second method simultaneously learns a low-dimensional portrait of the underlying nonlinear dynamics of the circuit, as well as the system's fixed points and locally linearised dynamics around them. This approach facilitates extracting interpretable low-dimensional hypotheses about computation directly from data. Second, I turn to the question of how low-dimensional dynamical structure may be embedded within a high-dimensional neurobiological circuit with excitatory and inhibitory cell-types. I analyse how such circuit-level features shape population activity, with particular focus on responses to targeted optogenetic perturbations of the circuit. Third, I consider the problem of implementing multiple computations in a single dynamical system. I address this in the framework of multi-task learning in recurrently connected networks and demonstrate that a careful organisation of low-dimensional, activity-defined subspaces within the network can help to avoid interference across tasks

    Automated retinal layer segmentation and pre-apoptotic monitoring for three-dimensional optical coherence tomography

    Get PDF
    The aim of this PhD thesis was to develop segmentation algorithm adapted and optimized to retinal OCT data that will provide objective 3D layer thickness which might be used to improve diagnosis and monitoring of retinal pathologies. Additionally, a 3D stack registration method was produced by modifying an existing algorithm. A related project was to develop a pre-apoptotic retinal monitoring based on the changes in texture parameters of the OCT scans in order to enable treatment before the changes become irreversible; apoptosis refers to the programmed cell death that can occur in retinal tissue and lead to blindness. These issues can be critical for the examination of tissues within the central nervous system. A novel statistical model for segmentation has been created and successfully applied to a large data set. A broad range of future research possibilities into advanced pathologies has been created by the results obtained. A separate model has been created for choroid segmentation located deep in retina, as the appearance of choroid is very different from the top retinal layers. Choroid thickness and structure is an important index of various pathologies (diabetes etc.). As part of the pre-apoptotic monitoring project it was shown that an increase in proportion of apoptotic cells in vitro can be accurately quantified. Moreover, the data obtained indicates a similar increase in neuronal scatter in retinal explants following axotomy (removal of retinas from the eye), suggesting that UHR-OCT can be a novel non-invasive technique for the in vivo assessment of neuronal health. Additionally, an independent project within the computer science department in collaboration with the school of psychology has been successfully carried out, improving analysis of facial dynamics and behaviour transfer between individuals. Also, important improvements to a general signal processing algorithm, dynamic time warping (DTW), have been made, allowing potential application in a broad signal processing field.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Automated retinal layer segmentation and pre-apoptotic monitoring for three-dimensional optical coherence tomography

    Get PDF
    The aim of this PhD thesis was to develop segmentation algorithm adapted and optimized to retinal OCT data that will provide objective 3D layer thickness which might be used to improve diagnosis and monitoring of retinal pathologies. Additionally, a 3D stack registration method was produced by modifying an existing algorithm. A related project was to develop a pre-apoptotic retinal monitoring based on the changes in texture parameters of the OCT scans in order to enable treatment before the changes become irreversible; apoptosis refers to the programmed cell death that can occur in retinal tissue and lead to blindness. These issues can be critical for the examination of tissues within the central nervous system. A novel statistical model for segmentation has been created and successfully applied to a large data set. A broad range of future research possibilities into advanced pathologies has been created by the results obtained. A separate model has been created for choroid segmentation located deep in retina, as the appearance of choroid is very different from the top retinal layers. Choroid thickness and structure is an important index of various pathologies (diabetes etc.). As part of the pre-apoptotic monitoring project it was shown that an increase in proportion of apoptotic cells in vitro can be accurately quantified. Moreover, the data obtained indicates a similar increase in neuronal scatter in retinal explants following axotomy (removal of retinas from the eye), suggesting that UHR-OCT can be a novel non-invasive technique for the in vivo assessment of neuronal health. Additionally, an independent project within the computer science department in collaboration with the school of psychology has been successfully carried out, improving analysis of facial dynamics and behaviour transfer between individuals. Also, important improvements to a general signal processing algorithm, dynamic time warping (DTW), have been made, allowing potential application in a broad signal processing field

    Characteristic time courses of electrocorticographic signals during speech

    Get PDF
    Electrophysiology has produced a wealth of information concerning characteristic patterns of neural activity underlying movement control in non-human primates. Such patterns differentiate functional classes of neurons and illuminate neural computations underlying different stages of motor planning and execution. The scarcity of high-resolution electrophysiological recordings in humans has hindered such descriptions of brain activity during uniquely human acts such as speech production. The goal of this dissertation was to identify and quantitatively characterize canonical temporal profiles of neural activity measured using surface and depth electrocorticography electrodes while pre-surgical epilepsy patients read aloud monosyllabic utterances. An unsupervised iterative clustering procedure was combined with a novel Kalman filter-based trend analysis to identify characteristic activity time courses that occurred across multiple subjects. A nonlinear distance measure was used to emphasize similarity at key portions of the activity profiles, including signal peaks. Eight canonical activity patterns were identified. These activity profiles fell broadly into two classes: symmetric profiles in which activity rises and falls at approximately the same rate, and ramp profiles in which activity rises relatively quickly and falls off gradually. Distinct characteristic time courses were found during four different task stages: early processing of the orthographic stimulus, phonological-to-motor processing, motor execution, and auditory processing of self-produced speech, with activity offset ramps in earlier stages approximately matching activity onset rates in later stages. The addition of an anatomical constraint to the distance measure to encourage clusters to form within local brain regions did not significantly change results. The anatomically constrained results showed a further subdivision of the eight canonical activity patterns, with the subdivisions primarily stemming from sub-clusters that are anatomically distinct across different brain regions, but maintained the base activity pattern of their parent cluster from the analysis without the anatomically constrained distance measure. The analysis tools developed herein provide a powerful means for identifying and quantitatively characterizing the neural computations underlying human speech production and may apply to other cognitive and behavioral domains

    Non-coding genome contributions to the development and evolution of mammalian organs

    Get PDF
    Protein-coding sequences only cover 1-2% of a typical mammalian genome. The remaining non-coding space hides thousands of genomic elements, some of which act via their DNA sequence while others are transcribed into non-coding RNAs. Many well-characterized non-coding elements are involved in the regulation of other genes, a process essential for the emergence of different cell types and organs during development. Changes in the expression of conserved genes during development are in turn thought to facilitate evolutionary innovation in form and function. Thus, non-coding genomic elements are hypothesized to play important roles in developmental and evolutionary processes. However, challenges related to the identification and characterization of these elements, in particular in non-model organisms, has limited the study of their overall contributions to mammalian organ development and evolution. During my dissertation work, I addressed this gap by studying two major classes of non-coding elements, long non-coding RNAs (lncRNAs) and cis-regulatory elements (CREs). In the first part of my thesis, I analyzed the expression profiles of lncRNAs during the development of seven major organs in six mammals and a bird. I showed that, unlike protein-coding genes, only a small fraction of lncRNAs is expressed in reproducibly dynamic patterns during organ development. These lncRNAs are enriched for a series of features associated with functional relevance, including increased evolutionary conservation and regulatory complexity, highlighting them as candidates for further molecular characterization. I then associated these lncRNAs with specific genes and functions based on their spatiotemporal expression profiles. My analyses also revealed differences in lncRNA contributions across organs and developmental stages, identifying a developmental transition from broadly expressed and conserved lncRNAs towards an increasing number of lineage- and organ-specific lncRNAs. Following up on these global analyses, I then focused on a newly-identified lncRNA in the marsupial opossum, Female Specific on chromosome X (FSX). The broad and likely autonomous female-specific expression of FSX suggests a role in marsupial X-chromosome inactivation (XCI). I showed that FSX shares many expression and sequence features with another lncRNA, RSX ā€” a known regulator of XCI in marsupials. Comparisons to other marsupials revealed that both RSX and FSX emerged in the common marsupial ancestor and have since been preserved in marsupial genomes, while their broad and female-specific expression has been retained for at least 76 million years of evolution. Taken together, my analyses highlighted FSX as a novel candidate for regulating marsupial XCI. In the third part of this work, I shifted my focus to CREs and their cell type-specific activities in the developing mouse cerebellum. After annotating cerebellar cell types and states based on single-cell chromatin accessibility data, I identified putative CREs and characterized their spatiotemporal activity across cell types and developmental stages. Focusing on progenitor cells, I described temporal changes in CRE activity that are shared between early germinal zones, supporting a model of cell fate induction through common developmental cues. By examining chromatin accessibility dynamics during neuronal differentiation, I revealed a gradual divergence in the regulatory programs of major cerebellar neuron types. In the final part, I explored the evolutionary histories of CREs and their potential contributions to gene expression changes between species. By comparing mouse CREs to vertebrate genomes and chromatin accessibility profiles from the marsupial opossum, I identified a temporal decrease in CRE conservation, which is shared across cerebellar cell types. However, I also found differences in constraint between cell types, with microglia having the fastest evolving CREs in the mouse cerebellum. Finally, I used deep learning models to study the regulatory grammar of cerebellar cell types in human and mouse, showing that the sequence rules determining CRE activity are conserved across mammals. I then used these models to retrace the evolutionary changes leading to divergent CRE activity between species. Collectively, my PhD work provides insights into the evolutionary dynamics of non-coding genes and regulatory elements, the processes associated with their conservation, and their contributions to the development and evolution of mammalian cell types and organs

    The Discovery and Regulation of Modes of Exocytosis Through the Lens of Computer Vision

    Get PDF
    The formation of the nervous system involves establishing complex networks of synaptic connections between proper partners, which requires the rapid expansion of the plasma membrane surface area as neurons grow. Critical to the expansion of the plasma membrane is exocytic vesicle fusion, a regulated mechanism driven by soluble N-ethylmaleimide-sensitive factor attachment proteins receptors (SNAREs). Multiple modes of exocytosis have been proposed, with full-vesicle fusion (FVF) and kiss-and-run (KNR) being the best described. The basis of SNARE-mediated fusion, the opening of a fusion pore, and its contribution to plasma membrane expansion remains enigmatic, as vesicle fusion is spatially small and temporally fast. We exploited TIRF microscopy to image VAMP-pHluorin mediated exocytosis in murine embryonic cortical neurons and developed computer-vision software and statistical tools to perform unbiased, efficient identification of exocytic events and uncover spatiotemporal aspects of exocytosis during neuron development. We further developed novel classification algorithms to describe. and classify individual exocytic events. Vesicle fusion behavior differed between vesicle types, cell types, developmental stage, and extracellular environment. Spatial statistics uncovered distinct spatiotemporal regulation of exocytosis in the soma and neurites of neurons that was modulated by developmental stage, the guidance cue netrin-1, and the E3 ubiquitin ligase TRIM9. Four distinguishable fusion modes were uncovered in developing neurons: two FVF-like modes that insert membrane material (FVFi and FVFd) and two KNR-like modes that do not (KNRi and KNRd). Experiment-based mathematical calculations and experiments indicated that FVFi and FVFd VAMP2-mediated vesicle fusion supplied sufficient material for the plasma membrane expansion that occurred early in neuronal morphogenesis. The mode of exocytosis is dependent on the E3-ubiquitin ligase TRIM67. Neurons lacking Trim67 have increased KNRi and KNRd as well as smaller surface area, presumably due to lowered rates of FVFi and FVFd. Our data suggest this is accomplished in part by limiting incorporation of the Qb/Qc SNARE SNAP47 into SNARE complexes, and thus, SNAP47 involvement in exocytosis. SNAP47 levels are elevated in neurons lacking TRIM67, and overexpression of SNAP47 in neurons expressing wildtype levels of TRIM67 have increased KNRi and KNRd and decreased FVFi. Thus, we establish a regulatory mechanism of TRIM67, distinct from TRIM9.Doctor of Philosoph

    Effects of different forms of docosahexaenoic acid supplementations on human neuronal cells

    Full text link
    My study showed that Docosahexaenoic Acid (DHA), a major dietary omega-3 polyunsaturated fatty acid, inhibited cell death and promoted electro-physiological activity in cultured neuronal cells. The free fatty acid form was more effective than DHA-phospholipids and DHA-nanoliposomes. This study provides insights into the beneficial effects of dietary omega-3 fatty acids
    • ā€¦
    corecore