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Summary 

Protein-coding sequences only cover 3-4% of a typical mammalian genome. The remaining non-

coding space hides thousands of genomic elements, some of which act via their DNA sequence 

while others are transcribed into non-coding RNAs. Many well-characterized non-coding 

elements are involved in the regulation of other genes, a process essential for the emergence of 

different cell types and organs during development. Changes in the expression of conserved 

genes during development are in turn thought to facilitate evolutionary innovation in form and 

function. Thus, non-coding genomic elements are hypothesized to play important roles in 

developmental and evolutionary processes. However, challenges related to the identification 

and characterization of these elements, in particular in non-model organisms, has limited the 

study of their overall contributions to mammalian organ development and evolution. During 

my dissertation work, I addressed this gap by studying two major classes of non-coding 

elements, long non-coding RNAs (lncRNAs) and cis-regulatory elements (CREs). 

In the first part of my thesis, I analyzed the expression profiles of lncRNAs during the 

development of seven major organs in six mammals and a bird. I showed that, unlike protein-

coding genes, only a small fraction of lncRNAs is expressed in reproducibly dynamic patterns 

during organ development. These lncRNAs are enriched for a series of features associated with 

functional relevance, including increased evolutionary conservation and regulatory complexity, 

highlighting them as candidates for further molecular characterization. I then associated these 

lncRNAs with specific genes and functions based on their spatiotemporal expression profiles. 

My analyses also revealed differences in lncRNA contributions across organs and developmental 

stages, identifying a developmental transition from broadly expressed and conserved lncRNAs 

towards an increasing number of lineage- and organ-specific lncRNAs. 

Following up on these global analyses, I then focused on a newly-identified lncRNA in the 

marsupial opossum, Female Specific on chromosome X (FSX). The broad and likely autonomous 

female-specific expression of FSX suggests a role in marsupial X-chromosome inactivation 

(XCI). I showed that FSX shares many expression and sequence features with another lncRNA, 

RSX — a known regulator of XCI in marsupials. Comparisons to other marsupials revealed that 

both RSX and FSX emerged in the common marsupial ancestor and have since been preserved 

in marsupial genomes, while their broad and female-specific expression has been retained for 

at least RS million years of evolution. Taken together, my analyses highlighted FSX as a novel 

candidate for regulating marsupial XCI. 



 
 

ii 

In the third part of this work, I shifted my focus to CREs and their cell type-specific activities in 

the developing mouse cerebellum. After annotating cerebellar cell types and states based on 

single-cell chromatin accessibility data, I identified putative CREs and characterized their 

spatiotemporal activity across cell types and developmental stages. Focusing on progenitor cells, 

I described temporal changes in CRE activity that are shared between early germinal zones, 

supporting a model of cell fate induction through common developmental cues. By examining 

chromatin accessibility dynamics during neuronal differentiation, I revealed a gradual 

divergence in the regulatory programs of major cerebellar neuron types. 

In the final part, I explored the evolutionary histories of CREs and their potential contributions 

to gene expression changes between species. By comparing mouse CREs to vertebrate genomes 

and chromatin accessibility profiles from the marsupial opossum, I identified a temporal 

decrease in CRE conservation, which is shared across cerebellar cell types. However, I also found 

differences in constraint between cell types, with microglia having the fastest evolving CREs in 

the mouse cerebellum. Finally, I used deep learning models to study the regulatory grammar of 

cerebellar cell types in human and mouse, showing that the sequence rules determining CRE 

activity are conserved across mammals. I then used these models to retrace the evolutionary 

changes leading to divergent CRE activity between species.  

Collectively, my PhD work provides insights into the evolutionary dynamics of non-coding 

genes and regulatory elements, the processes associated with their conservation, and their 

contributions to the development and evolution of mammalian cell types and organs.  
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Zusammenfassung 

Protein-kodierende Sequenzen machen nur 3-4% eines typischen Säugetiergenoms aus. Der 

verbleibende nicht-kodierende Bereich verbirgt Tausende genomische Elemente, von denen 

einige durch ihre DNA-Sequenz wirken, während andere in nicht-kodierende RNAs 

transkribiert werden. Viele gut charakterisierte nicht-kodierende Elemente sind an der 

Regulierung anderer Gene beteiligt, ein Prozess, der für die Entstehung verschiedener Zelltypen 

und Organe während der Entwicklung essentiell ist. Es wird angenommen, dass Veränderungen 

in der Expression konservierter Gene während der Entwicklung evolutionäre Innovationen in 

Form und Funktion hervorrufen. Daher geht man davon aus, dass nicht-kodierende genomische 

Elemente eine wichtige Rolle bei Entwicklungs- und Evolutionsprozessen spielen. Diese 

Elemente sind jedoch schwer zu identifizieren und zu charakterisieren, vor allem in Nicht-

Modellorganismen. Deshalb wurde ihr Gesamtbeitrag zur Entwicklung und Evolution von 

Säugetierorganen bisher nur wenig untersucht. In dieser Dissertation habe ich daher zwei 

Hauptklassen von nicht-kodierenden Elementen umfangreicher untersucht: lange nicht-

kodierende RNAs (lncRNAs) und cis-regulierende Elemente (CREs). 

Im ersten Teil meiner Arbeit analysierte ich die Expressionsprofile von lncRNAs während der 

Entwicklung von sieben Organen bei sechs Säugetier- und einer Vogelspezies. Ich konnte 

zeigen, dass während der Organentwicklung, im Gegensatz zu proteinkodierenden Genen, nur 

wenige lncRNAs in reproduzierbar dynamischen Mustern transkribiert werden. Diese weisen 

mehrere Merkmale auf, die auf funktionelle Relevanz deuten, darunter eine erhöhte 

evolutionäre Konservierung und regulatorische Komplexität, was sie zu Kandidaten für eine 

weitere molekulare Charakterisierung macht. Anschließend habe ich diese lncRNAs auf der 

Grundlage ihrer Expressionsprofile mit bestimmten Genen und Funktionen verbunden. Meine 

Analysen ergaben auch Unterschiede in lncRNA Expression zwischen verschiedenen Organen 

und Entwicklungsstadien, wobei ich einen entwicklungsbedingten Übergang von breit 

transkribierten und konservierten lncRNAs hin zu einer zunehmenden Anzahl von spezies- und 

organspezifischen lncRNAs feststellte. 

Im Anschluss an diese globalen Analysen konzentrierte ich mich dann auf eine neu identifizierte 

lncRNA beim Beuteltier Opossum, Female Specific auf Chromosom X (FSX). Die breite, 

wahrscheinlich autonome und auf Weibchen begrenzte Expression von FSX lässt auf eine Rolle 

bei der X-Chromosom-Inaktivierung (XCI) bei Beuteltieren schließen. Ich zeigte, dass FSX viele 

Expressions- und Sequenzmerkmale mit einem bekannten Regulator der XCI bei Beuteltieren, 
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die lncRNA RSX, teilt. Vergleiche mit anderen Beuteltieren ergaben, dass sowohl RSX als auch 

FSX im gemeinsamen Vorfahren der Beuteltiere entstanden und seitdem in den Genomen der 

Beuteltiere erhalten geblieben sind, wobei ihre breite und auf Weibchen begrenzte 

Transkription über mindestens RS Millionen Jahre Evolution erhalten geblieben ist. 

Zusammengenommen haben meine Analysen FSX als einen neuen Kandidaten für die 

Regulierung der XCI der Beuteltiere herausgestellt. 

Im dritten Teil dieser Arbeit analysierte ich CREs und ihre zelltypspezifischen Aktivitäten in der 

Kleinhirnentwicklung der Maus. Nach der Annotation von Kleinhirnzellen durch ihre 

Chromatinprofile, habe ich mutmaßliche CREs identifiziert und ihre Aktivität über Zelltypen 

und Entwicklungsstadien hinweg charakterisiert. Ich entdeckte zeitliche Veränderungen der 

CRE-Aktivität in Vorläuferzellen, die parallel in allen frühen Keimzonen auftreten, und ein 

Modell der Induktion des Zellschicksals durch gemeinsame Signale in der Entwicklung 

unterstützen. Durch die Untersuchung der Chromatinzugänglichkeitsdynamik während der 

neuronalen Differenzierung konnte ich außerdem eine graduelle Divergenz in den 

Regulierungsprogrammen der wichtigsten Kleinhirnneuronentypen feststellen. 

Im letzten Teil untersuchte ich die Evolutionsgeschichte der CREs und ihren potenziellen 

Beitrag zu Veränderungen der Genexpression zwischen Säugetieren. Durch den Vergleich von 

CREs der Maus mit Wirbeltiergenomen und Chromatinzugänglichkeitsprofilen des Beuteltiers 

Opossum habe ich eine zeitliche Abnahme der Konservierung von CREs für alle Kleinhirn-

zelltypen festgestellt. Ich fand jedoch auch Unterschiede im Konservierungsgrad verschiedener 

Zelltypen, wobei Mikroglia die am schnellsten evolvierenden CREs im Kleinhirn der Maus 

aufweisen. Schließlich untersuchte ich mit Hilfe von Deep-Learning-Modellen die 

regulatorische Grammatik der Kleinhirnzelltypen von Mensch und Maus. Dadurch konnte ich 

zeigen, dass die Sequenzregeln, die die CRE-Aktivität bestimmen, zwischen Säugetieren 

konserviert sind. Anschließend verwendete ich diese Modelle, um die evolutionären 

Veränderungen nach-zuvollziehen, die zu einer unterschiedlichen CRE-Aktivität zwischen 

Spezies führen.  

Insgesamt bietet meine Doktorarbeit Einblicke in die evolutionäre Dynamik von nicht-

kodierenden Genen und regulatorischen Elementen, in die Prozesse, die mit ihrer 

Konservierung verbunden sind, und in ihren Beitrag zur Entwicklung und Evolution von 

Zelltypen und Organen bei Säugetieren. 
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<. Introduction 

!.! Non-coding regions in mammalian genomes 

In 3qrR, four years after reporting the structure of the DNA double helix (7), Francis Crick 

described the “central dogma of biology”, according to which genetic information is stored in 

DNA and eventually transferred into proteins through an RNA intermediate (8). Based on this 

view, DNA is tasked with the preservation of genetic information through DNA replication and 

RNA serves as a messenger between DNA and proteins, which are mainly responsible for the 

form and function of living organisms. However, only 3.r% of a typical mammalian genome 

corresponds to protein-coding gene exons (this fraction rises to 4r% when considering introns), 

with the rest corresponding to DNA that is either not transcribed at all or that gives rise to RNA 

molecules that are not translated into proteins (9–:). While much of this vast non-coding space 

is likely devoid of function, a topic that has been fiercely debated over the last decade (;–77), it 

is by now established that several classes of non-coding elements play important roles in many 

biological processes. The goal of this dissertation was to identify and characterize non-coding 

elements in mammalian genomes and to characterize their contributions to organ development 

and evolution. 

!.!.! The non-coding genome harbors a diverse set of elements 

The qu.r% of the human genome that does not encode for protein sequences is far from 

homogeneous. Around half of the genome is covered by repeats (9, 78), most of which are 

derived from transposable elements (TEs). Long and short interspersed nuclear elements 

(LINEs; SINEs) account for 43% and 3r% of the human genome respectively, with an additional 

q% covered by long terminal repeats (LTRs) (78). DNA transposons and tandem repeats 

contribute an additional S%, bringing the total fraction of repeats in the human genome to ~r3% 

(78). Most of these repeats are no longer active and likely correspond to decaying evolutionary 

relics of previous expansions, reflecting inefficient removal by natural selection rather than a 

benefit for the host (78, 79). However, some of these repeats have been shown to play important 

roles in various biological processes. These include direct contributions to the host’s gene 

regulatory networks (79, 7<) or simply the expansion of the available genomic sequence from 

which new non-coding elements can arise de novo during evolution (7:). 

Functional non-coding elements — regardless of whether derived from unique or repetitive 

DNA — can be broadly classified into two groups: 3) non-coding transcripts, where the RNA 



Introduction  

 
 

4 

molecule plays some role in a cellular process, and 4) cis-regulatory elements (CREs), where the 

function lies in the DNA sequence itself (Figure !.!). However, even this distinction should not 

be considered absolute. Many CREs are transcribed into short RNAs that might contribute to 

their function (7;) and transcription of the CRE into long and spliced RNAs is associated with 

increased regulatory activity (7?, 7@). On the other hand, the functionality of many non-coding 

RNAs relies on the act of their transcription (i.e., the biochemical activity of their DNA locus) 

rather than the RNA molecule itself (7A, 8B). 

Figure (.(: Major classes of non-coding elements in a typical mammalian genome. Transcribed 
enhancers (eRNAs) and lncRNAs functioning via the act of their transcription bridge the gap between 
non-coding transcripts (left) and CREs (right). 

3.3.3.3 Major classes of non-coding transcripts 

Ribosomal RNAs (rRNAs) are the most abundant non-coding transcripts, accounting for ~um% 

of all RNA molecules in a given cell, and are responsible for the catalytic activity of the ribosome 

during protein synthesis (87). Non-ribosomal non-coding transcripts can be further divided into 

long — spliced and longer than 4mm nt — and small non-coding RNAs (88). Small non-coding 

RNAs are by far the better understood of the two groups. They include transcripts with 

housekeeping roles, such as transfer RNAs (tRNAs), which serve as an adapter between 

messenger RNA (mRNA) codons and amino acids during protein synthesis (89), small nuclear 

RNAs (snRNAs) that together with proteins catalyze the splicing of pre-mRNA in the nucleus 

(8<), and small nucleolar RNAs (snoRNAs) that guide chemical modifications in other RNA 

molecules (8:). Other groups of small RNAs are involved in the regulation of gene expression. 

These include microRNAs (miRNAs) and small interfering RNAs (siRNAs) which typically 

hybridize with the w’ untranslated region (UTR) of mRNA molecules to induce their degradation 

and/or translational repression, although they can also lead to direct transcriptional silencing 

in the nucleus (8;, 8?). PIWI-interacting RNAs (piRNAs) are a specialized class of small RNAs 
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that employ similar molecular mechanisms to specifically repress the transposition of TEs in the 

germline (88, 8@). 

Despite this diversity in structure and function, small RNAs are much better understood than 

their longer counterparts, long non-coding RNAs (lncRNAs). These represent a large and highly 

heterogeneous group of non-coding transcripts (more than qr,mmm human lncRNAs annotated 

in NONCODE vr) that do not belong to the classes described above. By convention, lncRNAs 

are defined as showing no coding potential, being long (longer than 4mm nt) and spliced (7A, 

8A). However, even these three simple rules leave room for notable exceptions, such as the 

monoexonic NORAD (9B, 97) and the protein-coding gene ASCC9 which can be repurposed into 

a functional non-coding transcript under specific conditions (98). Despite nearly two decades 

of intense study, only a handful of lncRNAs have been deeply characterized at the molecular 

level, and the differences observed in their mechanisms and functions leave little hope for 

generalizing the lessons learned from these “paradigms” (99). Furthermore, it is still unclear 

what fraction of mammalian lncRNAs could represent byproducts of transcriptional noise 

rather than having any functional consequences for the organism (;, 8A, 99). To this end, the 

systematic characterization of lncRNAs at the genome scale can serve as an important first step 

to prioritize candidates for more detailed functional investigation (8B, 8A). The first two parts 

of my thesis work focus on lncRNAs, which are discussed in greater detail below (3.3.4, 3.3.w). 

3.3.3.4 Major classes of cis-regulatory elements 

Non-coding elements that act via their DNA sequence, broadly referred to as CREs, also show 

considerable diversity, but share the same basic principle: They all contain one — or usually 

more — short DNA sequences that are recognized by DNA-binding proteins called transcription 

factors (TFs). TFs are recruited to these recognition sequences, often leading to further 

recruitment of additional factors through protein-protein interactions. Depending on the 

genomic position of the CRE, the kind of TFs that are recruited to its sequence, and the effect 

of this recruitment on gene expression, CREs can be classified into different groups. CREs 

overlapping with or proximal to a gene’s transcription start site (TSS) typically recruit the core 

transcriptional machinery and are termed promoters (9<, 9:). The rest of the CREs are 

collectively referred to as distal elements, and include enhancers, silencers and insulators. 

Enhancers are DNA elements that can activate gene expression across long distances, and 

independently from their orientation, by recruiting activating TFs which in turn come to close 

spatial proximity to the TSS (9;, 9?). Silencers, considerably less understood than enhancers, 

work in a similar way to repress transcription by recruiting repressor TFs to their sequences 
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(9<). Finally, insulators or boundary elements are involved in the regulation of the spatial 

architecture of the genome, recruiting architectural proteins such as CTCF and cohesin, which 

limit the interactions between genomic regions from opposite ends of the boundary (9<, 9@). 

However, the distinction between these classes is not absolute. Promoters can act as enhancers, 

activating the expression of adjacent genes (9:, 9A) and enhancers can be transcribed into 

typically short but occasionally longer RNAs (7;–7@, <B). Additionally, the same CRE can recruit 

activating TFs in one context and repressing TFs in different contexts, shifting from an enhancer 

to a silencer (<7, <8). Even the same TF can have opposing effects on gene expression by 

interacting with different sets of co-factors (<9). Ultimately, it is the nature of the collective TF 

machinery recruited to a CRE that determines its function.  

The next four sections of this introduction focus on the non-coding elements examined during 

this work, lncRNAs (3.3.w, 3.3.p) and CREs — mainly enhancers and promoters (3.3.r), starting 

with the methods used to identify them at a genome-wide scale (3.3.4). 

!.!.7 Genome-wide identification of non-coding elements 

The systematic study of non-coding genomic elements is considerably more complicated than 

that of protein-coding genes. The simple rules underlying the genetic code behind protein 

synthesis allow the in silico identification of reasonably long open reading frames (ORFs) 

directly from the genomic sequence (<<). Additionally, most protein-coding genes show high 

sequence constraint, allowing the extrapolation of findings from one species to homologous 

genes in other species (<<). By contrast, the limited evolutionary conservation of most non-

coding element classes (<:, <;) and our incomplete understanding of how their function is 

encoded in their sequence (99, 9?) severely limit the scope and efficiency of similar analyses. 

Instead, the identification of non-coding elements typically requires some genome-wide 

biochemical assay, which serves as a proxy for their activity. 

In the case of non-coding transcripts, this assay typically involves the sequencing of RNA 

molecules (RNA-seq). The most popular approach (<?–<A) starts with the capture of 

polyadenylated RNA. RNA molecules are subsequently fragmented and reverse-transcribed into 

cDNA, which is then subjected to next-generation sequencing (:B). Small modifications in the 

protocol can provide additional information about the strand of the original RNA molecule (:7). 

This method allows the de novo identification of previously uncharacterized transcripts and the 

simultaneous quantification of their expression levels (:B). However, the use of short reads 

limits the detection of the precise transcript boundaries and the characterization of differential 
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isoform usage. Capturing the r’-cap of RNA transcripts has been used to accurately define 

lncRNA transcription start sites (:8), while recent methods that allow the sequencing of long 

RNA fragments (median length of 3-3.r kb) have led to a more precise definition of lncRNA 

transcript models (:9, :<). However, short-read RNA-seq remains the most commonly used 

method for genome-wide transcriptomic profiling due to is cost efficiency and scalability. 

The genome-wide identification of CREs is more complicated, as no single assay serves as a 

golden standard. Many studies have used chromatin immunoprecipitation followed by 

sequencing (ChIP-seq) to identify loci marked by specific histone modifications associated with 

promoter (e.g., HwK4Rac and HwKpmew) or enhancer (e.g., HwK4Rac and HwKpme3) activity (9:, 

<;, ::). More recent methods such as CUT&RUN also make use of antibodies to target histones 

or TFs but don’t require precipitation, leading to an improved signal-to-noise ratio (:;). An 

alternative to antibody-based methods is to identify open chromatin regions, as TF binding on 

CREs leads to nucleosome displacement and increased chromatin accessibility (:?). In such 

methods, open chromatin regions are identified based on how accessible they are to enzymes 

such as a DNase (DNase-hypersensitivity assay) or a transposase (Assay for Transposase-

Accessible Chromatin; ATAC-seq) (:?). ATAC-seq has become especially popular over the last 

years due to the simplicity of its protocol and its high sensitivity (:?, :@). However, it is 

important to acknowledge that open chromatin only serves as a proxy for regulatory activity, 

and that it provides no additional information regarding the class of the CRE (e.g., promoter, 

enhancer or silencer). Thus, inferring CRE activity with high confidence typically requires 

additional evidence from massively parallel reporter assays (MPRAs) or CRISPR 

interference/activation screens, which can assess the ability of the sequence to affect gene 

expression in a given biological context (9:). 

Genome-wide assays such as RNA-seq and ATAC-seq have revolutionized the systematic 

profiling of non-coding elements, and more generally the study of gene expression and gene 

regulation. However, a major limitation of these assays has been the need for large amounts of 

biological material acquired from thousands or even millions of cells (:A). Thus, in the context 

of profiling heterogeneous samples, such as developing organs, these assays are only able to 

provide an ensemble view, averaged across many cell types and states that exist in different 

proportions. This limits the scope of the data in many ways (:A), but is especially problematic 

for non-coding elements, such as lncRNAs or CREs, which are highly cell type-specific (9?, <?, 

;B–;8). Relying on bulk organ profiling, not only do we remain oblivious about the precise cell 
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type in which a CRE is active, but we even risk to miss identifying it altogether, especially if it is 

active in a rare cell type.  

However, recent improvements in sequencing technology have enabled the profiling of gene 

expression and chromatin accessibility in single cells (:A). Single-cell methods benefit from 

advances in microfluidic technologies, which allow — at least part of the reaction — to take 

place within liquid droplets (or in less commonly used protocols, in individual wells), each 

containing a single cell or nucleus (:A). Sequences arising from the same cell are marked with 

unique barcodes, allowing them to be grouped together after sequencing (;9). The molecular 

profile of each cell can be subsequently used to associate that cell with a distinct cell type and 

state (;<). Modifications of this basic protocol have enabled the profiling of gene expression 

(e.g., snRNA-seq) (;9), chromatin accessibility (e.g., snATAC-seq) (;:–;?) and more recently 

the measurement of both modalities from the same nucleus (;@, ;A). 

!.!.: Genomic and evolutionary features of lncRNAs 

The large-scale investigation of lncRNAs through RNA-seq has provided important insights into 

their genomic features and evolutionary histories. As discussed above, lncRNAs represent a 

highly heterogeneous group defined as long (longer than 4mm nt), spliced and non-coding 

transcripts (7A). They resemble mRNAs in that they are typically capped and polyadenylated 

(7A). However, lncRNA transcripts are shorter (?B) and their splicing is less efficient (?7). Their 

promoters are simpler than those of protein-coding genes and contain fewer TF binding sites 

(?7). This is also reflected in their lower and more context-specific expression (<?, <@). The low 

expression of lncRNAs is often used as an argument against their functional relevance (99, ?8). 

However, expression levels of lncRNAs might be underestimated by bulk RNA-seq because of 

their high cell type-specificity (;7). Additionally, even when lowly expressed, lncRNAs can 

become highly concentrated in individual subcellular compartments associated with specific 

biological processes (?8). Another argument supporting the notion that many lncRNAs might 

correspond to transcriptional noise is that the majority of lncRNAs is exclusively expressed in 

the mammalian testis (<?, <@, ?9). Most of these testis-specific lncRNAs are likely byproducts of 

a pervasive chromatin environment that also allows the transcription of short intergenic 

sequences (?9, ?<), although individual lncRNAs with important functions in spermatogenesis 

have also been described (?:). Due to their heterogeneity, lncRNAs are often classified based on 

their position (overlapping, intergenic) and orientation (sense/antisense, bidirectional) 

compared to the nearest protein-coding gene (?;). However, such a classification scheme offers 

little information regarding their potential functions (?;). 
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Another major difference between lncRNAs and mRNA genes concerns their evolutionary 

conservation. As expected by the relaxed constraints associated with their non-coding nature, 

lncRNA sequences diverge much faster than those of protein-coding genes (<?–<A, ??), although 

they are on average more constrained than random intergenic regions (<?, <@). Similarly, 

homologous lncRNAs show lower expression similarity compared to protein-coding genes (<@, 

<A, ??). The rapid evolutionary turnover of lncRNAs is mainly facilitated by TE insertions (<:, 

?@, ?A), stabilization of short transcripts from bidirectional promoters or enhancers (<:, @B, @7) 

and the de novo exaptation of previously non-transcribed regions (<:). An additional source of 

lncRNAs is the pseudogenization of protein-coding genes and eventual acquisition of a new 

function by the transcript (@8), with the most prominent case being the emergence of the 

regulator of X-chromosome inactivation, XIST in eutherian mammals (@9). Emergence through 

gene duplication, the main mechanism underlying the origination of new protein-coding genes 

(7:) appears to be rare based on the low within-species sequence similarity observed for lncRNAs 

(<:). 

!.!.@ The quest for functional lncRNAs 

The holy-grail of lncRNA biology is to distinguish between functional non-coding transcripts 

and transcriptional noise (;, 99). The last decade has witnessed a quest for the systematic 

identification of functional lncRNAs. 

Evolutionary conservation represents one of the strongest lines of evidence for the functionality 

of a genomic locus (77, 8A, 99, <:). However, since lncRNAs don’t encode for proteins, their 

sequences are subject to much less constraint than that observed for protein-coding genes, 

suggesting that even homologous lncRNAs with conserved functions between species can 

quickly diverge beyond the level of detectable sequence similarity (<:, @<). Additionally, posing 

conservation as a prerequisite for functionality a priori dismisses thousands of lineage-specific 

lncRNAs, some of which could be associated with evolutionary innovation (<:). Analysis of 

within-species, population-level constraints could provide additional insights (99) but our 

incomplete understanding of how function is encoded in non-coding sequence (@:) further 

complicates such endeavors. Thus, requiring evidence for evolutionary or population-level 

sequence constraint could underestimate the functional relevance of lncRNAs. 

Another approach is to search for overlaps between lncRNA annotations with disease-associated 

genetic polymorphism (:8). However, due to genetic linkage, the causal variant can be several 

kb away from the locus identified as significantly associated with the trait (@;). Additionally, 
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the causal variant might be associated with the function of a different overlapping genomic 

feature, such as a CRE (99). Thus, this approach represents a very relaxed definition of 

functionality. 

The ultimate proof for lncRNA functionality requires extensive experimental investigation, 

typically by examining the phenotypic consequences upon perturbation of the lncRNA locus or 

its expression (8B, 99). The main limitation of this approach is its scale. To date, only a few 

lncRNAs have been deeply characterized at the molecular level. These include XIST, which is 

essential for X-chromosome inactivation in eutherian mammals (@?–AB), HOTAIR, which is 

involved in the control of the expression of the HOXD cluster (A7, A8), and NORAD, a critical 

regulator of genomic stability (9B, 97). Each of these lncRNAs has been intensely studied by 

several groups for many years, an approach that is not feasible for the interrogation of thousands 

of transcripts, especially under the expectation that many of them are completely devoid of any 

function. More recently, large-scale perturbation experiments of lncRNA loci have become 

feasible (A9, A<). However, even with this increase in the number of assayed loci, each 

experiment can only measure the effect of a perturbation in a specific context (typically a cell 

line) and for a limited set of phenotypes (most often cellular growth and proliferation). Thus, 

given the high context specificity of lncRNAs, an exhaustive functional investigation would 

require assaying a large number of conditions for a large number of potentially very subtle 

phenotypes. 

Finally, expression features can also be used as a starting point to investigate lncRNA 

functionality (<?, <@). Gene expression profiling through RNA-seq can be applied at a genome-

wide scale and across a much wider range of conditions compared to currently available 

perturbation assays. Although inadequate to prove functionality in the absence of additional 

data, gene expression features such as the reproducibility and stability of a lncRNA transcript 

(i.e., whether it can be found across multiple individuals and/or conditions) and its dynamic 

expression during developmental processes can be used to enrich for putatively functional 

lncRNAs (8A, 99). Additionally, the spatiotemporal profiles of lncRNAs can generate testable 

hypotheses about plausible functions (a process commonly referred to as “guilt-by-

association”), reducing the number of putative phenotypes that need to be considered 

experimentally. 
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!.!.B Molecular mechanisms and evolutionary histories of CREs 

In contrast to lncRNAs, the main principles behind the action of CREs are much better 

understood. As described in 3.3.3.4, CREs contain short DNA sequences (motifs) that are 

recognized and bound by TFs, which typically recruit additional proteins and come in close 

proximity to the TSS, leading to the activation or repression of gene expression in that locus 

(9?). However, the sequence basis of CRE functionality is far from understood. TF motifs are 

typically short (S-3m nt) and degenerate (i.e., TF binding can occur even without a perfect motif) 

(9;). The same TF can recognize different motifs and the same motif can be bound by many TFs 

(often from the same family) (A:). Additionally, many sequences containing a TF motif in the 

genome are not bound in vivo, whereas TF binding can be observed in sites that don’t contain a 

canonical motif (9;). These discrepancies can be attributed to co-operative interactions 

between TFs: the absence of a required partner can preclude binding despite the presence of a 

canonical motif whereas a TF can be recruited to sites without its motif through protein-protein 

interactions with a partner (9;, 9?). Finally, most CREs show considerable flexibility in their 

sequence grammar (i.e., the distance, orientation and order of their TF motifs) (9?) — although 

exceptions showing rigid syntax requirements have been described (A;). This complexity, both 

in terms of individual motif instances and their interactions, has led to the “futility theorem” by 

Wasserman and Sandelin, stating that the vast majority (qq.q%) of TF binding sites predicted 

from DNA sequence alone would be false positives (A?). 

However, recent developments in machine learning technologies, primarily utilizing deep 

learning models, provide new tools to approach this problem. Convolutional neural networks, 

most famous for their applications in image recognition (A@), have been successfully used to 

predict chromatin accessibility (AA–7B8), TF binding (7B9), enhancer activity (7B<) and even 

gene expression (7B:) from DNA sequence alone. More importantly, interpretation of these 

models through dedicated algorithms (7B;–7B@) allows the extraction of the sequence features 

contributing to the model predictions (i.e., the TF motifs), providing insights into CRE 

grammar. However, despite the great successes of these models, current implementations are 

still not accurate enough to be applied at a genome-wide scale, and typically have to be limited 

to pre-existing CRE annotations obtained through other assays (e.g., ATAC-seq, ChIP-seq). 

Another challenge when studying CREs is that enhancers can act over great genomic distances 

(even up to 3 Mb), complicating the identification of their target genes (7BA, 77B). Despite 

spanning such large distances in the linear genome, enhancer-promoter interactions require 

them to come to close spatial proximity in the nucleus, although the precise molecular 
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mechanisms underlying these processes are still under investigation (7BA–777). Such interactions 

are typically constrained within the same topologically associating domain (TAD). TADs are 

defined as self-interacting genomic regions showing a high degree of chromatin interactions 

within them and marked by boundary elements in both ends, which separate them from other 

adjacent TADs (7BA, 77B). TAD boundaries are generally considered to be relatively stable across 

cell types, developmental stages and even across species (778), although recent studies suggest 

that they might be more dynamic than previously thought (7BA, 779–77;). 

As discussed above (3.3.3.4), the distinction between promoters and enhancers appears to be less 

absolute than previously thought, with many enhancers being transcribed (7;–7@, <B) and many 

promoters influencing the expression levels of adjacent genes (9:, 9A). However, at the level of 

population averages, promoters and enhancers differ substantially in their genomic and 

evolutionary properties. Promoters are overall more GC-rich (9:), contain more direct binding 

sites for general TFs, show largely invariant chromatin accessibility across cell types and 

developmental stages and are more conserved during evolution (<;, 77?). By contrast, enhancers 

are more context-specific (::) and show a faster evolutionary turnover (<;, 77?). Most new 

enhancers emerge de novo, from previously inactive DNA (<;) or by incorporating TE sequences 

(7<, 77@, 77A). However, recent studies have also highlighted the repurposing of the 

spatiotemporal activity of pre-existing enhancers as another prominent mechanism of 

regulatory evolution (77A, 78B).  

Similar to CREs, TF binding sites diverge rapidly during evolution (787–78<). However, in stark 

contrast to their individual binding sites in the genome, the activity of TFs that are central to 

cell type-defining gene expression programs is largely conserved across vertebrates (78:), as are 

their DNA binding domains and the sequence motifs recognized by them (78<, 78;). Thus, 

despite the rapid turnover of individual CREs, the sequence code determining their 

spatiotemporal activity is largely preserved during evolution. 

!.2 Non-coding elements are central to developmental processes 

During animal development, a single fertilized egg gives rise to hundreds of different cell types, 

such as neurons, muscle cells and the gut epithelium. Each of these cell types has a different 

form and set of functions, which are encoded in the genome (;<, 78:). Yet, with very few 

exceptions, such as lymphoid and meiotic germ cells, all cells in a single organism share the 

same DNA (78?). Despite being based on the same genome, each cell type is marked by the 

expression of a distinct set of genes, which determines its unique properties (;<, 78:). However, 
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many of the genes regulating the development of organs and cell types are actually involved in 

multiple process, i.e., they are pleiotropic (78@). As an example, in mammals, the Sonic 

hedgehog (Shh) signaling pathway regulates processes as distinct as the development of the 

cerebellum, the formation of the limb bud, the patterning of the gut tube and the shaping of 

digits (78@, 78A). Similarly, two central regulators of cell fate specification in the cerebellum, 

Atoh7 and Ptf7a (79B), are also involved in the development of the inner ear (797), skin (798) and 

intestine (799) (Atoh7), and of the pancreas (79<) and the retina (79:) (Ptf7a). Thus, rather than 

relying on a large number of context-specific genes, animals are able to generate a diversity of 

cell types and organs by reusing the same genes in different combinations (78:, 78@).  

This process depends on the precise spatiotemporal regulation of the expression of each gene, 

which — as discussed above — relies on non-coding elements, such as CREs and regulatory 

RNAs (7A, 9;, 9?). It is the context-specific activity of these non-coding elements that facilitates 

a system of modular control of gene expression (9;, 9?). Pleiotropic genes are often controlled 

by a large set of CREs, each tasked with regulating the expression in a specific cell type and 

developmental window (9;, 9?) (Figure !.2). The specific activity of that CRE is in turn 

controlled by the activity of the TFs whose motifs are present in the CRE sequence, which are 

themselves controlled by their own CREs (9;, 9?, 78:, 78@). Ultimately, the cell type-specific 

activity of these interconnected gene regulatory networks is determined by initial asymmetries 

in the molecular composition of the early embryo and/or by differences in the cellular 

microenvironment (79;) that become established and amplified as differential TF activity 

between germinal zones (;@) and eventually cellular lineages (79?, 79@). Over the course of 

development, these lineage-determining networks can be further refined by incorporating 

external signals (79A, 7<B). 

 
Figure (.:: Modular control of developmental gene expression. The cell type-specific activities of 
multiple distal CREs (right), which can act over large distances in the linear genome, add up to the 
pleiotropic expression patterns of developmental genes (left). Schematic illustration not reflecting the 
precise genomic positions and spatiotemporal activities of the illustrated genes and CREs. 
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The modular nature of gene expression regulation can be best illustrated by investigating the 

phenotypic consequences of perturbations in non-coding regulatory sequences. For example, 

while the deletion of the Shh gene in mouse leads to multiple severe organ malformations and 

embryonic lethality (7<7), homozygous deletion of its enhancer ZRS/MFCS3 only leads to 

limbless but otherwise healthy mice (7<8). Similarly, coding mutations in PTF7A in humans 

affect both the pancreas and the cerebellum, whereas mutations in an enhancer region ∼4r kb 

downstream of the gene only lead to pancreas agenesis without any neurological phenotype 

(7<9, 7<<). Although this simple model of modular regulation of gene expression is complicated 

by enhancers showing synergistic interactions (7<:) or redundancy in their function (7<;, 7<?), 

most CREs have been shown to only be active in a subset of organs (77A, 7<@, 7<A), and 

developmental stages (::, 7:B, 7:7). Finally, some of the most exciting developmental processes, 

such as cell fate specification, differentiation and migration, take place at the level of single cells. 

Although recent studies examined the chromatin accessibility profiles of single cells in various 

contexts (;8, 7:8–7:?), a comprehensive characterization of the CRE dynamics of single cells 

during the entire development of a mammalian organ was missing at the time I conducted my 

thesis work. 

!.6 Non-coding elements contribute to evolutionary innovation 

Unlike the emergence of diverse cell types from the same genetic material during development, 

each species has its own genome that could — in theory — contain large numbers of genes 

specific to that species. In fact, Ernst Mayr, one of the fathers of the Modern Synthesis of 

Evolutionary Biology, predicted in 3qSw that “the search for homologous genes is quite futile 

except in very close relatives” (7:@). However, the unexpected discovery that the same set of 

Homeobox (Hox) genes responsible for anterior-posterior patterning in the fly (7:A) are present 

and expressed in similar patterns in almost every bilateral animal examined (7;B) suggested that 

at least some genes could be retained for more than Smm million years. During the last two 

decades, the sequencing of many mammalian genomes revealed that the number of 

evolutionary conserved genes is surprisingly large. For example, um% of the protein-coding 

genes in mouse have an ortholog in human (<). Additionally, these genes have retained a high 

sequence similarity in their coding sequence — e.g., Ru% median amino acid similarity between 

human and mouse 3:3 orthologous protein-coding gene pairs (<). Thus, while the emergence of 

new genes (7:, 7;7–7;9), and mutations in protein-coding sequences (7;<, 7;:), undoubtedly 

contribute to evolutionary innovation, most of the phenotypic differences observed between 
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species are likely explained by changes in the spatiotemporal expression patterns of conserved 

protein-coding genes (78@, 7;;, 7;?). 

Evolutionary innovation through changes in the expression rather than the sequence of protein-

coding genes also alleviates the constraints associated with their pleiotropic nature (78@, 7;?). A 

sequence change affecting the final protein product would influence all processes regulated by 

that gene and is less likely to be beneficial. By contrast, due to the modular nature of gene 

expression regulation, a mutation in a CRE can selectively modify the function of the target gene 

in a single context, leaving its remaining functions unaffected (78@, 7;?). The loss of limbs in 

snakes serves as an illustrative example (Figure !.7). A recent study showed that this loss is 

associated with mutations in the Shh enhancer ZRS (7;@) — the deletion of which leads to 

limbless but otherwise healthy mice, as discussed in 3.4. These mutations ablate enhancer 

activity and Shh expression in the prospective developing limb bud, potentially representing 

one of the (likely many) genomic changes that led to this evolutionary innovation (7;@). 

However, snakes are still able to develop other structures that depend on Shh function, such as 

the cerebellum. 

Figure (.=: The modular control of gene expression facilitates context-specific evolutionary 
innovation. Evolutionary changes in cell type-specific CREs can affect the expression and function of a 
developmental gene in a specific context without interfering with other processes controlled by different 
CREs. Schematic illustration not reflecting the precise genomic positions and spatiotemporal activities of 
the illustrated genes and CREs. 

During the last decade, large-scale transcriptomic studies have pursued the systematic 

identification of protein-coding genes with significant expression changes across mammalian 

species, which serve as candidates for driving phenotypic innovations (:, 7;?). These include 

comparisons of gene expression in adult (7;A–7?7) and developing (7?8–7?:) organs. More 

recently, single-cell RNA-seq methods have enabled the investigation of these gene expression 
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changes at the level of cell types (?<, 7?;–7?A). Although homologous organs from different 

species show higher transcriptomic similarity than different organs from the same species (7;?, 

7?8), expression divergence of conserved genes appears to be pervasive, with rm% of orthologs 

between human and mouse showing a radical expression change during the development of at 

least one organ (7?8). In parallel, comparative studies of gene regulation have identified 

thousands of lineage-specific or repurposed CREs (<;, 77A, 78B, 7@B–7@8). However, even though 

integrative evolutionary analyses of the transcriptome and epigenome have recently emerged 

(77?, 77A, 7:?), the systematic identification of CREs associated with gene expression evolution 

remains limited, primarily due to the challenges in assigning CREs to their target genes and in 

quantitatively understanding how regulatory input relates to transcriptional output. 

!.: Interplay between development and evolution 

The two previous chapters illustrate some interesting parallels between development and 

evolution. Both processes describe a change in form over time, which in both cases is mainly 

driven by the usage of different combinations of the same gene set. In both processes, non-

coding regulatory elements are central to regulating which genes will be expressed in a given 

cell type and stage, ultimately determining how they develop and evolve. 

Besides these parallels, the two processes also directly influence each other. The previous 

chapter already provided an example of how small molecular differences in an early 

developmental stage (e.g., a difference in the activity of an enhancer in the prospective limb 

bud) can be amplified into a striking phenotypic change in the adult (e.g., the loss of limbs in 

snakes). More generally, evolutionary innovation can be facilitated by changes in where 

(heterotopy) and when (heterochrony) developmental genes are expressed (78@). Thus, even if 

the phenotypic consequences of such evolutionary innovations are more prominent in adults, 

the identification of their molecular basis often requires the comparison of developmental 

processes (78@). Additional examples include numerous evolutionary innovations in Drosophila 

species (78@), but also the expansion of the human brain through the expression of human-

specific genes (7;7, 7;9) and overall delay of gene expression programs (7@9, 7@<) during 

development. 

But developmental processes also constrain evolution. Already during the 3qth century, the 

comparative embryologist Karl Ernst von Baer observed temporal differences in the degree of 

morphological similarity between embryos from different species (7@:). Although the very first 

steps of development (fertilization and first divisions) show large differences even across 
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mammals, embryos converge to a similar morphology around late gastrulation and early 

organogenesis, when most major organs are molecularly defined (7@:, 7@;). From this stage on, 

also termed the phylotypic period, morphological differences between species become 

increasingly pronounced during development (7@:, 7@;). These observations gave rise to an 

“hourglass model” of embryonic evolution, according to which evolutionary divergence is most 

prominent during the earliest and latest stages of animal development (7@:, 7@;). Recent studies 

have also recapitulated these models at the level of protein-coding gene expression (7?8, 7@?) 

and enhancer activity (::, 7::, 7@@). 

Collectively, development and evolution are closely intertwined. Early organ development — 

which coincides with the end of the phylotypic period — is expected to show the smallest degree 

of evolutionary divergence due to developmental constraints. However, these relatively few 

differences are likely to have the strongest impact on the phenotypic divergence observed 

between species in later stages. 

!.= Mechanisms of mammalian X-chromosome inactivation 

The second part of my dissertation work focused on a newly identified lncRNA as a candidate 

for regulating X-chromosome inactivation in marsupials. This section provides a brief — and by 

no means exhaustive — introduction to mammalian sex chromosome evolution, the need for 

dosage compensation and the molecular innovations that emerged to tackle this problem. 

In most therian mammals, including human, mouse and the marsupial opossum, sex is 

determined by an XY sex chromosome system, which emerged around 3um million years ago, 

after the split from egg-laying monotreme mammals (7@A–7A7). This process started with the 

emergence of the male determining gene SRY on an autosome in the ancestor of all therian 

mammals (7A8, 7A9). It is hypothesized that the subsequent emergence of sexually antagonistic 

mutations (beneficial for one sex but deleterious for the other) and chromosomal inversions in 

the proximity of SRY eventually led to a local arrest of meiotic recombination between 

chromosomes containing SRY (proto-Y) and those that did not (proto-X) (7A<, 7A:). Only a small 

part of chromosome Y, termed “pseudoautosomal region” has retained its ability to recombine 

with the X in extant therian mammals (7A:, 7A;). The loss of recombination for proto-Y (proto-

X could still recombine in females) resulted in reduced selection as deleterious mutations could 

“hitchhike” on adjacent beneficial mutations, eventually leading to many protein-coding genes 

being lost or migrating to the autosomes (7@A, 7A7, 7A<, 7A:). In modern humans, chromosome 
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Y only contains pr protein-coding genes, as opposed to urS found on chromosome X (source: 

Ensembl 7B?). 

The loss of many genes from chromosome Y created a new problem: an imbalance in gene 

expression across sexes. Most genes on the X are present in two copies in females but only in 

one copy in males. To achieve equal gene expression levels between male and female individuals 

— although not necessarily matching the ancestral levels (7A?) — therian mammals evolved 

new mechanisms to inactivate one X chromosome in females (7A@). This process evolved 

independently in eutherian mammals (e.g., human and mouse) and marsupials (e.g., opossum) 

(7AA). The two mechanisms share similarities but also show important differences. In 

eutherians, X-chromosome inactivation depends on a lncRNA, XIST, which in females gets 

randomly activated in one of the two X chromosomes, marking that copy for inactivation (7A@). 

The precise mechanism differs between human and mouse but generally involves coating of the 

inactive X by XIST (7A@). Certain repeat regions on XIST are able to recruit proteins that lead to 

heterochromatin spreading and eventually to the condensation of the inactive X into a structure 

called the Barr body (AB, 7A@, 8BB). Most of the genes found on chromosome X are silenced by 

this process, although some escape and remain expressed from both chromosomes (7A@). 

X-chromosome inactivation in marsupials is far less studied than in eutherians and almost all 

our knowledge comes from the opossum Monodelphis domestica. Interestingly, this process also 

involves a lncRNA, RSX, which however is not homologous to XIST (8B7). Similar to XIST, RSX 

is quite long, enriched for repeats and can induce silencing of adjacent genes (8B7). However, 

unlike the random X-chromosome inactivation observed in eutherians, females in marsupials 

(or at least in opossums) specifically inactivate the paternal X through a yet unknown 

mechanism (7AA). Additionally, while the repressive histone mark HwK4Rmew constitutively 

marks the eutherian Barr body, in marsupials it can mainly be observed during the late S and 

early G4 cell cycle phases (8B8). Collectively, although the eutherian and marsupial mammalian 

lineages share the same sex chromosome system, they have evolved independent, albeit to some 

degree analogous, strategies to deal with the challenges associated with that system (7AA). 

!.B Development and evolution of the mammalian cerebellum 

The final two parts of my dissertation work focused on the developing mammalian cerebellum, 

as a case study of how non-coding regulatory elements guide developmental processes and 

evolutionary innovation in mammalian organs. This chapter provides a brief introduction into 

the functions, development and evolution of the cerebellum. 
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!.F.! Functions, connectivity and development of the mammalian cerebellum 

The cerebellum (Latin for “little brain”) is a hindbrain structure primarily known for motor 

learning and coordination (79B, 8B9). However, its role in other complex behaviors, such as 

language, memory and integration of sensory information, is being increasingly appreciated 

(79B, 8B9). Accordingly, abnormalities in cerebellar function can lead to motor-related 

conditions, such as spinocerebellar ataxias, but also to disorders like autism and schizophrenia 

(79B, 8B9). Additionally, the cerebellum harbors some of the deadliest pediatric brain tumors, 

including medulloblastoma, ependymoma and pilocytic astrocytoma (8B<). Thus, 

understanding the molecular processes underlying normal cerebellar development could help 

with the diagnosis and treatment of several human diseases. 

The cerebellum is present in all jawed vertebrates and its main circuit has been conserved 

during evolution (8B:). This circuit is centered on the inhibitory Purkinje cells, characterized 

by their extensive network of dendrites that were first observed in 3uqq by one of the fathers of 

neuroscience, Ramón y Cajal (8B;). Purkinje cells integrate signals that arrive to the cerebellum 

from other areas of the central nervous system and project outwards to the neurons of the 

cerebellar deep nuclei (DN) which are embedded in the white matter (8B;). Information is then 

transmitted from the DN neurons to the rest of the brain and spinal cord (8B;). Some of the 

afferent (incoming) signals directly reach the Purkinje cells while others are modulated by a 

diverse set of interneurons (8B;). These include the small but extremely abundant excitatory 

granule cells, which account for rm-um% of all neurons in a typical mammalian brain, unipolar 

brush cells (UBCs), and a series of inhibitory GABAergic interneurons (8B;). The spatial 

organization of these neuron types in the cerebellar cortex is highly structured and also 

conserved during amniote evolution (8B:, 8B;). Granule cells reside in the innermost layer, 

termed the granule cell layer (GCL) whereas their axons extend to the outermost layer, the 

molecular layer (ML), which also contains the Purkinje cell dendrites (8B;). In-between these 

two layers lies the Purkinje cell layer (PCL) containing the Purkinje cell somata, which are 

arranged in a single layer (monolayer) (8B;). UBCs are also found in the GCL, whereas all three 

layers are populated by morphologically and transcriptomically distinct subclasses of 

GABAergic interneurons (8B;). Non-neuronal cell types such as the microglia (the immune cells 

of the brain), the Bergmann glia (a specialized form of astrocytes in the PCL), parenchymal 

astrocytes and oligodendrocytes complete the cellular make-up of the mature cerebellum (8B;). 

The emergence of these cell types during the development of the cerebellum depends on a 

spatially and temporally restricted mode of cell fate specification (79B, 8B:). During embryonic 
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development, two germinal zones, the ventricular zone and the rhombic lip give rise to 

GABAergic and glutamatergic neurons, respectively (79B, 8B:). However, different neuron types 

are generated by each germinal zone in different developmental windows (Figure !.;). 

GABAergic DN neurons, Purkinje cells and GABAergic interneurons are sequentially derived 

from progenitors of the ventricular zone, whereas rhombic lip progenitors give rise to 

glutamatergic DN neurons, followed by granule cell progenitors and UBCs (79B, 8B:). Some of 

the key developmental regulators of this process are already well established. The ventricular 

zone and rhombic lip germinal zones are marked by the expression of the TF genes Atoh7 and 

Ptf7a respectively, which are also essential for their formation (79B, 8B:). The temporal switch 

from Purkinje cells to GABAergic interneurons is mediated by a transition in ventricular zone 

progenitors from the expression of Gsx7 to Olig8 (79B, 8B:).  

Figure (.@: Spatiotemporal control of cell fate specification in the developing mammalian 
cerebellum. Two spatially defined germinal zones (ventricular zone and rhombic lip) generate distinct 
cell types during consecutive stages of embryonic development (left). Additional processes in perinatal 
and postnatal development, such as gliogenesis and cell migration, lead to the final form of the mature 
cerebellum (right). Cerebelli icons (not at scale) were modified from an original design by Dr. Mari Sepp. 

Gliogenesis in the cerebellum mainly generates astrocytes as oligodendrocytes and microglia 

mostly migrate into the cerebellum from other regions (79B, 8B:). The developing cerebellum 

hosts two progenitor populations that give rise to different astrocytes. Gliogenic progenitors 

detach from the ventricle, migrate to the PCL, and produce parenchymal astrocytes of the GCL 

and the Bergmann glia (79B, 8B?). Another group of progenitors migrates to the prospective 

white matter, where they continue to give rise to GABAergic interneurons but also produce 

parenchymal astrocytes of the white matter (79B, 8B?, 8B@). Due to their ability to generate both 

GABAergic interneurons and astrocytes, these progenitors are termed bipotent (79B, 8B@). 

In parallel to gliogenesis, the postnatal period of cerebellum development in mammals is 

marked by the secondary amplification of granule cell progenitors, a process dependent on Shh 

signaling (79B, 8B:). Granule cell progenitors proliferate in a transient zone termed the external 

granule cell layer (EGL), while postmitotic differentiating granule cells gradually migrate 
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inwards to the final location in the GCL (also referred to as internal granule cell layer in contrast 

to the EGL) (79B, 8B:). This process extends to the second postnatal week in mice and up to two 

years after birth in humans (79B, 8B:). 

Although the development of the cerebellum is well described at the anatomical level, the 

identification of the major regulators underlying these developmental processes had until 

recently been limited to single-gene investigations (79B). By the time this work was conducted, 

scRNA-seq studies had provided genome-wide insights into the spatiotemporal dynamics of 

gene expression associated with the development of the cerebellum (7?A, 8BA–878), but the 

regulatory basis of these processes remained largely unexplored. 

!.F.7 Evolutionary innovations in the cerebellum 

Despite the conservation of its main circuit, the cerebellum is also marked by a series of 

evolutionary innovations, varying greatly in its size and morphology across vertebrates (8B:). 

One major evolutionary shift is associated with differences in the size of the granule cell layer 

(8B:, 879, 87<). The transient developmental structure of the EGL is absent outside of tetrapods 

and non-proliferative in amphibians (879, 87<). Thus, the secondary amplification of granule cell 

progenitors leading to the extreme abundance of granule cells in the mature mammalian 

cerebellum appears to be an amniote-specific innovation, which was facilitated by a gain in the 

expression of the Shh gene in Purkinje cells (87<).  

Another major evolutionary innovation concerns the expansion in the number of cerebellar 

deep nuclei, from a single pair outside of amniotes, to two pairs in reptiles and birds, and three 

pairs in mammals (87:). This was recently attributed to the duplication and subsequent 

divergence of an entire set of neuron types that were all present in the ancestral nucleus (87:). 

Furthermore, the lateral cerebellar nucleus is markedly enlarged in humans, which was 

mediated by the expansion of a single class of excitatory neurons (87:).  

A third innovation is related to the overall size of the cerebellum. Most studies of mammalian 

brain evolution have focused on the neocortex, which is specific to mammals and has expanded 

greatly in primates (87;, 87?). However, cerebellar volume and neuron numbers appear to have 

expanded in parallel to the neocortex, keeping the ratio of cerebellar to cortical neurons (p:3) 

stable during mammalian evolution (87@, 87A). Furthermore, great apes, including humans, 

deviate from this pattern, showing an even greater expansion of the cerebellar volume compared 

to what would be predicted from their already expanded cerebral cortex (88B, 887). This 
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expansion might have been facilitated by the emergence of a subventricular zone of basal 

progenitors in primates (888), similar to what has been observed for the cortex (87;, 87?). 

Additionally, the rhombic lip germinal zone has been expanded in both space and time in 

humans compared to macaques and mice, allowing for an increased production of neurons 

(888). Although the molecular basis of these expansions remains elusive, a large number of 

transcriptomic differences have been observed between the developing human and mouse 

cerebellum (7?8, 7?A). 

Collectively, thanks to its relatively simple and conserved cytoarchitecture, with unambiguously 

homologous and yet molecularly divergent cell types, the mammalian cerebellum is an ideal 

system to study how non-coding regulatory elements control gene expression programs during 

development and how changes in these programs can lead to evolutionary innovation.  
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?. Aims 

This dissertation is comprised of four parts, each with its own scope and objectives. However, 

they all revolve around the following central aims: 

• Identifying non-coding elements active during mammalian organ development. 

• Characterizing the contributions of these non-coding elements during development by 

associating them with specific genes and processes based on their spatiotemporal 

activity. 

• Investigating the evolutionary histories of non-coding elements and relating them to 

their activity across organs, cell types and developmental stages. 

• Exploring how the interplay between development and evolution affects the non-coding 

fraction of mammalian genomes. 

• Understanding how changes in the molecular profiles and/or proportions of cell types 

shape the developmental patterns observed at the level of whole organs. 

• Identifying non-coding elements involved in evolutionary innovations, such as the 

emergence of new molecular mechanisms (B.C.D) or the divergent expression of 

conserved protein-coding genes (B.C.F).  
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@. Results 

6.! LncRNAs in mammalian organ development 

The goal of this part of my thesis work was to explore the overall contribution of lncRNAs to 

the developmental programs of mammalian organs, to identify candidates for further 

experimental characterization and to provide insights into their putative functions. To this end, 

I utilized a large-scale RNA-seq dataset covering the development of seven major organs 

(forebrain/cerebrum — hereafter referred to as “brain” — cerebellum, heart, kidney, liver, ovary 

and testis) from early organogenesis to adulthood across six mammals (human, rhesus 

macaque, mouse, rat, rabbit, opossum) and a bird (chicken) (7?8). This project was supervised 

by Prof. Dr. Henrik Kaessmann and Dr. Margarida Cardoso-Moreira and the main findings were 

published in Sarropoulos et al. 8B7A (889). Initial exploratory analysis, primarily focusing on 

section B.C.D, was performed in the framework of my MSc thesis (88<). However, even the 

analyses presented in that section have been substantially revised and extended during my PhD 

work. 

:.!.! Atlases of lncRNAs expressed in mammalian organ development 

Using this dataset, Dr. Ray Marin, a collaborator in this project, identified lncRNAs within each 

species as spliced transcripts that are longer than DWW nt and that show no evidence for protein-

coding potential. He then estimated the sequence similarity between lncRNA annotations from 

different species and used a Markov clustering algorithm to reconstruct homologous lncRNA 

families (Figure 7.!A). I subsequently assessed the validity of this approach by showing that 

older lncRNAs are found in more species (Figure 7.!B-C) and that they tend to remain in 

conserved synteny to a similar extent with protein-coding genes (Figure 7.!D). Based on these 

analyses, we identified, in each species, a total of CY,Z[F-BB,FC\ lncRNAs which I classified based 

on their position and orientation compared to adjacent protein-coding genes. Different species 

show similar distributions across genomic classes with BD-F[% of lncRNAs overlapping a 

protein-coding gene in antisense orientation (Figure 7.2A). 
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Figure =.(: LncRNAs expressed during mammalian organ development. (A) Overview of the 
transcriptomic dataset (left) and number of lncRNAs identified in each species (right) and across 
phylogenetic groups (middle). Branches in the phylogenetic tree (middle) depict !:! orthologous lncRNA 
families, leaves correspond to species/lineage-specific lncRNAs. Barplots on the right show the overlap 
with Ensembl vJ: annotations. (B) Number of species with a detected lncRNA member for human 
families of various evolutionary ages. (C) Fraction of species with a detected lncRNA member for human 
families conserved across mammals (!QU Mya) and amniotes (=UU Mya) in this and a previous study (BB). 
(D) Fraction of lncRNAs and protein-coding gene orthologs found in conserved synteny with at least one 
protein-coding gene neighbor for increasing evolutionary distances. Figure adapted from Sarropoulos et 
al. CDEF (CCG). 

The spatial expression patterns of lncRNAs are similar across mammalian species, with most 

(B^-YW%) lncRNAs showing maximum expression in the testis (Figure 7.2B), as previously 

observed (<?, <@, ??). This disproportionate contribution of the testis has been attributed to the 

pervasive chromatin environment in the postmitotic spermatids, which also allows the 

transcription of various intergenic elements (?9, ?<). Indeed, I showed that only the samples 

from sexually mature testis stand out in terms of lncRNA expression whereas earlier 

developmental stages resemble the other organs (Figure 7.2C). Chicken shows an interesting 

difference compared to the mammalian species, expressing a large number of lncRNAs 

throughout ovary development, reaching similar levels to those observed for the mature testis, 

but eventually falling rapidly in adulthood (Figure 7.2C). 
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Figure =.:: Genomic classification and spatiotemporal expression patterns of lncRNAs. (A) 
Distribution of lncRNAs among genomic classes in each species. (B) Organ of maximum expression for 
expressed lncRNAs (≥! RPKM) in each species. (C) Number of lncRNAs expressed (≥! RPKM) in each 
species during the development of each organ (in logarithmic scale). (D) Comparison of genomic classes 
(left), evolutionary age (middle) and organ of maximum expression (right) for known (Ensembl) and 
newly annotated (novel) human lncRNAs. Figure adapted from Sarropoulos et al. CDEF (CCG). 

The lncRNA repertoires identified during this work substantially expanded the annotations 

available in Ensembl at the time (88:), even for well annotated species, such as human and 

mouse (Figure 7.!A). As expected, newly identified lncRNAs are enriched for species- and 

lineage-specific transcripts (Figure 7.2D). However, newly identified and previously annotated 

lncRNAs show similar distributions in their genomic classes and spatial expression patterns 

(Figure 7.2D), suggesting that these extensions of previous annotations are unbiased. 
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:.!.7 Developmentally dynamic lncRNAs are enriched for functional loci 

A major goal in lncRNA research is to distinguish between transcripts that are likely to be 

functional and those that represent transcriptional noise (;, 8A, 99). Several features have been 

suggested to prioritize functionally relevant lncRNAs, including robust expression levels, 

transcript stability, developmentally dynamic expression and reproducibility across biological 

replicates (8A, 99). 

I thus sought to utilize the power of this transcriptomic dataset, which contains densely 

sampled time series and several biological replicates across multiple organs and species, to 

identify lncRNAs that meet these criteria, reasoning that this set would be enriched for lncRNAs 

associated with functions in organ development. Using a regression approach (88;), which 

incorporates information about expression levels across replicates and developmental stages, I 

identified lncRNAs with significant differential expression through time (i.e., developmentally 

dynamic) for each organ and species (Figure 7.7A). As the large number of lncRNAs expressed 

in the adult testis are thought to be associated with a pervasive chromatin environment, mature 

testis samples were excluded from this analysis. Collectively, I identified B,\D\-Z,F\C dynamic 

lncRNAs in each species. 

Following the identification of these developmentally dynamic lncRNAs, I used a series of 

metrics to assess whether these transcripts are indeed enriched for functional loci compared to 

the rest of lncRNAs. These analyses are presented in detail below. 

B.C.D.C Developmentally dynamic lncRNAs share features with protein-coding genes 

The majority of protein-coding genes (ZB-\W% depending on the species) but only a fraction of 

lncRNAs (CY-B[%) show developmentally dynamic expression in at least one organ. However, 

in contrast to the high variability in the numbers of non-dynamic lncRNAs, which scale with 

the size of each genome, the numbers of developmentally dynamic lncRNAs remain similar 

between species (Figure 7.7B). Thus, unlike the total size of lncRNA repertoires which seems 

to evolve neutrally, the number of developmentally dynamic lncRNAs remains relatively stable 

during evolution. This resembles what is observed for protein-coding genes (CF,WFC-CZ,W\W 

dynamic in at least one organ depending on the species). 
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Figure =.=: Features of developmentally dynamic lncRNA expression. (A) Examples of human 
developmentally dynamic (n = G,QQF) and non-dynamic (n = :G,FJ!) lncRNA expression profiles (mean 
expression; vertical bars represent the minimum and maximum values across replicates) for varying levels 
of maximum expression, replicate reproducibility and expression windows. The vertical dashed line 
represents birth; the horizontal dashed line marks ! RPKM. (B) Number of non-dynamic and dynamic 
lncRNAs identified in each species. The box plots summarize the variability in the size of the repertoires 
across species (n = F). (C, D) Tissue-specificity (C) and median time-specificity (D) of non-dynamic and 
dynamic lncRNAs, and protein-coding genes, across species. Tissue- and time-specificity indexes range 
from U (broad expression) to ! (specific expression). All comparisons between non-dynamic and dynamic 
lncRNAs, and protein-coding genes are significant (P < !U−"#, two-sided Mann–Whitney U-test). (E) 
Maximum expression levels (log"$(RPKM)) for developmentally dynamic and non-dynamic lncRNAs 
across species (excluding samples from the sexually mature testis). Developmentally dynamic lncRNAs 
are more highly expressed in all species (P < !U−"#, two-sided Mann–Whitney U-test). Figure adapted from 
Sarropoulos et al. CDEF (CCG). 

Developmentally dynamic lncRNAs also show similarities to protein-coding genes in terms of 

their expression patterns. Although most dynamic lncRNAs show significant differential 

expression in a single organ, in agreement with the overall high tissue specificity previously 

reported for lncRNAs (<?), they show significantly broader spatiotemporal expression compared 

to non-dynamic lncRNAs (Figure 7.7C-D). Additionally, developmentally dynamic lncRNAs are 

expressed at higher levels (Figure 7.7E), and are on average longer and contain more exons 
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compared to non-dynamic lncRNAs, suggesting selection for splice-sites and against premature 

polyadenylation sites (Figure 7.;A-B).  

I next sought to examine whether the broader and more complex expression profiles of 

developmentally dynamic lncRNAs are also reflected in their transcriptional regulation. 

Compared to protein-coding genes, lncRNAs have been reported to be transcribed from simpler 

promoters that contain fewer TF binding sites (?7). Estimating the number of distinct TFs bound 

on each promoter based on a collection of uniformly processed ChIP-seq experiments for more 

than BWW mouse TFs (88?), I was able to recapitulate this observation (Figure 7.;C). However, 

significantly more TFs are bound to the promoters of dynamic than to those of non-dynamic 

lncRNAs, suggesting that the former show stronger and more complex transcriptional 

regulation (Figure 7.;C). In support of the relevance of this increased complexity for the 

development of the organs examined in this study, lncRNAs dynamic in distinct organs are more 

prominently bound by TFs that are specifically expressed or have well-established roles in the 

development of the respective organ (Figure 7.;D). For example, the TFs NKXD-^, MEFDD and 

GATAF, which all play important roles during heart development (88@), predominantly bind to 

promoters of lncRNAs dynamic in the heart. 

In sum, developmentally dynamic lncRNAs represent a subset of the total lncRNA repertoire of 

each species. This subset is enriched for features typically associated with protein-coding genes, 

such as stable numbers, higher and broader spatiotemporal expression, longer transcripts and 

more complex regulation. 

B.C.D.D Developmentally dynamic lncRNAs are enriched for older genes. 

One of the strongest lines of evidence for the functional relevance of any genomic locus is its 

evolutionary conservation (8A, 99). I thus sought to test whether developmentally dynamic 

lncRNAs are enriched for older lncRNA groups. Indeed, the fraction of developmentally 

dynamic lncRNAs increases significantly across older groups. Whereas only CB% of human-

specific lncRNAs are developmentally dynamic, this fraction rises to FW% when considering 

lncRNAs that are at least BWW million years old (Figure 7.>A). However, nearly half of all 

developmentally dynamic lncRNAs in humans are younger than D^ million years and not shared 

with any other species in this dataset. Thus, while the enrichment for evolutionary conserved 

genes supports the functional relevance of developmentally dynamic lncRNAs, the two metrics 

are not redundant to each other. 
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Figure =.@: Transcript length and regulatory complexity of dynamic lncRNAs. (A) Density 
distribution of transcript length for non-dynamic (n = :G,FJ!) and dynamic (n = G,QQF) human lncRNAs. 
(B) Fraction of developmentally dynamic human lncRNAs among isoforms with an increasing number of 
exons. The number of exons is significantly higher for developmentally dynamic lncRNAs (P < !U−"#, two-
sided Mann–Whitney U-test). (C) Number of TF-binding sites overlapping the promoters of protein-
coding genes (n = :U,:U:), dynamic lncRNAs (n = =,!DJ) and non-dynamic lncRNAs (n = !!,Q!Q), and size-
matched random intergenic regions (n = :U,:U:). (D) Normalized TF-binding frequency (heat map) of 
the GU TFs with the highest binding variability across organs. Rows and columns are hierarchically 
clustered. The row annotation depicts the organ of maximum expression for organ-specific TFs. Figure 
adapted from Sarropoulos et al. CDEF (CCG). 

An important consideration for this analysis is the potential overlap of lncRNAs with other 

conserved genomic elements, such as protein-coding exons or cis-regulatory elements, which 

could lead to an overestimation of lncRNA evolutionary ages. This is especially important 

because developmentally dynamic lncRNAs are on average closer to protein-coding genes and 

are more likely to overlap with them (Figure 7.>B). To control for this potentially confounding 

effect, I repeated the same analysis after excluding lncRNAs transcribed in antisense or 

divergent orientation to protein-coding genes, as well as intergenic lncRNAs overlapping 
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previously reported transcribed enhancers (88A). Developmentally dynamic lncRNAs remain 

significantly enriched for older lncRNA groups (Figure 7.>C). 

Another important control for this analysis concerns lncRNA expression levels. As discussed 

above (B.C.D.C), developmentally dynamic lncRNAs are more highly expressed than non-dynamic 

ones (Figure 7.7E). Since high expression levels have been associated with increased 

evolutionary conservation (<A), it was important to assess the added value of further requiring 

lncRNAs to be differentially expressed during organ development. To address this question, I 

generated an expression-matched set of dynamic and non-dynamic lncRNAs by selecting 

lncRNAs with similarly high maximum expression levels. The enrichment of older lncRNA 

groups for developmentally dynamic transcripts remained highly significant in this expression-

matched set, demonstrating the importance of considering expression patterns across 

developmental series compared to single time points (Figure 7.>D). 

Additionally, since the majority of dynamic lncRNAs are highly expressed, it is important to 

examine whether the few lowly expressed dynamic lncRNAs also display increased evolutionary 

conservation or whether this enrichment is driven exclusively by the highly expressed 

transcripts. In order to test these competing hypotheses, I generated a second set of expression-

matched dynamic and non-dynamic lncRNAs. This time I focused exclusively on genes showing 

a maximum expression level between W.D^ and W.Z^ RPKM, values often considered below the 

limit of detection for bulk sequencing studies (7?8). Only few dynamic lncRNAs fall in this 

expression range but they remain significantly enriched for evolutionary conservation 

compared to the expression-matched non-dynamic lncRNAs (Figure 7.>E). A potential 

explanation for the low expression levels observed for these dynamic lncRNAs could involve 

their specific expression in a cell type that is rare in the organs sampled in this study (;7). 

Overall, with these analyses I showed that developmentally dynamic lncRNAs are more 

evolutionary conserved than non-dynamic transcripts and that these differences cannot be 

explained by overlapping protein-coding genes or by differences in the maximum expression 

levels between the two classes of lncRNAs. 
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Figure =.O: Sequence and expression conservation of dynamic lncRNAs. (A) Fraction of dynamic 
loci for human lncRNAs of different evolutionary ages. (B) Fraction of developmentally dynamic human 
lncRNAs (n = G,QQF) for different genomic classes. Overrepresented classes were determined by 
comparing the fraction of dynamic lncRNAs in each class against all other classes. (C) Fraction of human 
lncRNAs that are intergenic, developmentally dynamic and that do not overlap enhancers (n = !D,@Q!) 
among different age groups. (D) Generation of expression-matched dynamic (n = :,JUD) and non-
dynamic (n = =,UJQ) lncRNAs (left) and their distribution across different evolutionary age groups (right). 
(E) Generation of expression-matched dynamic (lowly expressed (U.:G–U.FG RPKM) dynamic (n = FJQ) 
and non-dynamic (n = F!F) lncRNAs (left) and their distribution across different evolutionary age groups 
(right). (F) Fraction of developmentally dynamic human lncRNAs (n = G,QQF) with or without a mouse 
(dynamic or not) ortholog (P < !U−"#, Fisher’s exact test). (G) Similarity of spatiotemporal expression 
(Spearman correlation coefficient between human and mouse organs/developmental stages) for !:! 
orthologs. (H) Expression similarity across matched organs and developmental stages for mouse and rat 
!:! orthologous lncRNAs that are dynamic in both species, for different evolutionary ages. Figure adapted 
from Sarropoulos et al. CDEF (CCG). 
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B.C.D.B Developmentally dynamic lncRNA expression is conserved across mammals 

I next sought to investigate whether the higher conservation of developmentally dynamic 

lncRNAs at the sequence level is also reflected in the conservation of their expression. 

Comparing human and mouse, I observed that the likelihood that a conserved lncRNA is 

developmentally dynamic in one species is significantly higher when its ortholog is also dynamic 

(Figure 7.>F; P < CW-$%, hypergeometric test), suggesting that developmentally dynamic 

expression of at least a subset of lncRNAs has been preserved during evolution. To quantify the 

degree of spatiotemporal expression conservation between two orthologous lncRNAs, I 

estimated the Spearman’s correlation coefficient between their expression profiles across 

corresponding organs and developmental stages. Developmental correspondences between 

human and mouse were established by Dr. Cardoso-Moreira in a separate study (7?8). 

Strikingly, considering the overall rapid evolution of lncRNA expression, lncRNAs with 

developmentally dynamic expression in both species show almost as high expression similarity 

(median rho = W.FW) as protein-coding genes (median rho = W.FY; Figure 7.>G). This estimate 

is significantly higher than the similarity observed between non-dynamic lncRNAs, those 

dynamic in only one species, or pairs of dynamic lncRNAs with shuffled orthology relationships 

(Figure 7.>G). To make sure that the observed effect is not due to the increased proximity of 

developmentally dynamic lncRNAs to protein-coding genes, I repeated the same analysis 

excluding antisense and divergent lncRNAs, observing similarly high levels of expression 

conservation (Figure 7.>G). 

Having identified a subset of lncRNAs with conserved expression, I next decided to test whether 

conservation levels are associated with the age of the lncRNAs, that is, whether older lncRNAs 

are subjected to stronger stabilizing constraints. To test this hypothesis across a wider phyletic 

range, I focused on lncRNAs dynamic in mouse and rat, which are separated by approximately 

DW million years of evolution, the smallest distance in my dataset. I then stratified lncRNAs 

based on their inferred evolutionary age (DW-BWW million years), observing a significant increase 

in expression similarity with lncRNA age (Figure 7.>H). Thus, expression profiles of lncRNAs 

that appeared earlier during tetrapod evolution, and have since been preserved, are subjected 

to stronger evolutionary constraints. 
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B.C.D.F Molecular evidence supports the functional relevance of dynamic lncRNAs 

The ultimate proof for the functionality of a genomic element comes from observing a 

phenotypic effect upon its perturbation. I thus sought to assess whether developmentally 

dynamic lncRNAs would be more likely to be associated with a phenotype based on prior 

studies. First, I examined a database of molecularly characterized, functional lncRNAs, 

lncRNAdb (89B). The fraction of developmentally dynamic transcripts amongst lncRNAs 

annotated as functional in human is ZY%, four times higher than that of all human lncRNAs, 

and almost as high as the fraction of protein-coding genes showing developmentally dynamic 

expression (Figure 7.CA). 

However, this observation may be, at least partially, due to ascertainment biases; for example, 

the preferred experimental characterization of broadly expressed and highly conserved lncRNAs 

— features associated with developmentally dynamic expression. I therefore also examined a 

set of lncRNAs that were recently associated with cell proliferation phenotypes based on an 

unbiased CRISPRi screen in human (A9). It should be noted that this screen was performed in a 

very different physiological context (testing the effect of lncRNAs on cellular growth) and that 

most phenotype-associated lncRNAs showed an effect at most in a single cell type. However, 

despite this difference in context, I observed that lncRNAs shared between the screen library 

and my annotation were more likely to result in a phenotype upon perturbation (Figure 7.CB). 

Moreover, developmentally dynamic lncRNAs showed a significant further enrichment amongst 

screen hits (Figure 7.CB). Thus, the increased functional relevance of developmentally dynamic 

lncRNAs is further supported by molecular evidence. 

In conclusion, a series of genomic, biochemical and evolutionary features, as well as direct 

evidence from perturbation assays, demonstrate that developmentally dynamic lncRNAs are 

enriched for functional loci and serve as candidates for further molecular investigation. 
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Figure =.R: Molecular evidence for the functionality of dynamic lncRNAs. (A) Fraction of dynamic 
loci for human lncRNAs, functionally characterized lncRNAs and protein-coding genes. (B) Fraction of 
lncRNAs present in the CRISPRi screen library resulting in a significant growth phenotype (hits) in at 
least one cell line for lncRNAs present (n = :,=D@) or absent (n = !@,U=F) in this lncRNA annotation and 
dynamic (n = !,UJ=) or non-dynamic (n = !,:FF). Figure adapted from Sarropoulos et al. CDEF (CCG). 

:.!.: Patterns of lncRNA expression during organ development 

Having identified a high confidence set of lncRNAs that are less likely to represent 

transcriptional noise, I then sought to examine their expression patterns during the 

development of mammalian organs. 

B.C.B.C Periods of greater change of lncRNA expression 

Mammalian organ development is not a smooth process, but instead marked by distinct periods 

during which large numbers of protein-coding genes change their expression levels (7?8). These 

periods are mostly associated with the establishment of organ identity during early 

development (e.g., between ECC and ECD in mouse) and the transition to mature organ-specific 

functions around birth (e.g., PB and PCF in mouse). Aiming to understand how lncRNA 

expression relates to the patterns observed for protein-coding genes, I used both gene sets to 

identify differential expression across adjacent developmental stages.  

The stages where developmentally dynamic lncRNAs show the greatest differential expression 

coincide with these previously identified peaks of developmental change (Figure 7.JA, 

Supplementary Figure !). To make sure that this concordance is not an artifact of chromatin 

changes associated with the expression of protein-coding genes, I repeated this analysis focusing 
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on mouse intergenic lncRNAs, located more than CWW kb away from the closest protein-coding 

gene, observing similar patterns (Figure 7.JB). These observations suggest that sizeable sets of 

lncRNAs are differentially expressed during critical periods of organ development, in a likely 

autonomous manner, and potentially contributing to the developmental processes that take 

place during these periods. 

B.C.B.D Co-expression of lncRNAs with protein-coding genes 

To further refine our understanding of the potential contributions of lncRNAs to mammalian 

organ development, I examined their co-expression with protein-coding genes, akin to previous 

“guilt by association” approaches (<@, 897). I focused this analysis on human and mouse, as 

functional annotations of protein-coding genes for the remaining species are sparser and to a 

large degree derived based on gene homology to mouse. I clustered protein-coding genes and 

lncRNAs with dynamic profiles in each organ and estimated the fraction of lncRNAs in each 

cluster. Although the precise gene ontology enrichment terms differ between organs, clusters 

with the highest lncRNA fraction consistently show similar developmental trajectories (Figure 

7.JC, Supplementary Figure 2). For example, increasing expression during prenatal 

development with a postnatal expression drop is associated with developmental functions in 

most organs, as well as with immune responses in liver and kidney. Another cluster consistently 

characterized by a high fraction of lncRNAs is that associated with a steep increase in expression 

after birth, containing genes involved in organ-specific functions, such as ion transport for the 

nervous tissues and lipid metabolism for the liver. By contrast, lncRNAs contribute the least to 

clusters associated with housekeeping genes, supporting the notion that only few lncRNAs are 

involved in essential cellular functions (8A). Overall, these transcriptome-wide co-expression 

analyses suggest that many dynamic lncRNAs could contribute to the development and adult 

physiology of mammalian organs. 
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Figure =.S: Expression patterns of dynamic lncRNAs in mammalian organ development. (A) 
Number of differentially expressed (DE) protein-coding genes and dynamic lncRNAs between adjacent 
developmental stages (additional species in Supplementary Figure (). (B) Number of differentially 
expressed “isolated intergenic” (more than !UU kb from the closest protein-coding gene) dynamic 
lncRNAs between adjacent stages during mouse development. (C) Clusters of developmentally dynamic 
lncRNAs and protein-coding genes in the brain (n = !@,D:J genes; additional organs in Supplementary 
Figure :). Grey lines represent individual gene trajectories and solid lines posterior mean trajectories for 
each cluster. Clusters are arranged by decreasing fraction of lncRNAs. Enriched representative biological 
processes (BP; Benjamini–Hochberg adjusted P < U.UG, hypergeometric test) are shown for each cluster. 
Figure adapted from Sarropoulos et al. CDEF (CCG). 

:.!.@ Differences across organs and developmental stages 

B.C.F.C A dichotomy between developmental lncRNA expression and conservation 

During early organogenesis, the protein-coding gene transcriptomes of different organs are 

highly similar to each other and also show the highest evolutionary conservation (7?8). As 

development progresses, the overall transcriptomes gradually diverge into distinct programs for 

each organ, with increasing contributions from evolutionarily younger protein-coding genes 
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that lead to an overall decrease in conservation (7?8), in agreement with von Baer’s predictions 

(see section B.F). Motivated by these differences in the expression dynamics of protein-coding 

genes, I sought to investigate how lncRNA expression and conservation change during 

development. 

In line with the high tissue-specificity of lncRNAs (Figure 7.7C), I observed that the number of 

developmentally dynamic lncRNAs that are expressed in a given organ and stage increases 

during development — i.e., as organs become more distinct from each other (Figure 7.QA). In 

mouse, the number of dynamic lncRNAs expressed in adult organs is approximately two times 

higher than in the respective organ during early development (ECW-ECC). However, contrary to 

the increase in the total number of expressed dynamic lncRNAs, evolutionary conservation 

declines. Specifically, the fraction of dynamic lncRNAs showing evidence for being selectively 

preserved during mammalian evolution (i.e., those with an age > [W million years) overall 

decreases with time (Figure 7.QB). In addition, the expression similarity between C:C lncRNA 

orthologs, which are dynamic in both human and mouse, also decreases during development 

(Figure 7.QC). Thus, while the overall contribution of lncRNAs to the transcriptome of different 

organs increases during development, evolutionary conserved lncRNAs are mainly expressed in 

early stages of organ development. 

B.C.F.B LncRNA conservation is associated with pleiotropy and functional constraints 

In protein-coding genes, evolutionary conservation is strongly associated with pleiotropy, i.e., 

the shared expression across cell types, organs and developmental stages (7?8). This increased 

evolutionary conservation is considered a consequence of pleiotropy imposing stronger 

functional constraints, meaning that changes in the sequence or expression of a gene are more 

likely to be deleterious for the organism if that gene is involved in multiple processes. Since 

both protein-coding genes and lncRNAs show higher evolutionary conservation during early 

organ development, I hypothesized that early expressed lncRNAs might also be more pleiotropic 

and associated with more severe phenotypic consequences. 
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Figure =.T: Evolutionary conservation of dynamic lncRNAs across organs and developmental 
stages. (A) Number of dynamic lncRNAs (n = G,D::) expressed and (B) fraction of those conserved 
(evolutionary age of at least QU million years) during mouse organ development. Lines estimated through 
LOESS regression; JG% confidence interval shown in grey. (C) Expression similarity between human and 
mouse !:! orthologous protein-coding genes (n = !D,UFQ), developmentally dynamic (n = :Q!) and non-
dynamic (n = !,=QD) lncRNAs across organs/developmental stages. Each point corresponds to the 
Spearman correlation coefficient of expression between human and mouse orthologs for matching 
samples. Lines and the JG% confidence interval (shaded regions) correspond to linear model predictions. 
Spearman correlation coefficients between expression similarity and developmental stage are given for 
each comparison. (D) Fraction of conserved (≥QU Mya) expressed dynamic lncRNAs from (A) 
summarized by organ. The line colour signifies the focal organ for each statistical comparison. (E) 
Expression similarity between dynamic human and mouse orthologous lncRNAs from (B) summarized 
by organ. Figure adapted from Sarropoulos et al. CDEF (CCG). 

To test this hypothesis, I revisited the clustering of lncRNAs based on their temporal expression 

profiles within each organ. I classified lncRNAs into early and late expressed, assigning clusters 

associated with more complex temporal patterns into a third group, termed “other”. Across all 

organs, early expressed lncRNAs show significantly lower tissue specificity indexes, that is they 

are more pleiotropic (Figure 7.LA). To compare the functional impact of early versus late 

expressed lncRNAs, I reexamined the lncRNAdb catalog of functional lncRNAs and the CRISPRi 

screen data. Early expressed lncRNAs are significantly more likely to be listed as functional in 

lncRNAdb and to lead to a growth phenotype upon perturbation than those expressed late 

during development (Figure 7.LB-C). 



Results 

 
 

B[ 

Figure =.U: Pleiotropic and functional constraints of early- and late-expressed dynamic lncRNAs. 
(A) Tissue-specificity for mouse lncRNAs with different developmental trajectories. (B, C) Fraction of 
human lncRNAs with different developmental trajectories among functionally characterized lncRNAs (n 
= GJ) (B) and CRISPRi growth screen hits (n = JQ) (C). (D) Fraction of late-expressed dynamic (n = :,JGD) 
and non-dynamic (n = :G,FJ!) lncRNAs for different age groups and functionally characterized human 
lncRNAs. Figure adapted from Sarropoulos et al. CDEF (CCG). 

Collectively, lncRNAs expressed in early stages of development are more pleiotropic and subject 

to stronger functional and evolutionary constraints. By contrast, late expressed lncRNAs, which 

remain enriched for older and functionally characterized transcripts compared to non-dynamic 

lncRNAs (Figure 7.LD), are characterized by higher tissue- and lineage-specificity, suggesting 

that each of them individually has a milder effect on developmental programs and phenotypes. 

However, the increase in the total number of lncRNAs expressed during development suggests 

overall sizeable contributions to organ-specific gene expression programs. 

:.!.B Co-expression of lncRNAs with adjacent protein-coding genes 

Having established that developmentally dynamic lncRNAs are more likely to play roles in 

mammalian organ development, I next sought to investigate their potential mechanisms of 

action. Gene expression data alone are not sufficient for such inferences, which typically require 

extensive experimental scrutiny (8B). However, transcriptomics data can be used to test 

whether lncRNA expression patterns are compatible with commonly proposed modes of action. 

Perhaps the most frequently discussed mechanism of putative lncRNA function involves the 

regulation of the expression of their genomic neighbors, as has been observed for several well-

characterized lncRNAs, such as XIST in eutherian mammals and Airn in mouse (8B). LncRNAs 



   Results 

 
 

B\ 

acting in such a manner are expected to show correlated expression with their target genes, at 

least in a subset of biological contexts. I thus sought to assess the plausibility and potential 

extent of lncRNA-mediated cis-regulation in the context of organ development, focusing on 

developmentally dynamic lncRNAs. 

For each human and mouse protein-coding gene, I calculated gene expression correlations 

(Pearson’s r) to its nearest lncRNA and mRNA across all samples (excluding the sexually mature 

testis). I observed a significantly higher degree of expression correlation between dynamic 

lncRNAs and their adjacent protein-coding genes compared to mRNA-mRNA controls (Figure 

7.!6A; P < CW-$%, Wilcoxon’s signed-rank test). Although the distance between two genes has an 

effect on the degree of their correlation, I noted an excess of positive correlations for lncRNA-

mRNA pairs for distances up to CWW kb (Figure 7.!6B). In the absence of proper controls for 

bidirectional and antisense lncRNAs, as very few protein-coding genes are transcribed in such 

orientations, I repeated the analysis excluding such pairs. The difference between lncRNA-

mRNA and mRNA-mRNA pairs remains significant (Figure 7.!6C; P < CW-$%, Wilcoxon’s signed-

rank test). 

To identify candidate co-expressed lncRNA-mRNA pairs, I required a significantly higher 

correlation coefficient compared to the respective mRNA-mRNA control pair. Additionally, I 

required all significant lncRNA-mRNA pairs to show a correlation greater than a cutoff (r>W.Z^) 

derived from comparing paralogous versus non-paralogous protein-coding genes (Figure 7.!!A-

B). This additional comparison allowed me to infer a level of correlation that implies functional 

relatedness above the background expectation of sharing the same chromatin environment. 

Protein-coding genes that are significantly more correlated with their neighboring lncRNA 

compared to the mRNA control are enriched for developmental genes involved in processes 

such as tissue morphogenesis and cell differentiation (Figure 7.!!C-D). This observation 

suggests that the previously reported enrichment of lncRNAs near developmental regulators 

(897) is likely of biological significance, rather than a mere artifact of the larger intergenic 

regions surrounding these genes (898). In agreement with this notion, the lncRNAs identified 

from this analysis are enriched for a set of “positionally conserved” lncRNAs that are linked to 

chromatin organization structures and are co-expressed with their adjacent developmental 

protein-coding gene (899) (Figure 7.!!E). Additionally, several of the identified lncRNAs, such 

as GAS;-AS8 (A<), DEANR7 (89<), SSTR:-AS7 (89:), EMX8OS (89;) and DLX7AS (899, 89<), have 

also been experimentally demonstrated to regulate their protein-coding gene neighbors. 
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Figure =.(W: Co-expression of dynamic lncRNAs with adjacent protein-coding genes. (A) 
Relationship between distance and Pearson correlation of expression for lncRNA–mRNA (human = @,QQ!; 
mouse = @,F::) and mRNA–mRNA (human = =,=GJ; mouse = =,=Q:) pairs. Curves were estimated through 
LOESS regression and the JG% confidence interval is shown in grey. (B) Distribution of Pearson’s r for 
lncRNA–mRNA and mRNA–mRNA pairs across different distance intervals. (C) Density distributions of 
Pearson’s r between a protein-coding gene and its nearest dynamic lncRNA (human = :,@@U; mouse = 
:,G@J) and protein-coding gene (human = !,DUD; mouse = !,FFF) after excluding antisense and divergently 
transcribed lncRNAs. Figure adapted from Sarropoulos et al. CDEF (CCG). 

Of the B^F and F^[ protein-coding genes co-expressed with a lncRNA in human and mouse 

respectively, ZZ are shared between the two species (Figure 7.!!F), a significant enrichment 

compared to what would be expected by chance alone (P < CW-$%, hypergeometric test). In 

comparison to protein-coding genes co-expressed with a lncRNA in either species, those 

detected in both show an even stronger association with organ development (B[% involved in 

the development of at least one organ; P < W.WWWD, hypergeometric test). Thus, developmental 

regulators are often associated with adjacent co-expressed lncRNAs, a feature maintained 

throughout mammalian evolution. 
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Figure =.((: Identification of significantly co-expressed adjacent lncRNA-mRNA pairs. (A) 
Normalized density distribution of Pearson correlation coefficients (r) of spatiotemporal gene expression 
between adjacent paralogous (human = :DF; mouse = :D=) and non-paralogous (human = =,=GJ; mouse 
= =,=Q:) mRNA–mRNA pairs. (B) Number of paralogous and non-paralogous adjacent mRNA–mRNA 
pairs detected as co-expressed above a range of Pearson’s r cutoffs. (C, D) Enriched biological processes 
among human (C) and mouse (D) protein-coding genes with significantly higher expression correlations 
with their adjacent dynamic lncRNA than with the control protein-coding gene (n = =GQ; Benjamini–
Hochberg adjusted P < U.U!, hypergeometric test). (E) Fraction of positionally conserved lncRNAs 
(pcRNAs) among all lncRNAs (n = =!,DFQ), developmentally dynamic lncRNAs (n = G,QQF) and lncRNAs 
co-expressed with their adjacent protein-coding genes (n = @!!). (F) Overlap between human and mouse 
protein-coding genes that have a significantly higher expression correlation (Pearson’s r) with their 
adjacent dynamic lncRNA than with the control protein-coding gene. Figure adapted from Sarropoulos et 
al. CDEF (CCG). 

For a small number of protein-coding genes, I detected co-expression with multiple dynamic 

lncRNAs. An extreme case is that of the homeobox TF POU9F9, which is co-expressed with four 

lncRNAs in human and three in mouse (Figure 7.!2). These include the lncRNAs linc-

Brn7a/Pantr7 and linc-Brn7b/Pantr8, which have been previously shown to regulate the levels of 

Pou9f9 in various biological contexts (899, 89?, 89@). Two more dynamic lncRNAs show 

correlated expression with POU9F9 in human: LINCB777</PANCAT and the newly identified 

Hum_XLOC_B8?B::, which is transcribed from an experimentally validated enhancer element 

active in the hindbrain (89A). Although all four human lncRNAs are overall correlated with 

POU9F9, each shows a distinct spatiotemporal expression profile, suggesting a modular mode 

of regulation. This case serves an example of the potential complexity of lncRNA-mediated gene 
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regulatory networks, where different lncRNAs specifically contribute to the expression of a 

protein-coding gene in distinct tissues, developmental stages and — presumably — cell types. 

 
Figure =.(:: The protein-coding gene POU$F$ shows correlated expression with multiple adjacent 
lncRNAs. (A) Genomic coordinates of POUGFG and adjacent co-expressed dynamic lncRNAs (adapted 
from UCSC genome browser, hg!J). (B) Hum_XLOC_DCBDNN overlaps element_JJU, shown to have 
enhancer activity in the hindbrain (image from the VISTA enhancer browser). (C) Spatiotemporal 
expression profiles of POUGFG and adjacent co-expressed dynamic lncRNAs. 

Collectively, in the first part of my thesis research I explored the expression profiles of lncRNAs 

during mammalian organ development, identifying candidates for further functional 

characterization and associating them with distinct biological processes and mechanisms of 

action. In the next chapter, I summarize the deeper characterization of a single lncRNA with a 

putative role in marsupial X chromosome inactivation.  
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6.2 A marsupial lncRNA associated with X-chromosome inactivation 

The expression pattern of a gene can provide some information regarding its function, although 

such analyses are typically limited to its association with multiple and relatively broad terms 

(see section B.C.B.D). A more detailed characterization of a gene’s function requires extensive 

additional exploration at the cellular and molecular level. However, in some rare cases, gene 

expression patterns are so unique that they directly suggest an involvement in very specific 

biological processes. 

In this project, which was carried out in collaboration with Dr. Mari Sepp and Dr. Tania Studer, 

and supervised by Dr. Margarida Cardoso-Moreira and Prof. Dr. Henrik Kaessmann, I 

investigated a newly identified opossum lncRNA, which we termed Female Specific on 

chromosome X (FSX), that shows such a unique and suggestive expression pattern. Dr. Tania 

Studer initially highlighted FSX, amongst other lncRNAs, as a candidate for being involved in 

X-chromosome inactivation (8<B). To test the plausibility of this hypothesis and to further 

characterize this lncRNA, I conducted all computational analyses described below. Dr. Mari 

Sepp performed the in situ hybridization experiments described in section B.D.Y. 

:.7.! FSX is a broadly expressed female-specific lncRNA on the X chromosome 

Sex-biased expression of most genes is typically limited to only a single organ and the period 

following sexual maturity (Rodríguez-Montes et al. in prep). Almost all of the genes with 

consistent female-biased expression across organs and developmental stages are found on the 

X-chromosome and involve protein-coding genes with a broadly expressed Y homolog (X 

gametologs) or components of the X chromosome inactivation machinery, such as XIST in 

eutherian mammals and RSX in opossum (8<B). 

On the opossum chromosome X, six genes (four lncRNAs and two protein-coding genes) stand 

out as showing significantly higher expression in females compared to males across multiple 

organs and developmental stages (Figure 7.!7A). One of the four lncRNAs 

(Opo_XLOC_B<:<@@) corresponds to RSX, which has been previously shown to be involved in 

X-chromosome inactivation (8B7). Two of the remaining lncRNAs (Opo_XLOC_B<<A9@ and 

Opo_XLOC_B<::7?) are directly adjacent to the two female-biased protein-coding genes 

(Figure 7.!7B). This proximity, combined with an overall similarity in their spatiotemporal 

expression patterns (Figure 7.!7B, Supplementary Figure 7) suggests that they could be 
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involved in the regulation of these two protein-coding genes or be a byproduct of their 

expression. 

Figure =.(=: Developmental sex-biased expression of X-linked genes in the marsupial opossum. 
(A) Sex-bias score (mean across somatic organs) of X-linked protein-coding genes and lncRNAs. Genes 
with an absolute mean sex-bias score >= !.G are highlighted (green for protein-coding genes, blue for 
lncRNAs). (B) Position of genes with significant female-biased expression (from A) on the opossum X 
chromosome (coordinates from monDomG). The histograms show the gene density across the 
chromosome (green for protein-coding genes, blue for lncRNAs). (C, D) Expression profiles (RPKM) of 
RSX (C) and FSX (D) across developing organs and sexes. 

However, the final female-biased lncRNA, Opo_XLOC_B<:?7? (from hereafter FSX) is located 

more than BW Mb away from RSX or any other female-specific gene (Figure 7.!7B). Similar to 

RSX, it is highly expressed throughout the development of all female organs, and shows no 

expression in males, with the exception of barely detectable expression in early testis 

development (Figure 7.!7C-D). Although transcribed in antisense orientation to the protein-

coding gene WDR79, there is no similarity between their expression profiles and WDR79 shows 

no sex-biased expression (Supplementary Figure 7). Collectively, with these analyses I was 

able to show that FSX is a female-specific, X-linked lncRNA that is broadly expressed in a likely 

autonomous manner. This expression pattern is reminiscent of that observed for RSX and XIST 

raising the possibility that FSX might also be involved in X-chromosome inactivation. 

:.7.7 FSX expression starts at the onset of X chromosome inactivation 

A recent study used scRNA-seq to map the onset of X chromosome inactivation in opossum 

around embryonic day B.^ (8<7), ten days earlier than the earliest sample in the dataset used 
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above (ECB). As expected, RSX transcription also occurs around the same time (EB.^) and is 

followed by rapid silencing of the paternal X by EF.^ (8<7). Thus, if FSX is associated with X 

chromosome inactivation, it would be reasonable to expect its expression to start around the 

same time as that of RSX. 

To test this hypothesis, I reanalyzed the scRNA-seq data to also measure the expression of FSX 

(which was not included in the transcriptome annotation used by the original study). In a 

striking similarity to RSX, FSX transcription is also restricted to female cells, starting at EB.^ and 

reaching high expression levels by EF.^ (Figure 7.!;). As an additional control, neither of the 

other four female-biased genes on the X (Supplementary Figure ;A), nor any other gene in 

the opossum genome (Supplementary Figure ;B), shows such high resemblance to the 

expression pattern of RSX. 

Figure =.(@: RSX and FSX expression at the onset of X-chromosome inactivation. Expression 
profiles (RPKM) of RSX (A) and FSX (B) in single-cells from early opossum embryos. 

:.7.: FSX shares features with other XCI-associated lncRNAs 

Given the high similarity observed in the expression patterns of RSX and FSX, I sought to 

investigate whether the two lncRNAs also show sequence similarity. This would be compatible 

with a duplication event producing two copies of the same lncRNA or could suggest technical 

artifacts, such as the spurious mapping of RSX reads to the FSX transcript. However, using both 

a local (BLAST) and an optimal global (EMBOSS Needle) sequence alignment tool, I was unable 

to recover any significant sequence similarity between the two lncRNAs (Figure 7.!>A). This 

result lends further support to the notion that FSX expression is autonomous. Although — in 

theory — the sequences of related lncRNAs could diverge beyond detection of any sequence 
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similarity, the large genomic distance between the two loci (B^ Mb) further suggests that the 

two lncRNAs are most likely to have emerged independently. 

Figure =.(O: RSX and FSX show no sequence similarity but are both enriched for simple repeats. 
(A) Dotplot illustrating sequence similarity between the aggregated non-redundant exonic sequence of 
FSX (x-axis) and RSX (y-axis). Sequence similarity is averaged across !U bp-windows; regions with a 
similarity score ³ GU are shown in black. (B, C) Dotplots illustrating sequence similarity within the RSX 
(B) and FSX (C) transcripts (i.e., sequence repetition). Sequence similarity is averaged across !U bp-
windows; regions with a similarity score ³ GU are shown in black. (D) Length of the aggregated non-
redundant exonic sequences (x-axis) and its fraction covered by UCSC-annotated simple repeats (y-axis) 
for X-linked lncRNAs. Density plots (top and right) show the distribution of these metrics. FSX and RSX 
are both outliers in both metrics. (E) Sequence (left) and position (right) of the three most significantly 
enriched short (<GU bp) repeats for RSX (top) and FSX (bottom). 

Marsupial RSX and eutherian XIST also share no sequence similarity but are marked by some 

distinctive features that are relatively uncommon for lncRNA transcripts (8B7, 8<8). Both are 

quite long (D^ and CZ kb respectively) and are enriched for simple — albeit different for each 

lncRNA — repeats (8B7). In the case of XIST, these repeats have been shown to be required for 

interactions with different proteins that in turn lead to the silencing of the inactive X-

chromosome (AB, 8BB). I thus decided to assess whether FSX would also show these two 

features. Both RSX and FSX show significant similarity within their own sequences, suggesting 

the presence of repetitive sequences (Figure 7.!>B-C). Additionally, similarly to RSX, FSX is also 
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quite long (CC kb), ranking amongst the longest ^% of opossum lncRNAs found on the X 

chromosome. More than BW% of both lncRNA transcripts is covered by simple repeats (Figure 

7.!>D), an observation very uncommon amongst similarly long lncRNAs (only two more X-

linked opossum lncRNAs show higher fraction of repeats in the same length range; Figure 

7.!>D). Although the core repeated motifs differ between RSX and FSX — as they also do 

between RSX and XIST, they are both GC-rich (Figure 7.!>E).  

Taken together, these analyses show that even though RSX and FSX are not homologous to each 

other, their transcripts share features that are also found in XIST and are thought to be 

associated with a role in X-chromosome inactivation. 

:.7.@ Conservation of FSX sequence and synteny across marsupials 

Since X-chromosome inactivation emerged independently in marsupials, its main regulators are 

expected to be shared across marsupial genomes but not found in eutherians or monotremes. 

Thus, I sought to investigate the evolutionary history of FSX and, for comparison, RSX. First, I 

tested whether I could detect any significant sequence similarity for these two lncRNAs in a 

selection of marsupial, eutherian and monotreme genomes. All marsupial genomes have regions 

showing significant similarity to both RSX and FSX (Figure 7.!C). By contrast, the only 

significant hit I detected outside of marsupials was for a part of RSX’s repetitive region, which 

shows some similarity to a region in the monotreme XC (note that the ancestral therian X in 

monotremes is the autosomal chromosome Y). However, this part of the opossum RSX sequence 

is not shared with other marsupials and is thus more likely a false alignment hit or a secondary 

incorporation into the RSX transcript that occurred after the split between opossums and other 

marsupial lineages around [W million years ago. 
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Figure =.(R: Conservation patterns of RSX (A) and FSX (B) sequences across marsupial, eutherian 
and monotreme genomes. The transcript models show the aggregated non-redundant exonic 
sequences in opossum. Regions showing significant (E-value < !U-#, identity ³ !U%, length ³ GU nt) 
sequence similarity, as determined by BLAST, in other species are color-coded based on the alignment 
score (bitscore). The RSX region showing significant sequence similarity in monotremes does not 
represent a reciprocally unique alignment between the species. Evolutionary relationships between the 
species are shown in the phylogenetic tree on the left (time in million years, log-scaled). The position of 
UCSC-annotated simple repeats is shown at the bottom of the genome browser. 

Having identified the genomic loci that show significant sequence similarity to RSX and FSX in 

different marsupials, I next asked whether these loci were consistently found on chromosome 

X, as would be expected for the main regulators of the X-inactivation machinery. This can be 

easily addressed for species with chromosome-level assemblies, such as the Tasmanian devil 

and common brushtail possum (where I found that FSX indeed localizes on the X), but is more 

challenging when assemblies are fragmented into thousands of scaffolds. Thus, to answer this 

question systematically, I resorted to assessing the overall conservation of the genomic 

neighborhood around these two lncRNAs. If the conserved regions were consistently found 

around the same genes, it would be reasonable to assume that this region was still on 

chromosome X. Indeed, despite the challenges posed by the incomplete annotation of marsupial 

genomes, I was able to show that both RSX and FSX are consistently found around the same 

genes, in the same order and relative orientation (Figure 7.!J). 
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Figure =.(S: Conservation of genomic neighborhood around RSX (A) and FSX (B) sequences across 
marsupial genomes. The genome browser displays GUU kb (RSX) and !UU kb (FSX) from each side of 
the lncRNA genes (in opossum) and their aligned sequences (in the other species). A smaller window is 
shown for FSX due to the higher gene density of the locus. Some scaffolds have been inverted to show 
RSX and FSX in the negative strand, for consistency with the opossum genome. Orthologous genes are 
consistently color-coded across species. 

Collectively, both RSX and FSX appear to have emerged in the last common ancestor of all living 

marsupials and to have been preserved on chromosome X ever since, in line with a possible role 

in X-chromosome inactivation. 

:.7.B FSX female-specific expression is conserved across PF million years 

If FSX is indeed involved in marsupial X-chromosome inactivation, its female-specific 

expression should also be preserved across marsupial species. Unfortunately, the availability of 

transcriptomics datasets, especially covering both sexes, for marsupials is very limited. 

However, a previous study has generated bulk RNA-seq data for several organs from two koala 

individuals (8<9). Koalas, as all Australian marsupials, have diverged from Monodelphis around 

ZY million years ago, a distance comparable to that between human and mouse (\W million 

years; source timetree.org). Despite a limited overlap in the sampled tissues, important 

differences in the sampling methodology, and the unavoidable confounding of differences 

between sexes and individuals in the absence of biological replicates (8<9), I sought to test 
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whether the FSX-aligned region in koala would be supported by RNA-seq reads and whether it 

would show female-specific expression. Strikingly, both RSX and FSX regions were highly 

transcribed in all female tissues and showed no expression in the male samples (Figure 7.!Q). 

Thus, the broad and female-specific expression observed for both lncRNAs in opossum has been 

preserved for at least ZY million years of marsupial evolution. 

 
Figure =.(T: Conservation of female-specific expression in koala. (A, B) Expression (in RPKM) 
quantified across the regions of the koala genome showing significant sequence similarity to RSX (A) and 
FSX (B) across organs and individuals from different sexes. 

:.7.F FSX localizes on the inactive X chromosome 

All results from the analyses presented above are concordant with FSX being involved in X-

chromosome inactivation. To gain further support for this hypothesis at the cellular level, we 

decided to use in situ hybridization to examine the subcellular localization of the opossum FSX 

RNAs. Both XIST and RSX have been previously shown to localize on the eutherian and 

marsupial inactive X respectively, which in both lineages forms a condensed heterochromatic 

structure also known as the “Barr body”. Tissue preparations, stainings and microscopy 

presented in this section were performed by Dr. Mari Sepp. I contributed by designing the 

probes and by participating in the planning and interpretation of the experiments. 

The hybridization chain reaction (HCR) experiments confirmed that both FSX and RSX are 

exclusively expressed in female cells and further showed that both lncRNAs are predominantly 

nuclear (Figure 7.!LA). Although the molecules detected for FSX are consistently fewer 

compared to RSX, both lncRNAs consistently co-localize with the Barr body, which was detected 

by co-staining for the heterochromatin-associated histone mark HBKDZmeD/B (Figure 7.!LB). 

As an additional control, FSX transcripts are separated from the transcription sites of the 
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escaper gene HMGB9, which were identified by targeting intronic sequences in nascent HMGB9 

transcripts (Figure 7.!LC). Thus, FSX transcripts are located away from the active X, as well as 

from euchromatic regions of the inactive X that facilitate the transcription of escaper genes. 

Collectively, the nuclear localization of FSX and its spatial proximity to the Barr body lend 

further support to the hypothesis that it is involved in marsupial X-chromosome inactivation. 

On the other hand, the lower stoicheiometry compared to the XIST-like RSX poses additional 

questions regarding the potential mode of action of FSX in this process. 

 

Figure =.(U: Subcellular localization of FSX in opossum. (A) Tissue sections from female (top) and 
male (bottom) opossum brain samples stained with RSX and FSX HCR probes. (B) Co-staining of isolated 
female opossum nuclei for RSX and FSX transcripts (HCR) and H=K:Fme:/= (immunostaining). (C) HCR 
staining in isolated female opossum nuclei for FSX and an intron of HMGBG marking sites of active 
transcription on the active and inactive X-chromosomes. All images show maximum projections across Z-
stacks, with (left) and without (right) Hoechst staining for DNA. Experiments and microscopy were 
performed by Dr. Mari Sepp. 

Addressing these questions requires additional experiments, such as perturbing the expression 

of FSX and RSX, both individually and in combination, and assessing the effects of these 

perturbations on the expression of X-linked genes. These experiments are currently being 

designed and, when performed, will definitively assess the involvement of FSX in marsupial X-

chromosome inactivation and shed more light into its precise role and its potential interaction 

with RSX.  
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6.6 Cell type-specific gene regulation in the developing mouse cerebellum 

The goal of this third part of my thesis work was to identify putative cis-regulatory elements 

(CREs) across cell types in the developing mouse cerebellum and to characterize their 

chromatin accessibility dynamics during cell fate specification and differentiation. To this end, 

I analyzed a snATAC-seq dataset of ~\W,WWW cells covering CC stages of mouse cerebellum 

development, from early neurogenesis to adulthood (Figure 7.26A). All data presented here 

were generated by Dr. Mari Sepp and Robert Frömel. All computational analyses are the product 

of my own work, under the supervision of Prof. Dr. Henrik Kaessmann, Prof. Dr. Stefan Pfister 

and Dr. Margarida Cardoso-Moreira. The findings described in this part were published in 

Sarropoulos, Sepp et al. 8B87 (8<<). 

:.:.! Quality control and cell type annotation 

The first step of this project was to assess the quality of the dataset, identify cells and annotate 

them based on their cell type and state. At the level of individual snATAC-seq libraries, I 

observed the expected periodicity in the fragment length distribution and an enrichment of 

insertions around annotated TSSs, demonstrating a high signal-to-noise ratio (Supplementary 

Figure >). I then proceeded to detect barcodes corresponding to high-quality cells and to 

remove putative doublets, identifying a total of \C,\DD cells. For each cell, I quantified its 

chromatin accessibility profile across the genome, tiled into ^WW bp-wide windows (8<:). Based 

on these estimates, I projected the cells into a low-dimensional embedding using an iterative 

latent semantic indexing (LSI) procedure, a technique commonly used in natural language 

processing (;8, 8<:). To facilitate the visualization of the data, this embedding can be further 

condensed into a two-dimensional projection using Uniform Manifold Approximation and 

Projection (UMAP). Cells sharing similar chromatin accessibility profiles appear close to each 

other in such a projection. Reassuringly, biological replicates (i.e., samples from different 

individuals but the same developmental stage) show high similarity in the UMAP embedding, 

further supporting the quality of the dataset (Figure 7.26B). 
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Figure =.:W: A snATAC-seq atlas of mouse cerebellum development. (A) Schematic overview of the 
dataset. Representative mouse silhouettes are shown for E!!, E!=, E!F, P@ and PD= (brain in grey, 
cerebellum in cyan). The insets show the location of selected cell types in the cerebellum (colors are as 
in C). (B, C) UMAP projection of J!,J:: cells colored by developmental stage (B, left) or sex (B, right), or 
cell type and state (C). Barplots in B show the number of profiled cells per stage and sex (each sex 
corresponding to one sample). In C, cell states or subtypes (numbered circles) are grouped into broad cell 
types (rectangles). (D) Proportions of broad cell types across developmental stages. (E) Activity scores of 
genes used for the annotation of broad cell types (Z-score, capped to U-:). Broad cell type colors for D 
and E are as in C. Figure reproduced from Sarropoulos et al. CDCE (CYY). 

To annotate the identified cells based on their cell type and state, I clustered them into groups 

of cells with similar accessibility profiles. Aggregating the chromatin accessibility signal around 

a gene to infer “gene scores”, as a proxy for gene expression (8<:), I was then able to link these 

clusters to known cerebellar cell types and states. This process involved manual investigation of 

the available literature (79B, 87B, 877, 8<;, 8<?) and gene expression databases (8<@) and was 
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greatly assisted by Dr. Mari Sepp and Kevin Leiss. In total, we identified CD broad cell types and 

FD subtypes / cell states (Figure 7.26C-E).  

To assess the quality of this annotation, as well as the overall utility of gene score estimates to 

approximate gene expression, I compared the snATAC-seq data to a previously published 

scRNA-seq dataset of mouse cerebellum development (87B). I integrated the two datasets using 

canonical correlation analysis (CCA) as implemented in Seurat (8<A) and used the similarity to 

the scRNA-seq dataset to predict cell type labels and to impute RNA expression values for the 

cells in the snATAC-seq dataset. I then compared these predictions to our cell type annotation, 

observing an overall good agreement, despite differences in dissections and sampled 

developmental stages between the two studies (Figure 7.2!A). 

Some discrepancies between the two annotations (e.g., cells annotated as “GABAergic deep 

nuclei neurons” in the snATAC-seq dataset matching “excitatory cerebellar nuclei neurons” in 

the scRNA-seq dataset) could be explained by scRNA-seq clusters containing mixtures of similar 

cell types. After reanalyzing the scRNA-seq data, I could observe that around half of all cells 

annotated as “excitatory cerebellar nuclei neurons” at ECF are in fact positive for markers of 

GABAergic deep nuclei neurons, thus explaining the mismatch between labels (Figure 7.2!B). 

Similarly, more than half of the scRNA-seq cells annotated as “unipolar brush cells” (UBCs) at 

PW are negative for UBC markers, such as Lmx7a, and show expression of genes highly expressed 

in differentiating granule cells (Figure 7.2!C). Unsurprisingly, differentiating granule cells in 

the snATAC-seq dataset show high overlap with UBCs in the scRNA-seq dataset. Despite these 

discrepancies, the majority of cell type labels agree well between the two annotations (Figure 

7.2!A). Similarly, in most developmental stages, gene score estimates are highly correlated to 

the RNA expression values imputed from the integration with the scRNA-seq data, 

demonstrating the utility of using gene scores as a proxy for gene expression (Figure 7.2!D).  
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Figure =.:(: Comparison with scRNA-seq data. (A) Jaccard similarity index between cell type labels 
from this study (columns) and predicted labels after integration with scRNA-seq data (rows). Only labels 
with a similarity index of at least U.!G with at least one other group are shown. The red rectangles mark 
unexpected matches analyzed further in B, C. (B, C) UMAP projections of D,UDQ cells from E!@ (B) and 
@,QUJ cells from PU (C) cerebellum profiled by scRNA-seq. Cells annotated by the authors as excitatory 
cerebellar nuclei neurons (B) or UBCs (C) are marked in purple. Only a fraction of these cells are positive 
for the corresponding marker genes. (D) Per gene correlation (Pearson’s r) between gene score and 
imputed expression (after integration with scRNA-seq data) for highly variable genes in the scRNA-seq 
data. The vertical line indicates the median correlation coefficient across developmental stages. (E) 
Proportions of broad cell type groups across developmental stages in our snATAC-seq atlas (top), and 
scRNA-seq atlases by Carter et al. CDEZ (middle) and Vladoiu et al. CDEF (bottom). Cell types were grouped 
into broad categories to facilitate comparisons between the three studies that differ in annotation 
strategies and resolution. Figure adapted from Sarropoulos et al. CDCE (CYY). 

In agreement with previous studies (8BA, 87B), most cells in the earliest developmental stages 

(ECW-ECC) are neural progenitors. Additional non-dividing cell populations, the most abundant 

of which are glutamatergic and GABAergic deep nuclei neurons, account for the remaining cells 

in these stages. ECD marks the appearance of a large number of differentiating Purkinje cells, 
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which remain the most abundant cell type until EC^. From ECB onwards, GABAergic 

interneurons and granule cells also appear and gradually outnumber Purkinje cells. While the 

fraction of GABAergic interneurons remains relatively stable until PZ, the granule cell 

population expands rapidly, becoming the most abundant cell type by ECZ and accounting for 

~\W% of all cells in the cerebellum in the last two stages (PCF, PYB). Small numbers of glial cells 

(astroglia, which includes parenchymal astrocytes and Bergmann glia, oligodendrocytes and 

microglia) are also traceable in postnatal stages. Collectively, cell type proportions in this 

dataset follow similar dynamics to those previously reported by scRNA-seq studies of the 

developing mouse cerebellum (Figure 7.26D, Figure 7.2!E). 

Altogether, with these analyses I was able to assess the quality of the mouse snATAC-seq 

dataset, identify and annotate cells, and then validate these annotations based on previous 

studies (8BA, 87B). This part serves as the foundation for the following sections. 

:.:.7 Identification and characterization of CREs in the developing cerebellum 

I next sought to identify open chromatin regions, as a proxy for putative CREs, across cell types 

and developmental stages. To be able to detect cell type-specific CREs without being biased by 

the proportions of each cell type in the organ, I aggregated chromatin accessibility profiles 

across cells from the same cluster (i.e., cell type and state) and sample (i.e., individual) and used 

MACSD (8<:, 8:B) to call peaks of open chromatin (Figure 7.22A). To ensure the reproducibility 

of the identified CRE annotation, I required each peak to be called in at least two samples for 

the same cluster (i.e., to be called in at least two replicates of a given cell type/state; Figure 

7.22A). Peak annotations for each cluster were then merged in an iterative way into a non-

redundant annotation of F\\,CFY peaks. To further exclude “noisy” peaks primarily originating 

from very abundant cell types (and thus large sequencing depth), I implemented an additional 

filtering step, requiring peaks to be accessible in at least ^% of cells in at least one cluster 

(Figure 7.22A). This led to a total of DYC,YFD high-confidence putative CREs, which I used for 

all subsequent analyses (Figure 7.22A-B). 
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Figure =.::: Identification of putative CREs in the mouse cerebellum. (A) Schematic representation 
of the procedure followed for the identification and filtering of putative CREs. (B) Genomic features of 
:D!,D@: putative CREs. Inner circle: genomic class; outer circle: biotype of the overlapping gene. Figure 
adapted from Sarropoulos et al. CDCE (CYY). 

I then characterized CREs based on their position compared to annotated protein-coding and 

non-coding genes (Figure 7.22B). I found that most CREs are intronic (^C%) or intergenic 

(DY%), which I collectively refer to as “distal”. Promoters (defined as being within -D,WWW/+CWW 

bp from a TSS) account for C^% of the identified CREs, with the remaining [% overlapping 

exonic regions. Although exonic CREs have been suggested to function in similar ways to other 

distal elements (8:7), their overlap with exons, especially in the case of protein-coding genes, 

imposes additional constraints on their sequence, which can affect subsequent sequence-based 

analyses. I thus decided to be cautious and treat them as a separate group. 

To assess the quality of this CRE annotation, I examined a series of available resources. I first 

considered genomic annotations of regulatory activity across different tissues and 

developmental stages based on data from the ENCODE project (7:B). Regions annotated as 

“strong enhancers” in developing brain tissues show a high recall (ZW%-[W%) in the cerebellar 

CREs, with the highest enrichment observed for the hindbrain (Figure 7.27A). By contrast, 

cerebellar CREs are depleted of heterochromatin-associated regions in the hindbrain compared 

to other organs (Figure 7.27B). Cerebellar CREs also show the highest recall (\Z%) of 

experimentally validated hindbrain enhancers (89A), followed by other neuronal tissues (Figure 

7.27C). Similarly, by comparing to a collection of transcribed enhancers (eRNAs) across multiple 

conditions (8:8) and to a snATAC-seq atlas of adult mouse organs (;8), I found that the CREs I 

identified in this study consistently show the highest overlap with elements active in the 

cerebellum (Figure 7.27D-E). Collectively, these analyses support the high quality and 

reproducibility of the identified CREs. 

A major challenge in the study of distal CREs is to associate them with their target genes, which 

can often be found hundreds of kilobases away in the linear genome (9;, 9?). Single-cell datasets 

can be used to tackle this problem by offering statistical power to estimate correlations between 
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CRE accessibility and the expression of nearby genes. Although correlations by themselves are 

not sufficient to infer causal regulatory interactions, they offer significant improvement 

compared to simply considering the nearest gene (8<:, 8:9). I thus decided to use this dataset 

to assign distal CREs to their putative targets based on correlations with their promoter 

accessibility and gene score (as a proxy for gene expression).  

 

 
Figure =.:=: Comparison of identified CREs to other datasets. (A, B) Fraction of chromHMM 
predicted strong enhancers (A) and heterochromatin (B) across a series of tissues and developmental 
stages recalled in the robust CRE set from this study. Gray values: data not available. (C) Fraction of 
experimentally validated enhancers in mouse embryonic tissues overlapping robust CREs from this study. 
Tissues are ordered by decreasing fraction. (D) Fraction of expressed eRNAs recalled in the robust CRE 
set from this study across samples from the developing cerebellum, other neural tissues, whole embryo 
development and all other mouse samples. (E) Per-cell fraction of fragments in regions overlapping 
robust CREs from this study across different organs in the adult mouse. Tissues are ordered by decreasing 
median fraction across cells. Figure adapted from Sarropoulos et al. CDCE (CYY). 

After assigning a total of BD,Z\D distal CREs to ^,ZYY putative target genes (Figure 7.2;A), I 

sought to assess the confidence of these assignments. By considering a dataset of chromatin 

interactions in neural progenitors (77:), I showed that the identified CRE-gene pairs were more 

likely to share the same TAD (Figure 7.2;B). Additionally, CRE-gene pairs show significantly 

higher correlations in the expression of promoter-derived transcripts (i.e., genes) and 

transcribed enhancers (eRNAs) in samples from the developing cerebellum (8:8) (Figure 
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7.2;C). Distal CREs assigned to a target gene are also more likely to overlap a computationally 

predicted (7:B) or experimentally validated (89A) hindbrain enhancer (Figure 7.2;D-E). Taken 

together, these results show that my CRE-gene assignment approach enriches for bona fide 

regulatory interactions. 

Figure =.:@: Assignment of CREs to putative target genes (see next page for caption). 

  



Results 

 
 

YW 

Figure =.:@: Assignment of CREs to putative target genes. (A) Correlation-based assignment of distal 
CREs to putative target genes. Left: Pearson’s correlation coefficients between distal CRE and promoter 
accessibility in :GU kb windows (green) or across different chromosomes (purple). Right: Pearson’s 
correlation coefficients between distal CRE accessibility and gene score for CRE-gene pairs with a 
promoter-peak correlation of r ≥ U.!G (left, maximum correlation for genes with multiple promoters) in 
:GU kb windows (green) or across different chromosomes (purple). Interchromosomal correlations were 
used to construct a null distribution and significant CRE-gene interactions were identified with r ≥ U.@! 
(BH adjusted P < U.UG). (B) Fraction of distal CRE-promoter pairs in the same (blue) or different (red) 
topologically associating domain (TAD) in mouse neural progenitors stratified by significance of 
interaction between CRE-promoter pairs. Single-call (orange): only one region was assigned to a TAD. 
(C) Pearson’s correlation coefficients between the expression of eRNAs overlapping distal CREs from this 
study, and promoter associated RNAs across cerebellum development stratified by significance of 
interaction between CRE-promoter pairs. (D, E) Fraction of distal CREs assigned to a gene for elements 
overlapping putative enhancers in hindbrain development (D) or experimentally validated enhancers in 
the E!! hindbrain (E). (F) Genes ranked in decreasing order by the number of distal CREs assigned to 
them. (G) Biological process enrichment for genes associated with !U or more distal CREs (from F). The 
x-axis indicates the number of genes associated with each term, the size and color of the dots show the 
effect and significance of the enrichment based on a hypergeometric test. Figure adapted from Sarropoulos 
et al. CDCE (CYY). 

:.:.: CRE activity is shaped by both cell type and developmental stage 

I next sought to determine the major patterns of spatiotemporal CRE activity in the developing 

mouse cerebellum. To this end, I aggregated the accessibility of CREs across cell types and 

developmental stages, scaled each CRE to a maximum value of C and performed a two-step 

clustering procedure (k-means, followed by hierarchical clustering) to identify DY CRE clusters. 

Most of these CRE clusters are specific to a single cell type and developmental window, 

highlighting the overall high context-specificity of CRE activity (Figure 7.2>A). CREs in cell 

type-specific clusters are close to genes associated with relevant gene ontology terms, such as 

myelination for oligodendrocytes and immune response for microglia. Similarly, cell type-

specific CREs are also enriched for motifs of TFs known to be active in the respective cell types 

(e.g., SOXD in progenitor cells, ATOHC in cell types derived from the rhombic lip, SOXCW for 

oligodendrocytes, PU.C for microglia). In contrast to these cell type-specific CREs, I also 

identified clusters of CREs that are active in multiple cell types. These include the early-born 

neurons (clusters D, CC), glial populations (cluster C[) and late-born cell types (cluster CF). Finally, 

one group of CREs (cluster CD) shows constitutive activity throughout the dataset. Most (YZ%) 

of the CREs in this cluster are promoters (Figure 7.2>B). Furthermore, more than ^W% of the 

remaining distal CREs from cluster CD contain a CTCF motif (Figure 7.2>C), suggesting that 

they might be involved in the regulation of chromatin architecture. For example, many of these 

CREs could correspond to TAD boundaries, which are also known to show low variance across 

biological contexts (7:8). Collectively, these results show that despite the high specificity 
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observed for most CREs, sizeable sets also show pleiotropic activity, in agreement with previous 

reports (7<A, 88A, 8:<). 

Figure =.:O: Spatiotemporal patterns of CRE activity in cerebellum development. (A) Clusters of 
CRE activity across cell types and developmental stages. CREs are grouped by activity cluster (k-means 
followed by hierarchical clustering) and genomic class (left). CRE clusters are arranged in decreasing 
order of pleiotropy (here: mean activity across rows) and then by cell type and developmental stage with 
maximum activity. Right: Representative enrichments (BH adjusted P < U.UG; hypergeometric test) for 
biological processes of adjacent genes (black) and motifs for TFs or TF families (red). GU,UUU CREs 
confidently assigned to their cluster were chosen randomly for visualization. (B) Fraction of genomic 
classes across clusters of CREs. (C) Fraction of distal CREs overlapping at least one CTCF motif across 
clusters of CREs. Figure adapted from Sarropoulos et al. CDCE (CYY). 

The analysis described above suggests that both cell type and developmental stage contribute 

to the global chromatin accessibility patterns (Figure 7.2>A). The developmental effect on 

chromatin accessibility is also supported by the UMAP projection of the entire dataset (Figure 

7.26B-C). Cells from the same cell type and developmental stage consistently group together 

and apart from cells assigned to different cell types. However, cells from the same cell type but 

different developmental stages can also show additional separation in this embedding, which is 

especially prominent for specific developmental periods (e.g., ECB-PW granule cell progenitors 

are highly similar to each other but separated from PF-PZ granule cell progenitors).  

To better understand these temporal differences, I performed a differential accessibility analysis 

between pre- and postnatal granule cell progenitors, identifying a total of B,\[[ CREs with 
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increasing or decreasing accessibility around birth (Figure 7.2C). Notably, this period also 

coincides with greater changes at the transcriptional level as observed for protein-coding genes 

(7?8) and lncRNAs (Figure 7.JA). It is also concurrent with the Shh-signaling-mediated 

expansion of the granule cell progenitor pool around birth (79B). CREs with increasing 

accessibility after birth are enriched for motifs of the NFI transcription factors (Figure 7.2CA), 

which are known transcriptional regulators of late-born neural cell types (8::), as well as GLID, 

one of the major TFs activated upon Shh-signaling (79B). By contrast, CREs with decreasing 

accessibility are enriched for motifs marking embryonic progenitor cells, such as those of the 

SOX and MEIS TF families (Figure 7.2CA). Thus, the developmental differences I observed 

between corresponding cell types are likely to be of biological significance. 

Figure =.:R: Differential accessibility between pre- and postnatal granule cell progenitors. (A) 
MA plot of differentially accessible CREs between pre- and postnatal granule cell progenitors. CREs with 
significantly increased (blue) and decreased (red) accessibility in postnatal compared to prenatal granule 
cell progenitors were identified with an absolute log& fold-change of at least !.G and a BH adjusted P-value 
< U.UG. TF motifs with highest enrichment based on hypergeometric tests are shown for each group. (B) 
Examples of aggregated accessibility profiles (scaled by the total number of fragments in each group) 
across granule cell progenitors of different developmental stages for CREs with decreasing (left) and 
increasing (right) accessibility during development. Figure adapted from Sarropoulos et al. CDCE (CYY). 

:.:.@ Chromatin accessibility dynamics of cerebellar progenitors 

The highly dynamic cellular composition of the developing cerebellum is largely due to the 

generation of distinct cell types from cerebellar progenitors in a spatially and temporally 

restricted manner (see section C.Y.C). For example, ventricular zone progenitors give rise to 

GABAergic deep nuclei neurons at ECW-ECC, shift to Purkinje cells around ECD and eventually to 

GABAergic interneurons from EC^ onwards (79B). In this section, I sought to investigate whether 

these shifts in cell fate specification were associated with spatiotemporal heterogeneity in the 

chromatin accessibility profiles of cerebellar progenitor cells.  
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B.B.F.C Identification of known and novel subtypes of cerebellar progenitors 

To identify subtypes of cerebellar progenitors, I subclustered cells from the astroglial lineage 

(i.e., progenitor cells and mature astrocytes) and used gene scores to associate clusters with 

distinct progenitor cell populations. Through this process, I was able to identify all major 

germinal zones in the developing cerebellum. However, differences in CRE accessibility 

between progenitor types are overall subtle and without sharp boundaries within a given stage 

(Figure 7.2JA-D). 

Early (ECW-ECD) progenitor populations consist of previously described isthmic (En7, Pax:), 

ventricular zone (Dll7, Ptf7α) and rhombic lip (Cdon, Atoh7) progenitors (Figure 7.2JD). 

Additionally, I identified a set of progenitor cells that show no apparent commitment to a 

specific cell fate (herein: “Uncommitted”), which could correspond to a recently described 

population of Sox8+ progenitors that can generate both excitatory and inhibitory neuron types 

(8:;). In addition, I also detected some early Gsx7+ cells, which Dr. Mari Sepp was able to trace 

to the anterior ventricular zone (i.e., the border between the ventricular zone and the isthmus). 

We thus termed these cells “anterior ventricular zone progenitors” (Figure 7.2JA-D). 

Gsx7 is a known marker of a progenitor population described as “bipotent” because of its ability 

to give rise to both GABAergic interneurons and parenchymal astrocytes (8B?, 8:?). This 

population is thought to emerge through a temporal shift of Olig8-expressing ventricular zone 

progenitors, which give rise to Purkinje cells, towards Gsx7-expressing cells around ECB (79B, 

8:?). Indeed, starting from ECB onwards, I was able to identify these bipotent progenitors, at the 

expense of the ventricular zone progenitors from earlier stages (Figure 7.2JD). Since Gsx7 is a 

shared marker between bipotent progenitors and the anterior ventricular zone progenitors 

found in earlier stages, I sought to investigate whether the latter could represent a population 

that is already primed for the bipotent fate. Indeed, the two progenitor populations share 

additional markers, such as Ndnf, Robo7 and Wnt@b (Figure 7.2JE). Furthermore, amongst early 

(ECW-ECD) groups, the anterior ventricular zone population shows the highest similarity in 

chromatin accessibility to ECB-EC^ bipotent progenitors (Figure 7.2JF). Thus, besides the 

previously described temporal transition of Olig8+ Purkinje-generating progenitors (79B, 8:?), 

my analyses identified an additional, molecularly distinct population in the early anterior 

ventricular zone, which is already primed to acquire the bipotent progenitor identity. 
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Figure =.:S: Characterization of cerebellar progenitor subtypes. (A, B, C) UMAP projections of 
:!,Q=U astroglia cells (progenitors and astrocytes) colored by subtype (A), developmental stage (B) and 
sex (C). (D) Relative abundance of astroglia types (bottom) and overall fraction in the cerebellum (top) 
across developmental stages. (E) Gene scores for marker genes that are shared between anterior 
ventricular zone and bipotent progenitors (counts per !U,UUU fragments, capped at !Uth and JJth 
quantiles and log"$ transformed). (F) Comparison of bipotent progenitors to earlier populations. Top: 
Activity profiles (Z-score) of progenitor type-specific CREs in E!=-E!G. Bottom: Fraction of fragments per 
cell in CREs specific to bipotent progenitors across progenitor types and developmental stages. (G) 
Comparison of granule cell layer and white matter astroblasts to E!F and PU bipotent and gliogenic 
progenitors. Boxplots show the fraction of fragments per cell in CREs specific to astroblast populations 
across progenitor types and developmental stages. Figure adapted from Sarropoulos et al. CDCE (CYY). 

EC^ is marked by the appearance of another population, gliogenic progenitors (Slc7a9, Grm9). 

Bipotent and gliogenic progenitors are thought to give rise to two distinct parenchymal 

astrocyte populations, located in the white matter and granule cell layer, respectively (8B?, 8B@). 

In line with this, in perinatal stages (ECZ-PZ) I identified two groups of astroblasts, which Dr. 

Mari Sepp traced to the white matter (Slc;a77, Olig8, Kcnd8) and the granule cell layer (Aqp<, 

Tekt:). To assess the potential lineage relationships of these two astroblast groups based on 

molecular similarity to the earlier progenitor populations, I identified differentially accessible 

CREs between them and then quantified their accessibility in progenitor cells from earlier 

stages. CREs specific to astroblasts of the white matter show higher accessibility in bipotent 
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progenitors, whereas gliogenic progenitors show higher activity in CREs specific to astroblasts 

of the granule cell layer (Figure 7.2JG). Thus, the progenitor and astrocyte groups identified 

here match previous descriptions and ontogenetic relationships. 

B.B.F.C Temporal changes in CRE accessibility are shared between progenitor groups 

The subclustering analysis of the astroglial lineage (Figure 7.2JA-C) revealed an unexpected 

result: progenitor cells primarily cluster by developmental stage rather than progenitor type, an 

observation most prominent in early development (ECW-ECD). This is despite the dense temporal 

sampling of our dataset, and even though I was able to identify the same progenitor types across 

consecutive developmental stages, often based on the same marker genes. This result is unlikely 

to be attributed to batch effects, as biological replicates show very high similarity (Figure 7.2JB) 

and the separation in the UMAP recapitulates the progression of developmental time (Figure 

7.2JC). Additionally, cells from adjacent developmental stages around and after birth (e.g., ECZ-

PW, PF-PZ) also cluster together in this embedding (Figure 7.2JC). Finally, I was able to observe 

the same clustering pattern when performing hierarchical clustering based on aggregated 

chromatin profiles across progenitor groups of the same cell type and developmental stage 

(Figure 7.2QA). Thus, this clustering pattern of cerebellar progenitor cells is likely explained by 

major temporal changes in CRE accessibility, which are more prominent during early 

development, a period coinciding with the sequential generation of distinct neuronal cell types 

from the same germinal zone (see section C.Y.C). 

To identify the CREs that drive this clustering pattern, I performed the two-step clustering 

procedure described in section B.B.B to group CREs into CD clusters based on their activity across 

progenitor types and developmental stages (Figure 7.2QB). Most CRE clusters can be classified 

as time-variant (i.e., their accessibility is primarily determined by developmental stage rather 

than by germinal zone). Thus, the clustering of progenitor cells by developmental stage (Figure 

7.2JA-C, Figure 7.2QA) is primarily explained by large differences in CRE activity during 

development, which are shared between germinal zones. This suggests that concordant changes 

in cell fate specification (e.g., ventricular zone progenitors transitioning from Purkinje cells to 

GABAergic interneurons around ECB while rhombic lip progenitors shift from glutamatergic DN 

to granule cell progenitors) could be attributed to the same temporal cues. Such a major 

transition involves the shift from early CREs (ECW-ECD), enriched for nuclear receptors and SOX 

motifs and associated with chromatin silencing genes, towards CREs enriched for NFI motifs 

and adjacent to genes involved in signaling and cell adhesion (Figure 7.2QB). Additional groups 
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of progenitor type-variant CREs are enriched for the motifs of known transcriptional regulators 

(e.g., ATOHC for rhombic lip, PTFCA for ventricular zone; Figure 7.2QB). 

Figure =.:T: Spatiotemporal heterogeneity in cerebellar progenitor populations. (A) Hierarchical 
clustering based on Spearman’s correlation coefficients in CRE accessibility across progenitor types and 
developmental stages. Orange dots indicate nodes with approximately unbiased (AU) probability values 
< JG%. (B) Clusters of CRE activity across progenitor types and developmental stages. CREs are grouped 
by activity cluster (k-means followed by hierarchical clustering). Right: Representative enrichments (BH 
adjusted P < U.UG; hypergeometric test) for biological processes of adjacent genes (black) and motifs for 
TFs or TF families (red). :G,UUU CREs confidently assigned to their cluster were chosen randomly for 
visualization. (C) Density distributions for the log&-ratio of gene score standard deviation (SD) across 
developmental stages and progenitor types for the :,UUU genes with the highest variance in early and late 
progenitor populations. (D) Gene scores (capped at !Uth and JJth quantiles and log"$ transformed) for 
genes with high variance across progenitor types (left) or developmental stages (right). Figure adapted 
from Sarropoulos et al. CDCE (CYY). 

I next sought to assess whether these temporal changes in CRE accessibility also lead to 

concordant differences in gene expression. To this end, I first estimated the variance in gene 

scores (as a proxy for gene expression) for each gene across progenitor types and developmental 

stages (Figure 7.2QC, Figure 7.2LA-B). In agreement with my observations regarding CRE 
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accessibility, the majority of the D,WWW most highly variable genes in early developmental stages 

(ECW-ECB) show higher variance across developmental stages than between germinal zones 

(Figure 7.2QC). Such temporally variant genes include the pluripotency factor Lin8@a, which is 

expressed in all ECW progenitor cells and shows a gradually decreasing activity during later stages 

(Figure 7.2QD). By contrast, the gene score of the TF Nfix gradually increases across all 

progenitor types from ECD on (Figure 7.2QD). Notably, as discussed above, NFI motifs are 

enriched amongst CREs with a shared increase in accessibility across progenitor types (Figure 

7.2QB; clusters ^ and [). On the other hand, variance in gene scores by progenitor type is higher 

in late progenitor populations (EC^-PW), further corroborating my observation that temporal 

differences are strongest in early cerebellar development (Figure 7.2QC, Figure 7.2LB). Genes 

with high variance across progenitor types include known marker genes for specific progenitor 

types, such as Gsx7 for bipotent progenitors and Gdf7B for gliogenic progenitors (Figure 7.2QD). 

To directly examine the expression patterns of these temporally-variant genes, which I 

identified based on their gene scores (i.e., gene expression inferred by chromatin accessibility), 

I utilized a previously published scRNA-seq dataset (87B). I used soft clustering to identify genes 

with increasing or decreasing gene score activity during development (Figure 7.2LC-D) and 

then estimated the aggregated expression of each group across progenitor cells from different 

developmental stages in the scRNA-seq data. Temporally variant genes show significant 

differences in their expression across developmental stages, matching the direction predicted 

by their gene scores (Figure 7.2LE-F). Thus, the strong temporal differences I observed in the 

chromatin accessibility profiles of cerebellar progenitors, which are most prominent during 

early development and shared between germinal zones, also lead to developmental changes in 

gene expression. 
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Figure =.:U: Identification of temporally-variant genes in cerebellar progenitors. (A, B) Log& ratio 
of standard deviations across developmental stages (x-axis) and progenitor types (y-axis) over mean 
standard deviation between replicates, for the :,UUU genes with highest gene score variance for early 
(E!U-E!=; A) and late (E!G-PU; B) progenitor populations. Temporally-variant (orange) genes and germinal 
zone-variant (blue) genes were identified with a log& ratio of at least !.:G compared to both other standard 
deviations. Marker genes used for the identification of progenitor types are shown in green. (C, D) Z-
score scaled gene score for temporally-variant genes (orange in A, B) for early (E!U-E!=; C) and late (E!G-
PU; D) progenitor populations with decreasing (left) and increasing (right) activity, as determined by 
fuzzy clustering. The number of genes in each cluster is shown on top. (E, F) Fraction of UMIs per 
progenitor cell in temporally-variant gene clusters from C, D. Data and annotations are from Vladoiu et 
al. CDEF (CED). Different y-ranges were used across gene sets to facilitate temporal comparisons within 
each group as the overall fraction of UMIs depends on the number of genes in each set. Figure adapted 
from Sarropoulos et al. CDCE (CYY). 
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:.:.B CRE activity during neuronal differentiation 

Following cell fate specification, immature neurons need to acquire their final location, form 

and function. This often involves their migration to a different position in the brain, as well as 

a series of morphological changes, such as the growth of an axon and dendrites, and eventually 

the formation of synapses (79B). Collectively, these processes are referred to as neuronal 

differentiation and maturation (79B). To study the dynamics of chromatin accessibility during 

this process, I focused on the three most abundant neuron types in our dataset, granule cells, 

Purkinje cells and GABAergic interneurons. Since cells from different developmental stages 

show differences in CRE accessibility, which are independent of differentiation (Figure 7.76A-

C), I used a batch-correction method (8:@) to explicitly remove developmental signal and align 

these cells along their differentiation trajectories, which I modelled using diffusion pseudotime 

(8:A) (Figure 7.76A-C). 

Different neuron types vary in their differentiation dynamics and the shape of their trajectories. 

For Punkinje cells, most of the change in their chromatin accessibility profiles occurs during ECD 

and ECB (Figure 7.76B), in line with their stage-restricted generation (79B). By contrast, granule 

cells are characterized by protracted differentiation with cells from multiple stages (EC^-PCF) 

showing a large spread in their pseudotime distribution (Figure 7.76A). GABAergic 

interneurons also show protracted differentiation (ECB-PZ) but in contrast to the largely 

homogeneous granule cell population, they are stratified into distinct temporally-specified 

subtypes (Figure 7.76C-E). These include early-born interneurons (Zfhx<, Slit8) which can be 

detected from ECB to EC^, mid-born Golgi cells (Chrm8) that can be found in small numbers 

throughout development (ECB-PYB), and Purkinje cell layer interneurons (Nxph7, Klhl7) which 

are most abundant between ECZ and PZ (Figure 7.76D-E). Late postnatal stages (PCF, PYB) are 

dominated by molecular layer interneurons of type C (Sorcs9, Grm@) and D (Nxph7, Pvalb; Figure 

7.76C-E). 
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Figure =.=W: Differentiation dynamics of cerebellar neuron types. (A, B, C) UMAP projections and 
distribution of pseudotime values across developmental stages for =G,!G= granule cells (A), !=,:!@ Purkinje 
cells (B) and G,!!= interneurons (C) before (left) and after (middle and right) Harmony-alignment across 
developmental stages. Cells are colored by developmental stage (left and middle) and pseudotime value 
(right). For interneurons (C), pseudotime was capped at U.D and rescaled to eliminate differences between 
temporally specified subtypes (see D, E). (D) UMAP projection of G,!!= Harmony-aligned interneurons 
colored by cluster. Temporally specified interneuron subtypes are shown in circles. (E) Gene score activity 
(Z-score) of marker genes for mature interneuron clusters (as in D). Subtype annotation and relative 
contribution of developmental stages per cluster are shown above the heatmap. Figure adapted from 
Sarropoulos et al. CDCE (CYY). 

Despite these differences in the dynamics of differentiation, I observed considerable similarity 

in the molecular processes occurring in matched differentiation states between neuron types 

(Figure 7.7!A). CREs with high accessibility in early differentiation are enriched near genes 

associated with pattern specification, and are gradually replaced by CREs proximal to 

transcriptional and developmental regulators (Figure 7.7!A). In later stages, chromatin 

accessibility increases near genes involved in axon guidance, migration and synapse assembly, 

whereas CREs active in mature neurons are close to genes associated with neurotransmitter 
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secretion (Figure 7.7!A). Besides highlighting the similarity in the differentiation processes 

between different cerebellar neuron types, this analysis also supports the utility of pseudotime 

to model differentiation trajectories, as these processes recapitulate the well-established events 

leading to the formation of mature cerebellar neurons (79B). 

In addition to the convergence in biological processes, I observed that different neuron types 

also share a large number of dynamic genes (FB% of protein-coding genes with dynamic activity 

across pseudotime are also dynamic in at least another neuron type; Figure 7.7!B), supporting 

the existence of a core gene expression program central to neuronal differentiation (8;B). By 

contrast, only DW% of dynamic CREs are shared (i.e., pleiotropic) across neuron types (Figure 

7.7!B), suggesting that the same target genes are often activated by distinct CREs in different 

neuron types, in line with the high context-specificity of most CREs (9;, 88A). However, 

pleiotropic CREs are often active across matched stages of differentiation in different cell types 

(Figure 7.7!C-D; early-early: P < CW−$%, late-late: P < CW−$%, early-late: P > W.\\, hypergeometric 

test). Additionally, with the exception of interneurons, pleiotropic CREs are enriched amongst 

clusters active in early stages of differentiation (Figure 7.7!E), suggesting a gradual divergence 

in the chromatin accessibility profiles of different neuron types during differentiation. This can 

also be seen in a principal component analysis (PCA), in which CRE accessibility profiles of 

different neuron types show higher similarity in early differentiation states (Figure 7.7!F). 

Collectively, in this section I revealed similarities and differences in the differentiation processes 

of the three major cerebellar neuron types. I also identified a subset of CREs that are shared 

across multiple cell types and which are more prevalent during early differentiation. More 

generally, in this part of my thesis work I explored the chromatin accessibility dynamics of cell 

types during the development of the mouse cerebellum. These analyses set the stage for the 

evolutionary comparisons that follow in the next and final part of my dissertation. 
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Figure =.=(: CRE activity and pleiotropy during neuronal differentiation. (A) Z-score scaled activity 
of dynamic CREs during granule cell (left), Purkinje cell (middle) and GABAergic interneuron (right) 
differentiation, averaged across GU bins of increasing pseudotime ranks. Top: Contribution of 
developmental stages and mean pseudotime value for each bin. Right: Representative enrichments (BH 
adjusted P < U.UG; hypergeometric test) for biological processes of adjacent genes (black) and TF motifs 
(red). (B) Upset plots of intersections between genes (left) and CREs (right) with dynamic activity in 
differentiating granule cells, Purkinje cells and interneurons. Connected dots mark overlapping sets. 
Horizontal bars show the total number of dynamic genes (left) and CREs (right) per cell type. (C) Overlap 
between activity clusters for CREs dynamic in two or more neurons (pleiotropic). For each neuron type 
(outer sector) CRE clusters (as in A) are ordered from early (orange) to late (violet) activity during 
differentiation. Each node connects the activity clusters of two different neuron types for the same CRE. 
(D) Example of a pleiotropic intergenic CRE, assigned to FgfrY. Accessibility profiles for each cell type 
and state were aggregated across cells from all developmental stages and scaled by the total number of 
fragments in each group. (E) Fraction of CRE clusters (as in A) across CREs dynamic in a single neuron 
type (unique) or shared across two or three cell types, for granule cells (left), Purkinje cells (middle) and 
GABAergic interneurons (right). (F) Principal component analysis of CRE accessibility during granule 
cell, Purkinje cell and interneuron differentiation. Percentage values show the proportion of variance 
explained by each component. Figure adapted from Sarropoulos et al. CDCE (CYY). 
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6.: The evolution of gene regulation in the mammalian cerebellum 

This part of my thesis research focused on the evolution of CREs that are active in cell types of 

the developing mammalian cerebellum, starting from the identification of conserved CRE 

sequences and gradually transitioning towards the search for CREs associated with evolutionary 

innovation. The first two sections are based on the same mouse snATAC-seq dataset described 

in B.B. The final four sections incorporate additional snATAC-seq datasets of the developing 

cerebellum in opossum (B.F.B) and human (B.F.F-Y) produced by Dr. Mari Sepp with technical 

support from Julia Schmidt and Celine Schneider, as well as additional publicly available data. 

The findings presented in the first three sections were published in Sarropoulos, Sepp et al. 8B87 

(8<<), whereas the final three sections describe unpublished work. The development of the deep 

learning models discussed in the last two sections was carried out in collaboration with Prof. 

Dr. Stein Aerts at the University of Leuven and his lab members, Dr. Nikolai Hecker, Ibrahim 

Taskiran and Carmen Bravo González-Blas. Unless stated otherwise below, all computational 

analyses are the product of my own work, under the supervision of Prof. Dr. Henrik Kaessmann, 

Prof. Dr. Stein Aerts, Prof. Dr. Stefan Pfister and Dr. Margarida Cardoso-Moreira.  

:.@.! Evolutionary dynamics of CRE sequences in cerebellum development 

First, I focused on the evolution of CRE sequences and its relation to their spatiotemporal 

activity. Previous studies have reported a decrease in the conservation of protein-coding gene 

expression (7?8, 7@?, 7@@) and of enhancer sequences (::) during mammalian organ 

development, a pattern that I showed to also extend to lncRNA expression (Figure 7.QB-C). 

However, since all aforementioned studies examined whole organs, it remained unclear whether 

these patterns are driven by the higher evolutionary conservation of CREs active in cell types 

that are highly abundant in early stages of organ development (e.g., progenitors, deep nuclei 

neurons) or whether there are temporal differences in the conservation of CREs within cell 

types.  

To assess the relative contributions of these two scenarios, I estimated the sequence constraint 

(phastCons scores) and the minimum age (i.e., when a CRE first appeared during evolution) 

based on syntenic sequence alignments between mouse and CY other vertebrates at various 

phylogenetic distances (Figure 7.72A). To avoid biases associated with the higher evolutionary 

conservation of CREs overlapping or proximal to protein-coding sequences (Figure 7.72B), I 

focused these analyses on intergenic CREs. For each single cell, I estimated a score based on the 
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mean conservation estimates of all intergenic CREs that were accessible in that cell. I then 

summarized these metrics across cell types and developmental stages (Figure 7.72C-E). 

Figure =.=:: Evolutionary dynamics of CREs in developing cerebellar cell types. (A) Species used in 
the syntenic alignments to infer the minimum age of CREs based on the date of divergence (from 
timetree.org) between mouse and the most distant species in which an alignment was detected.  
(B) Number of CREs across genomic classes and age groups. Colors indicate broader age groups as used 
in E. (C, D) Sequence constraint (C) and minimum age (D) of intergenic CREs accessible per cell, 
averaged for each cell type and developmental stage. (E) Fraction of accessible intergenic CREs assigned 
to different age groups per cell, averaged for each cell type and developmental stage. Different y-ranges 
were used across age groups to facilitate comparisons between cell types and stages within each group, 
as the fraction depends on the number of CREs per group (indicated on top). The fraction of each age 
group across all intergenic CREs is marked by the dotted horizontal line. For C-E, Pearson’s r correlation 
coefficients between the estimates and development are shown (median across cell types; P<U.UG*, 
P<U.U!**, P<U.UU!***); vertical bars illustrate difference in average estimates between biological 
replicates. Only groups with at least GU cells were considered. (F, G) Average sequence constraint (F) and 
minimum age (G) of intergenic CREs per target gene for TFs and other genes. Figure adapted from 
Sarropoulos et al. CDCE (CYY). 

I observed a significant decrease in CRE sequence constraint during development across all cell 

types (Figure 7.72C-D). Accordingly, the fraction of ancient CREs (older than BWW million years) 

decreases gradually during development, whereas the fraction of CREs that are younger than 

CWW million years is significantly higher towards adulthood (Figure 7.72E). This suggests that 

the gene regulatory programs involved in the specification of cell type identity are significantly 

more conserved than those regulating the functions of the mature cell types. In line with this, 
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CREs associated with TF genes, which are central to defining cell type identity, are older and 

under more constraint than CREs associated with other genes (Figure 7.72F-G). In contrast to 

these strong temporal patterns, differences in CRE constraint between cell types within the 

same developmental stage are limited, with the exception of late postnatal stages (see section 

B.F.D). Thus, previous observations at the level of whole-organs are largely explained by the 

decrease in CRE conservation within cell types rather than by changes in the relative abundance 

of cell types with pronounced differences in evolutionary constraints. 

However, even within a cell type, multiple processes might explain the temporal differences in 

CRE activity and conservation. As discussed in section B.B.^, even cells from the same cell type 

and differentiation state show additional differences in chromatin accessibility across 

developmental stages. These might be related to intrinsic temporal patterning signals (8::, 8;7) 

or to extrinsic factors such as the availability of morphogens and ligands (7<B). To assess the 

relative contributions of cell type differentiation versus these additional temporal signals, I 

focused on granule cells, which have a protracted differentiation trajectory (ECB-PCF), show 

differences in accessibility between developmental stages (Figure 7.2C, Figure 7.76A), but are 

not known to become stratified into distinct temporally specified subtypes (79B).  

I compared the conservation of intergenic CREs across both differentiation (modelled through 

pseudotime, see section B.B.^) and developmental stages. Both factors affect CRE constraint, 

with cells from the earliest developmental stage (ECB) and differentiation state (granule cell 

progenitors) having the most conserved regulatory programs (Figure 7.77A-C). To validate this 

observation in a pseudotime-independent framework, I focused on prenatal granule cell 

progenitors (ECB-PW), which cluster together without any correction across developmental 

stages (Figure 7.77D). Thus, these cells are overall very similar in their chromatin accessibility 

profiles. However, despite this similarity, I was able to identify Z,^DZ CREs with decreasing and 

CC,\ZD CREs with increasing accessibility profiles during development (Figure 7.77D). The 

sequences of CREs with decreasing accessibility are more constrained than those increasing 

during development (Figure 7.77E), further supporting that the regulatory programs of early 

granule cell progenitors are more conserved than those of late granule cell progenitors. In 

support of the biological significance of these differences, CREs with decreasing accessibility are 

enriched for SOX and RFX motifs, which are shared with other early cell types, whereas those 

with increasing accessibility are recognized by factors specific to rhombic lip-derived cells, such 

as ATOHC and GLID, or by TFs associated with multiple late-born cell types, such as NFI factors 

(Figure 7.77F). Furthermore, using a published scRNA-seq dataset, I showed that genes 
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adjacent to these temporally dynamic CREs also show concordant temporal differences in their 

expression in granule cell progenitors (Figure 7.77G). 

Figure =.==: Effects of development, differentiation and pleiotropy on CRE conservation. (A, B, 
C) Sequence constraint (A) and minimum age (B) of intergenic CREs, and pseudotime (C) per cell, 
averaged for each developmental stage (color) and pseudotime interval (step=U.UG) of granule cell 
differentiation. Vertical bars illustrate the difference in average estimates between biological replicates. 
(D) Identification of temporal differences in CRE activity in prenatal granule cell progenitors (top; UMAP 
of =G,!G= granule cells prior to alignment across developmental stages, as in Figure =.=WA). Z-score scaled 
temporal activity of CREs with decreasing or increasing accessibility across development (bottom). Black 
lines indicate mean values for each cluster. (E, F) Sequence constraint (E) and TF motifs enrichment (F; 
BH adjusted P < U.UG; hypergeometric test) for intergenic CREs with temporal differences in prenatal 
granule cell progenitors (clusters from D). (G) Fraction of UMIs per cell in putative target genes of CREs 
with decreasing (left) or increasing (right) accessibility during development in prenatal granule cell 
progenitors. Data and annotations are from Vladoiu et al. CDEF (CED). Different y-ranges were used across 
gene sets to facilitate temporal comparisons within each group as the overall fraction of UMIs depends 
on the number of genes in each set. (H) Sequence constraint (top) and abundance (bottom) of cell type-
specific and pleiotropic intergenic CREs active in different stages of granule cell differentiation (from 
Figure =.=(A, ordered from early to late activity during differentiation). Figure adapted from Sarropoulos 
et al. CDCE (CYY). 

Next, I decided to test whether the decrease in CRE conservation during cell type differentiation 

(Figure 7.77A-B) is associated with the parallel decrease in CRE pleiotropy (Figure 7.7!E-F), as 

the latter is thought to impose evolutionary constraints (7?8, 8:<). Re-examining the granule 

cell differentiation trajectory, I found that pleiotropic CREs (i.e., those dynamic in at least two 

neuron types) are more constrained than those dynamic in a single neuron type (Figure 7.77H). 

These differences are pervasive across all differentiation states and are larger than those 

observed between CREs of similar pleiotropy but active in different differentiation states. Thus, 
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the gradual decrease in CRE constraint during neuronal differentiation is mostly explained by 

the decrease in the fraction of pleiotropic CREs, which are more conserved than those active in 

a single cell type. 

:.@.7 Differences in CRE sequence constraint across cerebellar cell types 

Although developmental differences in the constraint of intergenic CREs can be observed within 

all cell types, there are additional differences between cell types, which are most prominent in 

the adult cerebellum. Microglia, the immune cells of the brain, show the fastest divergence in 

their CREs (Figure 7.72C-D), in agreement with the rapid evolution of their gene expression 

programs and morphology (8;8). Microglia CREs are also enriched for genomic repeats, 

especially for TE classes with recent expansions in rodents, such as SINEs BC, BD and BF, 

endogenous retrovirus sequences (ERVs) and LC elements (Figure 7.7;A-B). By contrast, 

astrocytes (assigned to the astroglial lineage together with multipotent cerebellar progenitors 

from earlier stages) have the most constrained CRE sequences in the mature cerebellum (Figure 

7.72C-D). This increase in overall constraint is associated with a particular increase in the 

contribution of CREs that originated between CYW and CZZ million years ago in common therian 

or mammalian ancestors (Figure 7.72E). Additionally, these mammalian-shared CREs show 

higher sequence constraint than what would be expected based on their evolutionary age 

(Figure 7.7;C). Finally, differences amongst neurons are subtler than those I observed between 

glial cell types. The most prominent outlier is granule cells, which have the youngest and fastest 

evolving CRE sequences compared to other neuron types in the same developmental stage, with 

differences being most pronounced during prenatal development (Figure 7.72C-D). This 

enrichment for younger CRE sequences could be related to evolutionary innovations in the 

development of granule cells, such as the emergence of the proliferative granule cell layer in 

amniotes (879, 87<). 

To test these observations against an independent dataset, I examined a single-cell ATAC-seq 

atlas of adult mouse organs, which covers a wide range of cell types. Consistently with my 

results, amongst cerebellar cell types, astrocytes show the highest and microglia the lowest 

sequence constraint in their chromatin accessibility profiles (Figure 7.7;D). However, the wider 

set of cell types assayed by this atlas allowed me to further extend these comparisons. Despite 

having the fastest evolving CRE sequences in the cerebellum, microglia show the highest 

conservation when compared to other immune cell types (Figure 7.7;D), highlighting the 

overall stronger evolutionary constraints in the brain (7;?, 7;A, 7?8). This is further supported 

by the fact that [ out of the CW most conserved cell types are found in the brain (Figure 7.7;D). 
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More strikingly, astrocytes are marked by the most constrained CRE sequences not only in the 

mature cerebellum, but across all assayed cell types in the adult mouse (Figure 7.7;D). Based 

on my previous observations regarding development and pleiotropy, this increased 

conservation of CREs in astrocytes could be related to the latter maintaining some properties of 

neural progenitors (8;9) or to increased pleiotropic constraints due to their bridging 

interactions with multiple cell types, including neurons and the vasculature system (8;<). An 

alternative explanation could involve the requirement for a more rigid sequence grammar for 

CRE activity in astrocytes compared to other mature cell types. Collectively, with these analyses 

I revealed common temporal trends, as well as cell type-specific differences in the evolutionary 

histories of CREs that are active in the developing mouse cerebellum. 

Figure =.=@: Differences in CRE constraint across cell types. (A) Fraction of fragments in intergenic 
CREs accessible per cell overlapping repeats, averaged for each cell type and developmental stage. (B) 
Fraction of fragments in intergenic CREs accessible per cell overlapping transposable elements of 
different classes, grouped by cell types of the adult mouse cerebellum (PD=). (C) Sequence constraint 
across eutherian mammals for all intergenic CREs (left), and subsets that originated =!: (middle) and !DU 
(right) million years ago (Mya) accessible per cell, averaged for each cell type and developmental stage. 
Different y-ranges were used across age groups to facilitate comparisons between cell types and stages 
within each group, as sequence constraint is overall higher for older CREs. In A and C, vertical bars 
illustrate the difference in average estimates between biological replicates. (D) Sequence constraint of 
intergenic CREs accessible per cell across cell types in the adult mouse (data from (\C)). The ten most 
conserved (left) and all immune (right) cell types are shown. Figure adapted from Sarropoulos et al. CDCE 
(CYY). 
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:.@.: CRE activity conservation in the mammalian cerebellum 

The conclusions of the last two sections are based on assessing the presence and conservation 

of mouse CRE sequences in the genomes of other vertebrates. However, less than ^W% of 

alignable enhancers between human and mouse show conserved activity in the same organ in 

both species (<;, 77?). Furthermore, even when sequences retain their capacity to act as CREs in 

two mammalian species, they often (B^%) show repurposed activity across cell types or even 

organs (78B). Thus, even though sequence constraint is an important predictor of shared CRE 

activity, it can often overestimate the true degree of conservation. To assess whether my 

observations based on sequence constraint extend to the level of regulatory activity 

conservation, I analyzed a snATAC-seq dataset from the marsupial opossum, which separated 

from eutherian mammals (including mouse) around CYW million years ago. The dataset was 

generated by Dr. Mari Sepp and included ~DW,WWW cerebellar cells across two developmental 

stages, PDC — which is transcriptionally similar to PF in mouse (7?8) — and adult (Figure 7.7>A). 

I analyzed the opossum dataset as described for mouse, identifying a total of CB cell types and 

states (Figure 7.7>B-D). These match the cellular states identified in the corresponding stages 

in mouse (PF and PYB), often on the basis of the same marker genes (e.g., SLC7A9 for astrocytes, 

PAX8 for interneurons and ETV7 for mature granule cells). Relative cell type abundances are 

also similar for corresponding stages between species, with the majority (Z\%) of the cells 

profiled in opossum corresponding to granule cells (Figure 7.7>D). These analyses support the 

overall conservation of the main cellular repertoire of the cerebellum during mammalian 

evolution. 

I then used this dataset to identify a total of CYZ,BFC putative CREs. Of the ZD,W[W mouse CREs 

active in the corresponding stages (PF, PYB) and having alignable sequences in the opossum 

genome, only BF,\[\ (F\%) were identified as open chromatin regions in the opossum 

cerebellum (Figure 7.7>E). Regulatory activity conservation is significantly higher for 

promoters compared to intronic and intergenic CREs (putative enhancers; Figure 7.7>E), in 

agreement with previous observations (<;, 77?, 78B). 
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Figure =.=O: CRE activity conservation across therian mammals. (A) Overview of opossum snATAC-
seq dataset and correspondence to mouse developmental stages based on transcriptomic similarity (EBC). 
(B, C) UMAP projection of !J,:U@ opossum cells colored by sample (B) or cell type and state (C). (D) 
Proportions of broad cell types across samples. (E) Distribution of genomic classes (left) and total number 
(right) for all mouse CREs, CREs active (≥ G CPM) in cell types and developmental stages corresponding 
to those sampled in opossum, and subsets showing conservation of sequence (CRE aligned to genome) 
and activity (CRE aligned to CRE) in opossum. (F) Spearman’s correlation of intergenic CRE activity 
between opossum and mouse corresponding cell types and stages. Stars mark the sample with the highest 
correlation for each row and column. (G) Pearson’s correlation coefficients of activity (in CPM) across 
corresponding cell types and stages for intergenic CRE pairs with true or shuffled orthology relationships. 
(H) Example of a shared intergenic CRE with conserved cell type-specificity between mouse and 
opossum. Accessibility profiles for each broad cell type and stage were aggregated across cells and scaled 
by the total number of fragments in each group. (I, J) Fraction of mouse intergenic CREs accessible per 
cell with an ortholog CRE in opossum (I) or with an ortholog in the @U,UUU most accessible CREs of the 
corresponding cell type in the adult opossum (J), grouped by cell type in the adult mouse. (K) Fraction 
of mouse intergenic CREs accessible per cell with an ortholog CRE in opossum, grouped by cell type and 
developmental stage for cell types with at least !UU cells in both stages. (L) Fraction of intergenic CREs, 
accessible per cell in P@ mouse, with an ortholog CRE in opossum, grouped by differentiation state of 
granule cells. Figure adapted from Sarropoulos et al. CDCE (CYY). 

However, when focusing on intergenic CREs that were shared between the two species, I 

observed, that all homologous cell types (except for UBCs) show the highest similarity in their 

accessibility profiles (Figure 7.7>F). Similarly, orthologous intergenic CREs show significantly 

higher correlations in their spatiotemporal activity profiles across corresponding cell types and 
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developmental stages compared to shuffled homology relationships (Figure 7.7>G). Thus, 

despite the overall rapid turnover of distal CRE activity, most of the CREs that have retained 

their activity in the cerebellum remain active in the same cell types and developmental stages. 

A mouse CRE located CWW kb downstream of Slc7a9 and assigned to that gene based on my 

correlation analysis (see section B.B.D) serves as an illustrative example. Both the gene and the 

CRE have maintained the same astroglia-specific activity in both species suggesting a regulatory 

interaction that has been conserved across CYW million years of mammalian evolution (Figure 

7.7>H). 

Finally, I used the opossum dataset to reexamine my sequence-based comparisons of 

evolutionary conservation across cell types and developmental stages from the perspective of 

CRE activity conservation. Focusing on the adult cerebellum, the fraction of mouse CREs with 

an ortholog showing CRE activity in the opossum cerebellum is the highest for astrocytes and 

the lowest for microglia (Figure 7.7>I), in agreement with my previous observations at the level 

of sequence conservation. The differences between cell types remain significant even when 

requiring the CRE to be active in the same cell type in both species (Figure 7.7>J). In support of 

the developmental decrease in evolutionary conservation, the fraction of mouse CREs conserved 

in opossum is also higher at PF compared to PYB for all major cell types except for astroglia 

(Figure 7.7>K), which also shows similar levels of sequence constraint between the two stages 

(Figure 7.72C-D). Finally, to assess the effect of differentiation on regulatory activity 

conservation, I focused on mouse PF granule cells. In agreement with my sequence-based 

observations, granule cell progenitors show the highest fraction of CREs conserved in opossum, 

followed by differentiating and mature granule cells (Figure 7.7>L). Thus, even though only a 

subset of conserved CRE sequences also shows conserved activity in opossum, differences in 

constraint levels between cell types and developmental stages are similar when using either 

metric. 

:.@.@ Comparative multiomic atlases of the mammalian cerebellum 

The analyses described in the previous three sections focused on the identification of conserved 

elements and on comparisons of constraint across cell type and stages. Identifying CREs 

associated with evolutionary innovation is more challenging due to their rapid turnover, 

difficulties in associating CREs with genes that have changed their expression, and an 

incomplete understanding of how the sequences of CREs relate to their function. The next two 

sections attempt to set up an analytical framework that addresses these challenges, with the 
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final section serving as a proof-of-principle analysis for the identification of CREs that are 

associated with gene expression changes between species. 

To facilitate comparative analyses of gene expression and chromatin accessibility, I integrated 

the mouse snATAC-seq dataset with a new snATAC-seq dataset for corresponding 

developmental stages in human, as well as published (7?A) and newly generated snRNA-seq data 

for both species. All new data described in this section were generated by Dr. Mari Sepp. I used 

a neighbor-voting procedure followed by manual curation to annotate cell types and states in 

the new scRNA-seq samples and then transferred annotations to the snATAC-seq dataset in a 

stage-wise manner (Figure 7.7CA-B). Collectively, this extended dataset is comprised of DB\,YDZ 

cells (CBW,D^W RNA and CW\,BZZ ATAC) for human and DDD,FDW cells (CCZ,CCF RNA and CW^,BWY 

ATAC) for mouse. 

Figure =.=R: Multiomic atlases of cerebellum development in human and mouse. (A, B) UMAP 
projections of :=J,D:F human (A) and :::,@:U mouse (B) cells colored by broad cell type (left), 
developmental stage (top-right) and modality (bottom-right). (C) Alignment between human and mouse 
developmental stages based on dynamic time-warping applied on different dissimilarity metrics. (D) 
Consensus correspondence of human and mouse developmental stages based on C. 

I then used this dataset to identify putative CREs, as described for the mouse dataset (B.B.D), 

grouping cells at the finest level of cell type annotation (cell states and subtypes). Based on 
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reciprocal syntenic alignments, I detected a total of C\\,B^Y orthologous CRE pairs between the 

two species. 

Next, I reassessed the correspondence in stages of cerebellum development between human and 

mouse, a necessary step for performing evolutionary comparisons. To this end, I applied a 

method based on dynamic time-warping, previously used by Dr. Margarida Cardoso-Moreira 

and later extended by Dr. Mari Sepp, Kevin Leiss and myself. I examined four different metrics 

that incorporate information about cross-species similarity in gene expression, chromatin 

accessibility and cellular composition (Figure 7.7CC). All metrics broadly agree, resulting in a 

consensus matching of developmental stages between human and mouse (Figure 7.7CD), which 

is also in line with previous work from the Kaessmann lab (7?8, 7?A). 

I then sought to summarize the spatiotemporal activity of CREs from both species across 

corresponding cell types and developmental stages. To this end, I aggregated CRE activity across 

cells from the same cell type and developmental stage. Following normalization within and 

between species (Methods), I applied non-negative matrix factorization (NMF) to identify C[ 

components summarizing chromatin accessibility patterns in the human and mouse cerebellum 

(Figure 7.7JA). These components capture the major factors determining CRE activity, namely 

cell type and developmental stage, and broadly recapitulate the clusters of CRE activity I 

previously identified using the mouse dataset (Figure 7.2>A). However, since pleiotropic CRE 

activity can be captured by additive contributions in multiple NMF components, rather than 

requiring a separate cluster, the same patterns can be described using fewer components than 

clusters. Notably, both human and mouse CREs contribute to all components, demonstrating 

that the major determinants of chromatin accessibility are shared between the two species 

(Figure 7.7JA). 
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Figure =.=S: Spatiotemporal activity of human and mouse CREs. (A) CRE activity (quantile 
normalized CPM, scaled by the maximum activity of each CRE) across corresponding human and mouse 
cell types and developmental stages. GUU CREs with the highest contribution for each NMF component 
and low contributions to all other components were chosen for each species for visualization. The 
barplots on the right show, for each NMF component, the fraction of human intergenic CREs with a 
mouse CRE ortholog (green) and a mouse CRE ortholog assigned to the same component (purple). (B) 
Number of components assigned to each human and mouse CRE. (C) Euclidean distance in contributions 
to NMF components between human and mouse CRE orthologs (blue) or pairs with shuffled orthology 
relationships (violet). (D) Similarity (Pearson’s r) in TF motif enrichment (normalized enrichment scores 
obtained from cisTarget) for mouse (rows) and human (columns) CREs assigned to each NMF 
component. 

In line with my previous observations for mouse (Figure 7.2>), most CREs (Z[% in human and 

Z^% in mouse) are associated with a single component, supporting their overall high context-

specificity (Figure 7.7JB). Orthologous CREs between human and mouse show significantly 

higher similarity in the NMF space compared to shuffled orthology pairs (Figure 7.7JC), 

recapitulating the notion that a sizeable subset of CREs has retained the same spatiotemporal 

activity during mammalian evolution. However, overall CRE turnover is fast, with at most ^Y% 

of human intergenic CREs also being active in mouse (Figure 7.7JA). This percentage decreases 

further to a maximum of CC% of human intergenic CREs having a mouse ortholog with a high 
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contribution to the same NMF component (Figure 7.7JA). Thus, the majority of CREs 

contributing to each component are specific to the human or mouse lineage. 

The relative conservation of CRE sequences and activity patterns across NMF components also 

agrees with my previous observations. Components associated with early development (D, B, CW, 

CC, CB and CZ) overall show the highest conservation (Figure 7.7JA). Mature cell types are 

typically less conserved than their differentiating precursors (e.g., CC vs F for Purkinje cells, CF vs 

^ for granule cells and Y vs C^ for oligodendrocytes; Figure 7.7JA). Finally, amongst components 

associated with adult cell types (^, Z, C^ and CY), astrocytes (component CY) show the highest 

conservation (Figure 7.7JA). By contrast, component Z, associated with immune cells (i.e., 

microglia) shows the fastest divergence (Figure 7.7JA). Collectively, this integrated analysis of 

human and mouse CRE activity across a set of corresponding cell types and developmental 

stages recapitulated the main findings of my previous work on the mouse dataset. 

In contrast to the fast divergence of individual CREs (<;, 78B), the activity and DNA binding 

preferences of TFs are generally thought to be conserved across mammals (78<–78;). I thus 

sought to examine whether CREs with the same spatiotemporal activity (i.e., assigned to the 

same NMF component) contain motifs recognized by the same TFs in the two species. Although 

most CREs associated with each component are lineage-specific, I observed high similarity in 

the TF motifs enriched amongst human and mouse CREs assigned to the same component 

(Figure 7.7JD). Thus, the spatiotemporal activity of CREs during the development of the 

mammalian cerebellum is determined by a set of TFs that are largely conserved between human 

and mouse.  

However, despite the high similarity observed for CREs from the same component between the 

two species, there are many cases where multiple components have similar motif content 

(Figure 7.7JD). For example, components F, CC, CB and CZ are associated with early-born cell 

types and are mostly enriched for Homeobox motifs, whereas components C, ^, [, CF and C[ are 

associated with various stages of granule cell differentiation and are highly enriched for 

sequences recognized by bHLH TFs (Figure 7.7JD). Even though each of these components has 

a distinct set of CREs bound by a different set of TFs (e.g., ATOHC in granule cell progenitors, 

NEURODC in differentiating granule cells), the similarity in the motifs recognized by these TFs 

masks their differences at the level of motif content. The next section describes the use of newly 

developed computational methods to gain insights into how the activity of CREs is encoded in 

their sequence, and to investigate whether these more subtle sequence features are also shared 

between human and mouse. 
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:.@.B Cell type-specific regulatory grammar is conserved across mammals 

Recent advances in the field of deep learning have enabled the development of models that can 

predict chromatin accessibility patterns based on DNA sequence (AA–7B7). Combined with 

dedicated interpretation tools (7B;, 7B?), such models can subsequently highlight the sequence 

features contributing to their predictions (i.e., the parts of the CRE sequence that the model 

considers important for determining CRE accessibility), providing insights into the regulatory 

grammar of different cell types. 

Guided by Prof. Dr. Stein Aerts at the University of Leuven and his lab members, Dr. Nikolai 

Hecker, Ibrahim Taskiran and Carmen Bravo González-Blas, I developed such models to study 

the regulatory grammar of the developing mammalian cerebellum. First, I explored the mouse 

data to determine the feasibility of this approach. For each NMF component from Figure 7.7JA, 

I extracted the B,WWW mouse CREs with the highest contribution in that component. I then 

trained a multi-class and multi-label classifier which utilizes convolutional and recurrent neural 

networks, as described by Minnoye et al. 8B8B (7BB) and Janssens et al. 8B88 (7B7), to predict 

the NMF component (class) from the DNA sequence (input) of each CRE. To help the model 

distinguish cell type-specific CREs from sequences with noisy or no CRE activity, I additionally 

included two more sets of sequences: B,WWW CREs with low contributions across all C[ 

components (component C\, i.e., noisy peaks) and B,WWW random ^WW bp-wide intervals that 

don’t overlap any ATAC peak in the cerebellum dataset. In accord to commonly used 

approaches, [W% of the data were used for training, CW% for validation and CW% for testing the 

final model. 

To evaluate the performance of the best model trained using only mouse sequences, I estimated 

the area under the receiver operating characteristic (auROC) and the area under the precision-

recall (auPR) curves based on the CW% of CRE sequences reserved for the testing set (Figure 

7.7QA). The median auROC and auPR estimates across all labels for the test set are W.\C and W.^ 

(compared to W.^ and W.WY respectively when using shuffled labels) and are comparable to (and 

even slightly higher than) those achieved for other datasets with a similar model architecture 

(7BB, 7B7). Thus, the model was able to learn sequence features that allow it to predict the 

spatiotemporal activity patterns of previously unseen mouse CRE sequences.  



   Results 

 
 

[Z 

Figure =.=T: Predicting and interpreting the accessibility patterns of mouse CRE sequences.  
(A) Prediction accuracy (x-axis: auROC, y-axis: auPR) for each NMF component class (from Figure =.=S), 
versus random predictions (shuffled labels) for mouse CRE sequences in the testing set. (B) 
DeepExplainer and in silico mutagenesis profiles of CRE sequences with high contributions to NMF 
components : (top) and !@ (bottom). Motifs of relevant TFs are highlighted in the boxes. 

To further investigate whether the model is able to achieve this task by recognizing sequence 

features that match our current mechanistic understanding of CRE function (e.g., whether it 

identifies relevant TF motifs), I used two independent but complementary approaches. The first 

relies on DeepExplainer (7B;), a method that assesses the relative contribution of different parts 

of the sequence to the model’s prediction. Thus, the DeepExplainer score of each nucleotide 

reflects its positive or negative contribution to the model’s prediction for a particular class. The 

second approach relies on perturbing each nucleotide of the sequence into all other possible 

nucleotides and monitoring the effect of the change to the prediction, a process termed “in silico 

mutagenesis”. Parts of the sequence that contribute positively to the model’s prediction are 

expected to have negative in silico mutagenesis scores, as the prediction drops when they are 

mutated. As can be seen for two examples of mouse CREs (Figure 7.7QB), the model’s 

predictions are based on the identification of short sequences that correspond to known motifs 

(and often their flanking sequences) for major TF regulators of each cell type (e.g., SOX motifs 

for a CRE active in early progenitors, bHLH and NFI motifs for a CRE active in granule cell 

progenitors). Thus, the model’s high prediction accuracy is based on its ability to identify 

biologically relevant features of a regulatory sequence, a feature that can be used to study the 

grammar of CREs.  

The high similarity in motif content of CREs assigned to the same component in human and 

mouse (Figure 7.7JD) suggests that the sequence features responsible for CRE activity might 

be to some degree shared between the two species. To test this hypothesis, I trained a similar 

model based on human CREs and then evaluated the performance of each of the two models in 

predicting the accessibility of CREs from the same or other species. Surprisingly, both models 

perform similarly and cross-species predictions are almost indistinguishable in terms of 

accuracy from within-species predictions (Figure 7.7L). This suggests that the sequence basis 
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of spatiotemporal CRE activity in the developing cerebellum has remained largely conserved 

over the last \W million years of evolution and that both models were able to learn similar 

aspects of it. Notably, unlike the many-to-many matches observed between related NMF 

components in terms of TF motif content (Figure 7.7JD), these sequence-based models are able 

to distinguish well even between closely related components (Figure 7.7L). This could possibly 

be achieved by the model’s ability to consider additional sequence features besides the 

aggregate motif content, such as the distance between adjacent motifs or the composition of 

their flanking sequences. Detailed mechanistic work has now established that such features are 

indeed important determinants of CRE activity (7B9, 7B<, 8;:–8;?). 

The ability of deep learning models to predict spatiotemporal patterns of CRE activity based on 

DNA sequence, even beyond the species they were trained on, makes them promising tools to 

study the evolutionary histories of CREs. Specifically, I reasoned that these models would allow 

me to retrace the evolutionary steps that led to the emergence of new CREs by predicting the 

accessibility patterns across a range of publicly available mammalian genomes and by inferring 

the effect of individual sequence changes on the activity of these regions. Even though either 

the mouse or human model could be used for this purpose, I decided to additionally train 

models with sequences from both species to minimize the effect of any lineage-specific 

confounders. Using B,WWW regions per NMF component sampled from both species leads to a 

slight increase in prediction accuracy (median auPR=W.FZ across sequences from both species 

compared to W.FB-W.FF when using a single-species model). Additionally utilizing the full 

dataset (B,WWW human and B,WWW mouse for a total of Y,WWW CREs per component) led to the 

best performing model with a median auPR of W.^ across classes and species. This model was 

used for all analyses described below. 
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Figure =.=U: The regulatory grammar of cerebellar cell types is conserved between human and 
mouse. Mean prediction scores of models trained on human (left) and mouse (right) CRE sequences 
across NMF classes (columns) for human (top) and mouse (bottom) CRE sequences (rows) reserved for 
the testing set (i.e., not seen by any model during training). 

Before investigating CREs with lineage-specific activity, I tested the feasibility of my approach 

on conserved CREs. Figure 7.;6 shows an example of an intergenic CRE with conserved activity 

in both human and mouse. Although accessible in multiple cell types, this CRE shows the 

highest accessibility in granule cell progenitors in both species. In both human and mouse, the 

model correctly predicted a high contribution to component CF (which is associated with 

granule cell progenitors). Investigating the sequence features that contribute to this prediction, 

I identified three bHLH motifs in each ortholog (most likely recognized by ATOHC). 

Incorporating information from genomic alignments across vertebrate genomes (PhyloP 

scores), I observed higher sequence constraint in the position of these three motifs compared 

to most adjacent regions (Figure 7.;6B), supporting the notion that these three motifs are 

indeed important for the conserved activity of this CRE. In the next section, I describe the 
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application of a similar analytical framework to study the emergence of evolutionary novel CREs 

which are associated with changes in gene expression between human and mouse. 

Figure =.@W: Investigating the sequence basis of CRE activity conservation. (A) Spatiotemporal 
activity (quantile normalized CPM, scaled by the maximum activity for each CRE) for the human (top) 
and mouse (bottom) ortholog of a conserved CRE. (B) DeepExplainer and in silico mutagenesis profiles 
based on the NMF component !@ (granule cell progenitors) for the human (top) and mouse (bottom) 
sequences of the conserved CRE shown in A. The red boxes highlight three bHLH motifs considered 
important by the model and showing high sequence conservation across vertebrates (PhyloP score from 
UCSC shown above the human CRE sequence). 

:.@.F CREs associated with changes in gene expression 

In the final part of my thesis research, I sought to identify and characterize CREs that are 

associated with changes in gene expression in at least one context (cell type and developmental 

window) between human and mouse. First, I developed a new method to conservatively identify 

changes in gene expression between species, requiring both quantitative and qualitative 

changes in expression profiles and incorporating information from biological replicates 

(Methods). To facilitate integration with the patterns of CRE activity described above, I centered 

this analysis on the NMF components I identified previously (Figure 7.7JA). For each NMF 

component, I selected the samples with the highest loadings (e.g., for component D: progenitor 

cells from CSC[/ECC to CSDB/ECB in human/mouse, respectively). Within the samples associated 

with each component, I then identified genes that show higher expression in human or mouse. 

In total, I identified FF[ genes with higher expression in human and Z^B genes with higher 

expression in mouse, with a median of Y\ genes detected as differentially expressed in each 

component (Figure 7.;!A). Even though the overall number of detected genes per component 

is likely also affected by technical differences in the power to identify these changes, 

components associated with mature cell types consistently show more changes in expression 

(BF[ in microglia/NMFZ, DBY in oligodendrocytes/NMFC^, CBF in mature granule cells/NMF^, 

CCY in astrocytes/NMFCY) compared to progenitors and differentiating cells (e.g., YC and CF genes 
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in early/NMFD and late/NMFB progenitors respectively, B\ genes in granule cell 

progenitors/NMFCF). Figure 7.;!B illustrates the expression profiles of four genes identified as 

having higher expression in humans in at least one NMF component. In the absence of an 

outgroup species (something I plan to implement in future work), genes with higher expression 

in humans include those that have gained expression in the human lineage and those that have 

lost expression in the mouse lineage. However, in the case of these four genes, manual 

investigation of the expression profiles of their orthologs in the marsupial opossum (7?A) 

revealed that they have all gained expression in the respective cell types in the human lineage 

(i.e., they are not expressed in the corresponding cell type in either mouse or opossum). 

Figure =.@(: Cell type-specific changes in gene expression between human and mouse.  
(A) Number of genes with significantly higher expression in human (blue) or mouse (orange) in samples 
associated with different NMF components (from Figure =.=S). (B) Spatiotemporal expression profiles 
across corresponding cell types and developmental stages for genes that have gained expression (also 
considering comparisons with opossum) in human cell types. Vertical lines show the maximum and 
minimum variance stabilized (VST) expression across replicates, dots show the mean. Rectangles indicate 
cell types with higher expression in human.  

I next examined how these evolutionary changes in the expression of genes are related to their 

chromatin accessibility landscapes. Human CREs adjacent (up to D^W kb from a TSS) to genes 

with higher expression in human show significantly higher contributions to the corresponding 

component than those close to genes with higher expression in mouse (Figure 7.;2A). Human 

CREs around genes with higher expression in human are also enriched for CREs that are not 

shared with mouse (either gained in human or lost in the mouse lineage) compared to those 
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with higher expression in mouse or showing no evidence of change (unresolved) (Figure 7.;2B). 

Finally, even those human CREs that are shared with mouse show higher contributions to NMF 

components in which the adjacent gene is detected as more highly expressed in humans (Figure 

7.;2C). Thus, these analyses show that gene expression changes between species are reflected 

in their broad chromatin accessibility neighborhood and are associated with gains, losses or 

repurposing of CRE activity in the corresponding cell types. 

Figure =.@:: Chromatin accessibility landscape of genes with evolutionary changes in expression. 
(A) Distribution of NMF loadings for human CREs within :GU kb of a TSS of a gene with significantly 
higher expression in human (blue) or mouse (orange) for samples associated with the respective NMF 
component. Human CREs close to genes with significantly higher expression have higher loadings in the 
respective component. (B) Fraction of human CREs with (blue) or without (pink) a mouse ortholog for 
sets within :GU kb of a TSS of genes with higher expression in one species or without significant 
differences (unresolved). Genes with higher expression in humans are enriched for CREs not found in 
mouse (due to gain of new CREs in human or loss of old CREs in mouse). (C) Difference in NMF loadings 
between the human and mouse CRE orthologs within :GU kb of a TSS of a gene with significantly higher 
expression in one of the species. Orthologous CRE pairs close to genes with higher expression in human 
show higher contribution to the corresponding NMF component. Mann-Whittney U tests (A, C) or 
Fisher’s exact test between human-higher and unresolved (B) were used for statistical comparisons 
(P<D.DN*, P<D.DE**, P<D.DDE***).  

Despite their signal being detectable in these global comparisons (Figure 7.;2), the CREs that 

are associated with a specific gene expression change likely represent only a small fraction 

amongst all CREs in the ^WW kb region flanking that gene. To identify such cases I additionally 
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focused on adjacent CREs that have high contributions in the NMF component where the 

change was detected, and only in the species where the gene is more highly expressed (either 

because the CRE is absent from the other species or because it is not active in the respective cell 

type and developmental window). Focusing on genes with higher expression in humans, I 

identified a total of D,YWB such CREs (median of CC CREs per gene, representing ZY% of all CREs 

with high contributions in the respective NMF component around these genes). In comparison, 

the median number of such CREs next to human genes that are also expressed in mouse is Y 

(and only representing ^F% of all peaks with high NMF contributions around these genes). 

I next used my deep learning model (see section B.F.^) to further interrogate the predicted 

accessibility profiles of these CREs in other mammalian species, as well as to investigate the 

sequence basis of their activity. Automating and scaling up such analyses is still part of my future 

work plans in the Kaessmann lab. Here, I present a proof-of-principle analysis focused on 

PIEZO8 which has gained expression in early progenitor cells (NMFD) in the human lineage. 

There are CB human CREs with high contributions in NMFD within D^W kb of a TSS of PIEZO8. 

Of these, [ have a high contribution only in human (Y not found in the mouse CRE annotation 

and D annotated as CREs but inactive in early progenitor cells in mouse). Using the deep 

learning model, I obtained high prediction scores (³ W.D) for NMFD for B of these [ human CREs. 

While the remaining ^ CREs might still be functionally significant, I did not consider them 

further for this analysis, as the model cannot be confidently used to predict or interpret their 

chromatin accessibility profiles based on their sequences. 

The following analyses were performed with the help of a first-year PhD student in the 

Kaessmann lab, Tetsuya Yamada, based on my original project design and under my supervision. 

Mr. Yamada used a resource of genomic alignments (8;@) to identify corresponding sequences 

for the remaining B CREs and to predict their chromatin accessibility patterns (NMF loadings) 

in DD\ mammalian species (Figure 7.;7A). Two of these CREs (hgB[_chrC[:CC,C\\,FD\-CC,C\\,\D\ 

and hgB[_chrC[:CC,D^[,BWW-CC,D^[,[WW) are located ^W and CW[ kb upstream from the PIEZO8 

TSS respectively and their sequences could be detected in most of the mammalian species 

examined (YF% and Z\% respectively). However, according to the deep learning model, 

hgB[_chrC[:CC,C\\,FD\-CC,C\\,\D\ is more likely to be accessible in early cerebellar progenitor 

cells (NMFD) in the old-world monkeys (and two more species from unrelated mammalian 

lineages; Figure 7.;7A). The model’s prediction for the human sequence mainly relies on one 

MEIS and three SOX motifs (Figure 7.;7B), which overall also show higher sequence 
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conservation across old-world monkeys compared to their flanking regions (Figure 7.;7C), 

suggesting that they are indeed important for the conserved activity of this CRE. 

Figure =.@=: The evolution of CRE activity around PIEZOA in the human lineage. (A) Prediction 
scores for NMF: (early progenitors) for sequences orthologous to human CREs around PIEZOC across 
::J mammalian species. The tree summarizes phylogenetic relationships between the species, different 
primate taxa are highlighted. Gray rectangles mark species where no orthologous sequence could be 
identified. (B) DeepExplainer and in silico mutagenesis profiles for the three human CREs from A. Colored 
rectangles highlight known TF motifs recognized as important by the deep learning model. (C) Multiple 
sequence alignments for regions corresponding to TF motifs recognized by the model across selected 
primate species. The alignment for hg=Q_chr!Q:!!,=U@,J:J-!!,=UG,@:J also includes the ancestral sequence 
of L!M! repeats. The identification of CRE orthologs across mammals and the multiple sequence alignments 
were performed by Tetsuya Yamada, under my supervision. 

More surprisingly, despite its sequence being found in more than CWW mammalian species, 

hgB[_chrC[:CC,D^[,BWW-CC,D^[,[WW is only predicted to be accessible in early cerebellar 

progenitors in human and two Xenarthra species (Figure 7.;7A). In this case, the model 

recognized two strong SOX motifs in the CRE sequence (Figure 7.;7B), one of which has been 

created by a single nucleotide substitution (T®G) that occurred after the split between the 

human and chimp lineage (Figure 7.;7C). The presence of this CRE sequence in the genome of 

most placental mammals suggests that it could have been serving a conserved role in a different 

organ and developmental stage before eventually becoming repurposed to also gain accessibility 

in human early cerebellar progenitors through this single nucleotide mutation. In support of 

this hypothesis, this CRE has been previously identified by the ENCODE project 
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(EHB[EC\WW^WZ, source: https://screen.encodeproject.org/) and is highly accessible during 

human embryonic development in the retina and spinal cord. 

Finally, the most distal of the three CREs (hgB[_chrC[:CC,BWF,\D\-CC,BW^,FD\; C^^ kb upstream 

from the PIEZO8 TSS) has a very different evolutionary history. The sequence emerged from the 

insertion of a transposable element, LCMC, and can only be detected in four out of five extant 

great ape species (missing entirely from the bonobo genome; Figure 7.;7A). Despite the CRE 

sequence only being present in four species, the model predicts high accessibility in early 

cerebellar progenitors in all four of them (Figure 7.;7A). Notably, sites corresponding to TF 

motifs that are considered important by the model have diverged considerably from the 

ancestral LCMC sequence, but show no additional differences between the four great apes 

(Figure 7.;7B-C). Thus, this CRE seems to have arisen through the exaptation of a TE sequence 

in the ancestor of all great apes, and has since been selectively preserved during evolution. 

Collectively, these proof-of-principle analyses provide a framework for the identification of 

genes with radical changes in their expression during mammalian evolution, and the 

subsequent investigation of adjacent CREs that could be associated with these changes. Future 

directions for improving and expanding these analyses are discussed in section F.^. More 

generally, the last three sections of this chapter established that deep learning models can be 

used to study the sequence basis of CRE activity, that the sequence rules determining cell type-

specific CRE activity are largely conserved between mammals, and that deep learning models 

can serve as powerful tools to study the evolution of non-coding regulatory sequences. 

 

  



Discussion 

 
 

\Y 

B. Discussion 

During my dissertation work I explored the contributions of non-coding genomic elements to 

the development and evolution of mammalian organs. I focused on two major classes of non-

coding elements, lncRNAs and CREs. Even though analyzed separately, based on different 

methods and at different levels of resolution (e.g., organs versus cell types), I identified many 

features that are shared between these two sets of non-coding elements. These extend to their 

context-specificity, developmental dynamics and evolutionary histories. 

:.! Context-specificity of non-coding elements 

Both lncRNAs (<?, <@) and CREs (::) are known to show more specific activity compared to 

protein-coding genes, something also supported by my findings. Most lncRNAs show dynamic 

expression in a single organ, whereas my analyses of CREs in the mouse cerebellum revealed 

that most of them are active in a single cell type and in a restricted developmental window. 

Although my work did not examine whether the specificity of lncRNAs also extends to the level 

of cell types, other studies suggest that this is indeed the case (;7). 

This high cell type- and time-specificity adds to the notion that complex gene expression 

patterns are shaped by modular contributions from multiple context-specific non-coding 

elements (9;, 9?). Indeed, my analyses showed that genes with important developmental roles, 

such as transcription factors and components of signaling pathways, are associated with large 

numbers of lncRNAs and CREs. Such genes have long been known to be flanked by large 

intergenic regions, being embedded in “gene deserts” (8;A). Thus, it has been debated whether 

the large number of non-coding elements around these genes might be a mere consequence of 

their large intergenic space (898). However, my analyses showed that many of the lncRNAs and 

CREs adjacent to developmental genes show at least partially overlapping spatiotemporal 

activity patterns, supporting the possibility of bona fide regulatory interactions between them. 

Thus, the large intergenic space surrounding developmental genes is likely an important feature 

of their complex regulatory landscapes. 

The high context specificity of non-coding elements suggests that profiling their spatiotemporal 

activities can have important implications for the diagnosis and treatment of human disease. 

Thousands of lncRNAs have been shown to be specifically expressed in the context of disease, 

most notably in cancer (8?B). Even if these transcripts play no role in disease progression, they 

can serve as biomarkers allowing earlier diagnosis (8?7). Specific signatures of lncRNA 
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expression have also been used to stratify cancer subtypes and to predict survival in patients 

with cancer (8?8) or heart failure (8?9). More recently, a population-scale transcriptomic 

analysis linked [WW lncRNAs to disease-associated polymorphisms that could not be explained 

by neighboring protein-coding genes (8?<). Such analyses are more likely to reveal lncRNAs 

with causal associations with disease, paving the way for the development of therapeutic 

compounds that directly target lncRNA transcripts, such as antisense oligonucleotides and 

duplex RNAs (8?:). Given the specificity of lncRNA expression, such strategies are expected to 

have more limited side-effects compared to approaches targeting broadly-expressed protein-

coding genes, even without using organ-specific delivery systems. 

Cell type-specific CREs are also important in the context of human disease. Rare mutations in 

enhancer sequences (7<9, 8?;) or structural variants leading to aberrant gene activation (8??) 

have been linked to a series of diseases, collectively referred to as enhanceropathies (7<<). In 

such cases, targeted genome editing of the affected enhancer can be considered as a treatment 

option (7<<). For complex diseases, such as metabolic or neurodegenerative disorders, the vast 

majority of trait-linked genomic variants lies in non-coding regions and is significantly enriched 

for CRE annotations (7<<). Although the effect size of each individual variant is too small to 

warrant genome editing-based treatments, jointly considering all variants can help estimate the 

overall disease risk for an individual based on a personalized polygenic risk score (7<<). 

Additionally, incorporating information about the spatiotemporal activity of CREs overlapping 

these variants can offer valuable insights regarding the — often still unknown — molecular and 

cellular basis of different diseases (e.g., the recently discovered association between microglia 

and Alzheimer’s disease), guiding the development of future treatment strategies (7<<, 8?@–

8@B). Finally, the cell type-specific activity of CREs is increasingly being harnessed for the 

targeted delivery of gene therapy products (8@7). Combining the transgene with context-specific 

CREs can ensure its targeted expression in the cell type of interest, minimizing off-target effects 

(8@7–8@9). Taken together, a precise description of the spatiotemporal activities of non-coding 

genomic elements is of great value for diagnosing, understanding, and treating human disease. 

Although most mammalian lncRNAs and CREs are context-specific, my analyses also identified 

sizeable sets showing pleiotropic activity (i.e., shared between cell types, organs and 

developmental stages). This adds to a growing appreciation of the potential of some CREs to act 

across a diverse set of cell types and developmental stages (7<A, 88A, 8:<). Such pleiotropic 

elements tend to be active in early organ development, when the molecular profiles of different 
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organs and cell types are overall more similar to each other. Furthermore, for both lncRNAs and 

CREs, pleiotropic activity is associated with stronger evolutionary conservation. 

In the context of CREs, there are several non-mutually exclusive hypotheses for this association 

between pleiotropy and increased sequence conservation (8:<, 8@<). If the activity of pleiotropic 

CREs in different conditions depends on different TFs, these CREs are expected to contain more 

TF binding sites than context-specific CREs, leading to a higher fraction of their sequence being 

under constraint (8:<, 8@<). In support of this model, a subset of mutations introduced into 

mouse developmental enhancers with nearly perfect sequence conservation across vertebrates 

abolished their activity in ECF but not in ECC embryos (8@:), suggesting that activity over multiple 

developmental stages is encoded in different parts of their sequences. Alternatively, some 

pleiotropic CREs may reuse the same motifs across contexts, for example because they are 

identified by different TFs with similar sequence specificities or by the same broadly expressed 

TF (8:<, 8@<). Even in this case, several studies reported that pleiotropic enhancers overall 

contain more TF motifs than context-specific ones, which would also lead to an increase in the 

constrained sequence space (8:<, 8@;). In support of this hypothesis, the systematic dissection 

of a developmental fly enhancer revealed that almost every mutation led to some change in the 

expression of its target gene, often affecting it in multiple ways, suggesting that pleiotropic 

information can be encoded in the same sequence motif (8@?).  

Both of the aforementioned models mainly explain the higher evolutionary conservation of 

pleiotropic enhancers through a more complex regulatory architecture, which leads to an 

expansion of the constrained space without increasing the maximum level of constraint 

observed throughout the sequence. However, even when comparing a pleiotropic and a context-

specific CRE with identical TF motifs arranged in the same way, one would expect the 

pleiotropic CRE to be under stronger constraint. In this case, the fraction of constrained 

nucleotides would be the same between the two CRE sequences. However, since the pleiotropic 

CRE is used in multiple contexts, loss of its activity would be associated with a higher fitness 

cost compared to the more specific CRE. Thus, the degree of constraint at any individual 

nucleotide affecting regulatory activity is expected to be higher for the pleiotropic CRE. This 

hypothesis is supported by the association between pleiotropy and evolutionary conservation 

previously observed for protein-coding genes (7?8). Even though the entire coding region of 

every protein-coding gene is under some level of constraint (with the exception of synonymous 

changes), this constraint is significantly higher for pleiotropic genes compared to those with 

organ-specific expression (7?9). With future studies dissecting the grammar of more regulatory 
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sequences, either by mutational scanning (8@:, 8@?, 8@@) or through the in silico identification 

of major sequence features (7B7, 8@A), it should soon be possible to assess the relative 

contributions of these different models to the increased evolutionary conservation of pleiotropic 

CREs. 

:.2 Periods of greater developmental change 

The analysis of dense temporal time series across organs and cell types also allowed me to assess 

the degree of change in the activity of non-coding elements during development. Previous 

analyses of protein-coding gene expression revealed that specific periods of organ development 

are marked by the extensive rewiring of gene expression programs (7?8). The first period occurs 

early in embryonic development (e.g., ECC-ECD in mouse) with the activation of organ-specific 

developmental programs (7?8). The second one, occurring around or shortly after birth (e.g., 

PB-PCF in mouse) is marked by the expression of genes involved in organ specific functions (e.g., 

synaptic genes in the brain and metabolic enzymes in the liver) (7?8). My analyses of lncRNA 

expression showed a similar pattern to that observed for protein-coding genes. When analyzing 

the developmental dynamics of CRE activity within cerebellar cell types, I also identified strong 

temporal changes in chromatin accessibility that occur in specific periods of development. For 

example, focusing on granule cell progenitors, I observed that prenatal (ECB-PW) populations 

overall looked very similar to each other but showed significant differences from early postnatal 

populations (PF-PZ). These observations suggest that at least part of the developmental rewiring 

observed at the whole-organ level is not due to changes in the cellular composition of the organ, 

but rather because of temporal changes in the molecular profiles of defined cell types. 

More intriguingly, some of these temporal changes appear to be shared between different cell 

types. For example, my analyses of embryonic cerebellar progenitor cells revealed concordant 

shifts in CRE activity that are shared across all germinal zones. This suggests that the generation 

of a diverse set of cell types during early cerebellar development is achieved by a combination 

of spatial and temporal signals, supporting a model of cell fate induction through common 

temporal cues. Such cues could include extrinsic signals, such as factors secreted from the 

choroid plexus (8B:), or intrinsic shifts in the activity of transcriptional regulators. The latter 

model is supported by the recent discovery of a temporal code that is shared across multiple 

regions of the central nervous system (8::). NFI transcription factors feature prominently in 

this temporal patterning system (8::). Notably, NFI motifs are enriched amongst CREs with 

increasing accessibility in late development in both multipotent cerebellar progenitors and in 

fate-committed granule cell progenitors. Another temporal regulator highlighted by my 
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analyses was Lin8@a, which shows a sharp decrease in early stages of cerebellar development. A 

recent whole-embryo scRNA-seq atlas of human organogenesis revealed that LIN8@A is highly 

expressed in progenitor cells across multiple organs and that its expression is rapidly 

downregulated around the same developmental period (CSC^-CY in human, ECC in mouse) in \Y% 

of the profiled cell types (8AB). Furthermore, the same study showed that this temporal 

expression pattern has been conserved throughout vertebrate evolution (8AB). These recent 

studies highlight the importance of previously unappreciated cell type-shared temporal changes 

during development. With current studies having profiled only a limited subset of all major 

developmental stages across all organs, there might be more such temporally-regulated genes 

waiting to be discovered. 

:.6 Evolutionary turnover of non-coding elements 

Both lncRNA (<?–<A, ??) and CRE (<;, 77?, 78B) sequences are known to diverge much faster 

during evolution compared to protein-coding genes, a notion also supported by my analyses. 

However, perhaps unintuitively, I also showed that a considerable fraction of those non-coding 

elements that can be detected in multiple mammalian species retain similar spatiotemporal 

activity patterns. In the case of lncRNAs, transcripts with dynamic expression in both human 

and mouse show comparable conservation of their expression profiles to that observed for 

protein-coding genes. In the context of CREs, corresponding cell types between mouse and 

opossum show the highest similarity in the chromatin accessibility profiles of orthologous 

intergenic CREs. Perhaps the rapid evolutionary turnover of the sequences of these non-coding 

elements also hides the explanation for the comparably slower change in their spatiotemporal 

activity patterns. Given how easy it is for a new non-coding element to emerge from previously 

inactive DNA, the need for repurposing of old genomic regions is relatively limited, and likely 

reserved for pleiotropic elements that contain more dense and complex sequence motifs (see 

F.C). Nevertheless, there is also ample evidence that such repurposing does eventually occur 

during evolution (78B). This is also consistent with my analyses, in which two of the three CREs 

I investigated around PIEZO8 are predicted to be accessible in cerebellar progenitors only 

within a subset of species in which their sequence can be detected (see B.F.Y). The most likely 

explanation for this observation is that the ancestral CRE sequence was or still is active in a 

different cell type and developmental stage, and has been repurposed to (also) be accessible in 

cerebellar progenitors in the primate/human lineages. 

In contrast to the fast turnover of individual CRE sequences, my analyses showed that the 

sequence rules underlying cell type-specific CRE activity are overall conserved across mammals, 
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at least in the context of the cerebellum. This was highlighted by both the similar TF motif 

enrichments observed amongst human and mouse CREs with matching patterns of 

spatiotemporal activity, and by the similar performance of human and mouse deep learning 

models in predicting CRE accessibility patterns for either human or mouse sequences. Taken 

together, these findings support a model of CRE evolution in which the main TFs are conserved 

across species, dictating the same sequence requirements for CRE activity in corresponding cell 

types. Since these requirements typically involve short motifs, such sequences can easily be 

created de novo, in sharp contrast to how most protein-coding sequences emerge (7:). The ease 

in generating new cell type-specific enhancers was recently demonstrated in yeast (8A7) and fly 

(8@A), where only ̂ -C^ mutations were enough to transform a previously inactive DNA sequence 

to a highly active regulatory element. The ability to quickly generate new CREs relaxes the 

constraint on individual elements, allowing for the rapid gain and subsequent loss of CREs with 

similar sequence properties. Thus, it has been suggested that selection mainly constraints the 

overall regulatory input around a gene rather than individual TF binding sites and CREs (77?, 

78<). Finally, the rapid incorporation of new CREs into existing gene regulatory networks limits 

the need for repurposing old CREs, leading to a relatively high conservation of spatiotemporal 

activities amongst (the few remaining) orthologous regulatory elements. Possible exceptions 

include CREs that are active in multiple cell types, which have higher sequence complexity and 

are thus more difficult to create de novo. In support of this, pleiotropic CREs are overall more 

likely to be preserved in mammalian genomes during evolution, as discussed above (F.C). 

Despite the overall fast evolution of non-coding sequences, there are differences in constraint 

between organs, cell types and developmental stages, reflecting potential differences in selective 

pressures. For lncRNAs, I observed a decrease in evolutionary conservation during the 

development of all assayed organs. Similarly, focusing on chromatin accessibility of CREs in the 

mouse cerebellum I showed that intergenic CREs active in earlier developmental stages are 

more conserved than those active in later development. The single-cell resolution of my 

chromatin accessibility data further allowed me to identify that this developmental decrease in 

conservation was shared across all cerebellar cell types, suggesting that the whole-organ 

patterns are mostly explained by changes within cell types rather than by differences in cell type 

abundances. In both cases, my analyses showed that this developmental decrease in 

evolutionary conservation is associated with a parallel decrease in the fraction of pleiotropic 

CREs, which are more conserved (see section F.C). Comparing constraint across different organs, 

nervous tissues show the highest conservation for both lncRNAs and CREs, in line with previous 

observations for protein-coding genes (7;A, 7?8). On the other end, organs and cell types 
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associated with increased levels of evolutionary innovation, such as the liver, the gonads and 

immune cell types are marked by faster diverging non-coding elements. These observations 

suggest that differences in constraint that are associated with cell type- and organ-specific 

functions shape the non-coding genome in similar ways as for protein-coding gene sequences. 

:.: Non-coding elements and evolutionary innovation 

Associating individual non-coding elements with evolutionary innovation is considerably more 

challenging than identifying conserved elements. The rapid evolutionary turnover of CREs, in 

particular in cases where the gain of a new element compensates for the loss of an old one, 

suggests that most CRE changes are effectively neutral in regard to gene expression. Even when 

focusing on genes that have changed their expression during evolution, identifying the 

associated CREs can be challenging because they might be thousands of base pairs away. 

Furthermore, our incomplete understanding of how non-coding sequences relate to their 

functions prohibits the use of methods commonly employed to identify positive selection in 

protein-coding sequences (8A8). Previous sequence-based approaches to identify non-coding 

elements associated with evolutionary innovation have focused on the accelerated evolution 

(8A9) or complete loss (8A<) of evolutionarily conserved elements in the human lineage. 

Although many of these elements were indeed later shown to regulate gene expression (8A:–

8A?), such approaches are likely to prioritize changes associated with loss of activity in humans 

and a priori dismiss a very large number of evolutionary young non-coding elements. Other 

approaches aiming to identify promoters with an unusually high number of substitutions (8A@) 

have been met with skepticism due to known biases in overall mutation rates between genomic 

regions and classes of regulatory elements (8AA). Collectively, methods relying on DNA 

sequence alone can only offer limited insights regarding the contributions of non-coding 

elements to evolutionary innovation. 

In this dissertation, I tried to tackle these challenges by incorporating data on the 

spatiotemporal activity of non-coding elements. In the case of the marsupial-specific lncRNA 

FSX, its broad and female-specific expression and localization on the X chromosome provided 

a clear hypothesis regarding its putative function. This allowed me to test this hypothesis with 

targeted analyses and ultimately accumulate substantial evidence to support its involvement in 

marsupial X chromosome inactivation. For CREs, I devised a strategy to enrich for elements 

associated with evolutionary innovation by focusing on genes with divergent expression 

patterns between human and mouse and identifying adjacent CREs with spatiotemporal 

activities matching those of the gene expression change. I further utilized deep learning models 
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to predict CRE accessibility patterns across hundreds of mammalian species in order to better 

understand their evolutionary histories. Finally, by considering the sequence features with high 

importance for the model’s predictions I was able to propose specific sequence changes as 

putatively causal for the observed shifts in CRE activity. Although further refinements will be 

needed (discussed in detail in the next section), this framework offers a new way for 

investigating CREs and their contributions to evolutionary innovation. 

:.= Outlook 

The final sections of this dissertation described a new approach for the identification and 

characterization of CREs that are associated with gene expression changes. However, this work 

was focused on individual cases, mainly intended as proof-of-principle analyses. There are 

several improvements already planned for these analyses, some of which being implemented by 

collaborating lab members at the time of writing. 

@.B.! Incorporation of additional species 

One major limitation of the method I used to identify differentially expressed genes between 

human and mouse is that it only considered these two species. Although I was able to 

confidently detect genes with higher expression in human or mouse for a given cell type and 

developmental window, I was unable to polarize the changes in the absence of an outgroup 

species. Therefore, genes with higher expression in human include both those that gained 

expression in the human lineage and those that lost expression in the mouse lineage. These two 

gene sets are expected to differ markedly with respect to the evolutionary histories and activities 

of their adjacent CREs. In the first case, one would expect an enrichment for evolutionarily 

young CREs in human, whereas in the latter case we expect an increased loss of older CREs that 

were already present in the ancestor of human and mouse. To distinguish between these two 

possibilities, I plan to incorporate a previously generated snRNA-seq atlas of the developing 

cerebellum from the marsupial opossum (7?A), which can provide information about the 

ancestral gene expression profiles and thus allow me to polarize the gene expression changes. 

Additionally, the identified expression differences between human and mouse include all shifts 

that occurred during the last \W million years, ranging from changes shared across all primates 

to those specific to modern humans. To better resolve the timing of these gene expression 

changes, I further plan to incorporate a new dataset describing cerebellum development in the 

common marmoset, a New-World monkey that diverged from human about FW million years 
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ago. This dataset, currently being finalized by Dr. Mari Sepp, will contain paired measurements 

of gene expression and chromatin accessibility from the same cell across more than CWW,WWW 

cells spanning seven stages of cerebellum development. Since the developmental sampling of 

this dataset is sparser compared to human and mouse, I plan to incorporate it in my analyses in 

a targeted way. Thus, I will only update the information on human gains of expression when the 

corresponding cell type and developmental stage was adequately sampled in marmoset. 

Since the marmoset dataset includes single-cell measurements of chromatin accessibility, I plan 

to use this dataset to also evaluate the prediction accuracy of my approach for estimating the 

evolutionary age of CREs based on their predicted accessibility across the entire mammalian 

tree. Even though I previously showed that deep learning models trained on a single species can 

be used to predict accessibility in a different mammalian species, inferring the timing of a gain 

or loss in CRE activity is a more ambitious task, as it aggregates prediction errors from hundreds 

of species. Thus, this dataset will allow me to assess what fraction of CREs that are accessible in 

human but not in mouse, and have high predictions across primate species, are in fact accessible 

in marmoset. Similarly, CREs with high predictions only within great apes or Old-World 

monkeys should overall show low accessibility in the marmoset. Furthermore, the lab has been 

able to obtain a limited number of postnatal cerebellar samples from non-human great apes, 

which might allow us to generate additional smaller datasets to perform similar assessments for 

CREs with more recent gains of accessibility. 

@.B.7 Phylogenetic models based on predicted CRE accessibility 

Besides incorporating new datasets, there are also additional analyses that can be performed 

based on the existing data. The case studies of CREs that I described in this work were based on 

the manual investigation of their predicted accessibility across the mammalian phylogeny. The 

identification of putative TF binding sites and their conservation across primates was also based 

on the inspection of the model’s feature importance and of multiple sequence alignments. 

However, to globally assess the evolutionary history of thousands of CREs, it is important to 

scale up such analyses by automatically extracting the relevant features and sequences for each 

CRE and to incorporate statistical measurements of uncertainty for the reported inferences. To 

this end, Tetsuya Yamada and I are currently working towards obtaining statistical estimates 

for the assignment of CREs to different evolutionary groups, based on the detection of non-

randomly distributed patterns across the phylogenetic tree. Additionally, inspired by recent 

studies (7@@, 9BB), we are exploring the possibility to detect stabilizing and positive selection by 

comparing the difference in predicted accessibility between two species (one of which could be 
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the inferred ancestor) versus an empirical distribution derived from simulated sequences with 

the same amount of nucleotide divergence randomly distributed across the CRE. In such an 

approach, CREs under stabilizing selection are expected to show significantly smaller 

differences in predicted accessibility than randomly placed mutations because the parts of the 

sequence that are important for the CRE activity (i.e., TF motifs) have been protected from 

substitutions during evolution. On the other hand, CREs under positive selection (typically 

detected based on comparisons to an ancestral sequence) will show significantly larger 

differences than the empirical distributions because mutations have accumulated in the parts 

that are important for the high prediction of the sequence in one lineage (e.g., by creating a new 

TF binding site). 

@.B.: The evolution of gene regulatory networks 

Another limitation of the approach I described so far is that it focuses entirely on cis-regulatory 

mechanisms. There is ample evidence to suggest that most evolutionary changes in gene 

expression are due to changes in CREs rather than in the activity of TFs (<;, 77?, 78B, 789, 78<, 

7;?, 9B7) and my analyses of regulatory grammar conservation in cerebellar cell types further 

support this notion. However, these analyses examine the activity of relatively few “cell type-

defining” TFs, which are responsible for the regulation of most CREs accessible in each cell type. 

There are more than C,^WW TFs encoded in the human genome (<9), including at least C^W TFs 

with zinc-finger binding domains that emerged from primate-specific expansions and are thus 

not present in mouse (9B8). Although representing obvious candidates for driving evolutionary 

innovation, their study has been hindered by our limited knowledge of their DNA-binding 

preferences (9B8). Besides lineage-specific TFs, our work on the evolution of gene expression in 

cerebellar cell types revealed [\ TF genes with major expression shifts between human and 

mouse (7?A). While the overall contribution of these species-specific or expression-diverged TFs 

to the global chromatin accessibility landscape of each cell type is likely small, they might 

explain a disproportionate amount of gene expression changes between species. 

To investigate the effect of changes in the trans-regulatory environment on the evolution of 

gene expression, Philipp Schäfer, a master’s student in the Kaessmann lab, has been working 

with me on the inference of cell type-specific gene regulatory networks. Several methods have 

recently been developed to facilitate the linkage of TFs to their candidate target genes via CREs 

that are bound by these TFs and are predicted to regulate the target gene (9B9–9B;). While the 

methods vary in their assumptions and statistical procedures, they all make use of paired 

measurements of gene expression and chromatin accessibility from single-cells. Even though 
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our human and mouse snRNA-seq and snATAC-seq datasets were acquired separately for each 

modality, my analyses demonstrated the feasibility of the in silico integration of the datasets. 

Using these integrated datasets, Philipp Schäfer has been working, under my supervision, 

towards identifying the best performing methods and parameters by evaluating the inferred 

gene regulatory networks based on independent molecular measurements. Specifically, he has 

used TF ChIP-seq data (9B?) to evaluate the ability of the different approaches to link TFs to 

CREs, and chromatin interaction data (77:) to validate inferred CRE-to-gene links. Additionally, 

he has been assessing the quality of TF-to-gene connections by using the gene regulatory 

network to predict changes in gene expression between independent RNA-seq samples that 

were not used for inferring the network, akin to previous approaches (9B<, 9B:). At the moment 

of writing this dissertation, this benchmarking is nearly complete and Mr. Schäfer will soon 

finalize his gene regulatory network inference in human and mouse and proceed to evolutionary 

comparisons between the two species. This will allow us to directly assess the impact of cis 

versus trans regulatory changes on gene expression evolution, most likely validating the higher 

contribution of the former, but also identifying cases where species-specific or expression-

diverged TFs lead to downstream changes in gene expression. These cases can be further 

explored by simulating perturbations in TF expression (e.g., by in silico humanizing TF 

expression patterns in mouse cells) and assessing the impact on downstream gene expression 

states (e.g., observing a potential shift of mouse cells towards higher expression similarity with 

the corresponding human cell type).  

@.B.@ Gene-centric estimates of regulatory input 

In previous sections, I discussed how the rapid evolutionary turnover in CRE sequences, with 

frequent losses of CREs compensated by gains of new CREs with similar sequence features, 

complicates the identification of the relatively few regulatory changes that have a sizeable 

impact on gene expression evolution. It has long been hypothesized that evolutionary shifts in 

gene expression are ultimately driven by changes in the total regulatory input (approximated 

by the number of connections per TF) received by each gene. Thus, gains and losses of CREs 

that lead to the same number of functional TF binding sites around a gene are predicted to be 

effectively neutral whereas those that lead to the emergence of new connections or to the loss 

of old ones are more likely to be associated with changes in gene expression. However, such 

hypotheses have been difficult to test due to the challenges in identifying TF binding sites and 

linking CREs to their target genes. The new computational tools discussed here — in particular 

deep learning models of regulatory grammar that allow for a better inference of putatively 
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functional TF binding sites (7B7, 7B9), and gene regulatory networks that can be used to quantify 

the TF input received by each gene — offer new paths to tackle this challenge. Specifically, I 

anticipate that it will soon be feasible to use our datasets to infer the total input of TF 

connections received for each gene and then test whether genes with significant differences in 

gene expression between human and mouse also show more differences in their regulatory 

input. However, such analyses can be complicated by additional factors affecting gene 

expression, such as the genomic distance between a CRE and its target gene (9B@), quantitative 

differences in TF expression levels leading to differential binding on CREs (9BA), as well as the 

presence of non-linear interactions between CREs (7<;), TFs (8;?) and cofactors (97B). 

@.B.B Experimental validation of computational predictions 

The previous sections describe computational methods to investigate the regulatory basis of 

gene expression changes. However, even the best performing methods are only able to give 

predictions, which need to be validated experimentally. Furthermore, all my analyses of CREs 

are based on measurements of chromatin accessibility, serving as a proxy for regulatory activity. 

Despite being one of the most widely used methods to enrich for CREs, it is important to 

consider that not all accessible regions correspond to CREs. Moreover, changes in chromatin 

accessibility might differ in their temporal dynamics compared to changes in CRE activity. 

Additionally, while the assignment of CREs to their putative target genes based on matching 

spatiotemporal activities is a reasonable approach to enrich for functionally relevant 

interactions, it can also lead to false assignments, especially when multiple genes in the same 

region show similar expression patterns. Finally, while improving on previously available 

methods, deep learning models can make erroneous predictions regarding the accessibility of 

CRE sequences and can mistakenly highlight sequence segments that are not actually bound by 

TFs. By focusing on the classification of CRE accessibility patterns, such models may also fail to 

capture features that are globally important for CRE activity but don’t lead to differences in 

accessibility between cell types, such as regions bound by constitutively active TFs or by factors 

modulating quantitative expression levels without altering the context-specificity of the CRE. 

Given all these limitations, it is important to validate — at least a subset of — these 

computational predictions based on independent functional assays. 

The most widely used method to assess the ability of DNA sequences to activate gene expression 

is through enhancer reporter assays, in which the examined sequence is placed in the proximity 

of a reporter gene transcribed from a minimal promoter (977). In the original low-throughput 

implementation of these methods, reporter gene expression is usually monitored based on 
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visual inspection (e.g., by using luciferase, LacZ staining or fluorescent proteins) (977). By 

combining en masse cloning with barcodes that are unique to each tested element to monitor 

the expression of the reporter gene through RNA-sequencing, massively parallel reporter assays 

(MPRAs) allow the parallel investigation of thousands of putative CREs in a single experiment 

(978). Such methods have been successfully used to study the effect of sequence changes on CRE 

activity in the context of disease-associated variants (979) and during evolution (8A;). Thanks 

to the high conservation of the regulatory grammar of cerebellar cell types across mammals, it 

would be feasible to use mice to test a selection of human CREs, together with their ancestral 

states and their orthologs in other mammalian species. These experiments would allow the 

testing of my computational predictions regarding the impact of individual sequence changes 

on CRE activity. 

A major limitation of enhancer reporter assays is that they typically test CRE activity outside of 

their native genomic context (typically in episomal vectors or through lentiviral integration into 

“safe-harbor” genomic loci) (978). Thus, they can only test the ability of CREs to “generally” 

activate transcription in a cell type of interest, without considering the effect of the local 

genomic and chromatin context or of potential specificities in enhancer-promoter interactions. 

An alternative approach that can address these caveats is to directly modify the endogenous 

DNA through the CRISPR/Cas\ system, for example by “humanizing” mice for a set of CREs 

(97<). For CRE sequences that are already present in mouse, this could involve the introduction 

of mutations to model the orthologous sequences in human, other primates or to reconstruct 

intermediate ancestral states (8@@). Alternatively, CREs specific to the human lineage can be 

inserted into their syntenic position in mouse. Profiling of chromatin accessibility and gene 

expression in these transgenic mice can subsequently assess the effects of these mutations on 

the accessibility of the CRE and on the expression of its putative target gene. Thus, despite being 

more limited in throughput, this approach can be more informative by simultaneously testing 

multiple aspects of my computational predictions, such as the effect of sequence changes on 

CRE activity and the association of that CRE with the correct target gene. 

Collectively, while the computational analyses presented in the last sections of my dissertation 

are likely to enrich for CREs that have contributed to the evolution of human-specific biology, 

it is important to functionally investigate at least a subset of these CREs based on independent 

methods. This will provide more reliable estimates for the accuracy of my computational 

predictions and will also reveal individual high-confidence cases that can be investigated further 

(for example by assessing the effect of validated CRE changes on cerebellar morphology and 
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physiology). Owing to the rapid development of both computational and experimental 

methods, studies of mammalian evolution that would have been considered unfeasible less than 

a decade ago, are now within our grasp.  
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D. Methods 

=.! Analysis of lncRNA expression in mammalian organ development 

LncRNA annotation and expression quantification – These steps were performed by Dr. Ray 

Marin and are described in detail in Sarropoulos et al. 8B7A (889). In brief, Dr. Marin used 

stringtie (C.D.B) (97:) to assemble transcripts based on RNA-seq data for each sample (species, 

organ and developmental stage). He then merged transcripts into a single assembly per species 

using Cufflinks (D.D.C) (97;). He removed all genes overlapping coding genes or showing 

evidence for coding potential, which was estimated by three different methods, CPAT (C.D) (97?), 

RNAcode (W.B) (97@) and similarity to known proteins, as determined by blastx (D.F.W)(97A). 

Orthologous lncRNA families were determined by identifying signficant sequence similarity 

between lncRNA annotations of different species based on blastn (D.F.W) (97A). OrthoMCL (D.W) 

(98B) was used to cluster reciprocal best hits into lncRNA families.  

To evaluate this approach, I considered the conservation of synteny across species. To this end, 

for each lncRNA, I identified the closest upstream and downstream protein-coding gene using 

bedtools (D.D^) (987) and estimated the fraction of lncRNAs that had at least one conserved 

neighbor in the same orientation. Additionally, for each age class, I estimated the fraction of 

species in the dataset in which a lncRNA could be identified and compared this to previous 

studies (??). Gene expression counts were generated based on uniquely mapped reads using 

HTSeq (W.Y.C) (988) and were subsequently normalized for different analyses into counts per 

million (CPM), reads per kilobase of transcript per million mapped reads (RPKM), or variance 

stabilized counts (VST) as implemented in DESeqD (C.CD.F) (989). Tissue and time-specificity 

indexes were calculated based on the Tau statistic, as previously described (98<). 

Developmentally dynamic protein-coding genes and lncRNAs were identified for each organ 

using masigPro (88;) on CPM-normalized counts and requiring a goodness-of-fit (R!) value 

greater than W.B. 

Genomic classification and comparison to other datasets – To compare lncRNA 

annotations with other datasets (e.g., transcribed enhancers (88A), pcRNAs (899)), I used 

bedtools intersect (D.D^) (987) on exonic coordinates in a strand-specific manner. To classify 

lncRNAs based on their genomic context, I used FEELnc (C.W) (98:) to compare them to Ensembl 

protein-coding gene annotations with a maximum window extension of CWW kb. LncRNAs 

located more than CWW kb away from the nearest protein-coding gene were labelled as “isolated 
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intergenic”. The set of experimentally validated lncRNAs was acquired from lncRNAdb (D.W) 

(89B). To integrate with the CRISPRi screen, I intersected the primary TSS from the screen 

library (extended by ^WW bp to each side) with the first exon of each lncRNA in my annotation. 

Expression-matched sets of dynamic and non-dynamic lncRNAs – To control for the effect 

of differences in maximum expression levels between dynamic and non-dynamic lncRNAs, I 

generated two sets of expression-matched transcripts. For the first set, for each dynamic 

lncRNA, I identified the non-dynamic lncRNA with the most similar maximum expression level. 

After eliminating redundancies, I was able to obtain around B,WWW transcripts from each set 

with nearly identical distributions of maximum expression. To assess the enrichment of lowly 

expressed dynamic lncRNAs for functionally relevant features, I generated a second set focused 

on Z\[ dynamic lncRNAs with maximum expression values in the range of W.D^-W.Z^ RPRKM. 

As for the first set, for each of these lncRNAs, I identified the non-dynamic lncRNA with the 

most similar maximum expression value. 

Conservation of lncRNA expression – I estimated expression similarity across species by 

calculating the Spearman’s correlation coefficient between the expression profiles of 

orthologous lncRNAs across corresponding organs and developmental stages. To assess the 

effect of evolutionary age on expression constraint, I stratified mouse lncRNAs conserved in rat 

based on their predicted age and compared the distribution of correlation coefficients between 

the expression profiles of mouse and rat orthologs. To compare the degree of lncRNA 

conservation across organs and developmental stages, I estimated the fraction of conserved 

(older than [W million years) lncRNAs expressed (RPKM > C) in each sample. Additionally, for 

each pair of corresponding samples (organ and developmental stage) between human and 

mouse, I estimated Spearman’s correlations in the expression ranks of all lncRNA orthologs of 

a given set (e.g., developmentally dynamic in both species). 

Regulatory complexity of lncRNAs – I estimated the regulatory complexity of different 

lncRNA classes based on the number of distinct TFs binding on each lncRNA promoter (defined 

as -D,WWW/+C,WWW bp from the first exon of the longest isoform). TF binding sites were identified 

based on publicly available ChIP-seq experiments and were retrieved from GTRD (88?). I also 

estimated TF binding in a set of random non-repetitive intergenic regions of matched length 

(B,WWW bp), which I used as a negative control. To assess the relevance of the increased 

regulatory complexity of dynamic lncRNA promoters in the context of mammalian organ 

development, for each TF and set of lncRNAs dynamic in each organ, I estimated the fraction 

of promoters that overlap the binding sites of the TF (termed “TF binding frequency”). I then 
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identified TFs with highly variable binding frequency across organs and compared their binding 

patterns to their expression profiles. 

Developmental expression of lncRNAs – I identified lncRNAs and protein-coding genes with 

significant expression across adjacent developmental stages using DESeqD (C.CD.F) (989) 

requiring an absolute log( fold-change ³ W.^ and an adjusted P-value < W.W^. To co-cluster 

lncRNAs and protein-coding genes, I selected dynamic transcripts for each organ and used their 

VST counts (median across replicates) as input for GPClust, a method to cluster time-series data 

based on Gaussian processes (98;–98@). I used a noise variance parameter (kD.variance.fix) of 

C.W for mouse and C.^ for human and otherwise default settings. Gene ontology enrichments for 

each cluster were identified using WebGestaltR (W.C.C) (98A). 

Co-expression with adjacent coding genes – I used bedtools closest (D.D^) (987) to assign each 

lncRNA to its nearest protein-coding gene (lncRNA-mRNA), then used the latter’s closest 

protein-coding gene as a control (mRNA-mRNA). For each lncRNA-mRNA and mRNA-mRNA 

pair, I estimated Pearson’s correlation coefficients between their expression profiles (median 

VST counts across biological replicates) across all organs and developmental stages, except for 

sexually mature testis samples. To assess the global extent of lncRNA-mRNA co-expression I 

compared the distribution of correlation coefficients to those of the mRNA-mRNA controls 

across the entire dataset and within specific distance ranges. To identify significantly co-

expressed lncRNA-mRNA genes, I compared their correlation coefficients to those of the 

mRNA-mRNA control (applying the Fisher Z-transformation and using the function paired.r() 

from the R package psych (C.[.F) to obtain P-values). Additionally, I required correlation 

coefficients to be greater than W.Z^. This value was determined based on comparisons of 

paralogous protein-coding gene pairs, which I found to retain significantly higher expression 

similarity than non-related adjacent mRNA-mRNA pairs. 

=.2 X-chromosome inactivation in opossum 

Screening for female-specific lncRNAs on the opossum X chromosome – To search for 

female-specific genes on the opossum X chromosome I examined sex-bias expression scores 

that were developed by Svetlana Ovchinnikova and Leticia Rodríguez-Montes (Rodríguez-

Montes et al. in prep). Briefly, these scores were calculated separately for each organ and 

estimate the extent of sex-biased expression of a gene within that organ by comparing 

smoothened developmental expression profiles between male and female samples. This score 

considers both the mean and maximum difference between sexes along the developmental 
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trajectory, thus prioritizing genes with broader sex-bias during development. Positive and 

negative scores indicate male- and female-specific expression, respectively. To additionally filter 

for genes with consistent sex-biased expression across multiple organs, I calculated the mean 

sex-bias score across all somatic organs in the dataset. I used the R package karyoploteR (99B) 

to visualize the genomic positions of all female-specific genes on the opossum chromosome X. 

Gene densities for the karyotype plot were estimated separately for lncRNAs and protein-coding 

genes using the function kpPlotDensity() with a window size of CWW kb. 

Onset of female-specific expression – To investigate the expression of FSX at the onset of 

marsupial X chromosome inactivation, I used a previously published scRNA-seq dataset, which 

is based on full-length RNA sequencing (SMART-Seq v.F), with each cell sequenced as a separate 

library (8<7). Since FSX was not included in the genome annotation used in that study, I 

retrieved raw sequencing data and cell type annotations (sex, developmental stage) from 

ArrayExpress (E-MTAB-Z^C^) and aligned the RNA-seq data to the opossum genome 

(monDom^) using STAR (D.Z.Ca) (997). For each cell, I used featureCounts (998) to count reads 

in genes based on my extended annotation of the opossum transcriptome (889). Only exonic 

reads (-t exon) with a minimum mapping quality of FW (-Q FW) were counted in a strand-specific 

manner (-s C). Counts for each cell were combined in a gene-by-cell matrix and normalized for 

gene length and sequencing depth by calculating RPKM values. I then summarized expression 

profiles of sex-biased genes in single cells by developmental stage and sex to identify the onset 

of female-specific expression for RSX and FSX.  

Sequence features of RSX and FSX – Sequence similarity between RSX and FSX, as well as 

within their own sequences to facilitate the detection of sequence repetitions, was visualized 

using EMBOSS Dotmatcher (999) with a window of CW bp and a similarity cutoff of ^W. To 

estimate the fraction of each lncRNA transcript covered by simple repeats, I first collapsed all 

exons from each gene into a consensus metagene model which covered all exonic regions found 

across all isoforms. I retrieved the “Simple repeat” track for the opossum genome from the UCSC 

table browser and used bedtools (D.D\) (987) to intersect it with the merged exonic regions of 

opossum lncRNAs. I then divided, for each lncRNA, the length of the overlap with repeats by 

the total length of the merged exonic regions. To identify overrepresented sequence motifs for 

RSX and FSX, I used MEME (Multiple EM for motif elicitation) on the sequence of the merged 

exonic regions of each lncRNA with a maximum motif width of ^W bp and a minimum of CW 

occurrences per motif (99<). 
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Evolutionary conservation of RSX and FSX sequence and expression – To assess the 

conservation of opossum lncRNA sequences in other mammalian genomes, I first extracted the 

DNA sequences corresponding to the merged exonic regions across all isoforms of each lncRNA. 

I excluded regions overlapping with protein-coding gene exons (in any orientation) and used 

blastn (97A) to search for sequence similarity to other genomes, after applying soft-masking for 

repeats. Significant alignments were required to be at least ^W bp long, show at least CW% of 

sequence identity and have an E-value smaller than CW-%. The relative conservation of RSX and 

FSX transcript segments across mammalian genomes was visualized using the R package Gviz 

(99:).  

I also used Gviz (99:) to visualize the genomic neighborhood around the regions with significant 

similarity to RSX and FSX in other marsupial genomes. To filter out smaller spurious alignments, 

I determined, for each species, the segment with the highest alignment score (bitscore) and only 

visualized alignments within ^WW kb (RSX) and CWW kb (FSX) of that segment. I used a smaller 

window for FSX due to the higher gene density in that region compared to the RSX locus. To 

aid comparisons across species, I maintained a consistent orientation by reversing the entire 

genomic region for alignments to the opposite strand compared to the opossum genome.  

To assess the female-specific expression of RSX and FSX in koala, I downloaded raw sequencing 

data from a previous study (8<9), aligned them to the koala genome (phaCin_unsw_vF.C) and 

used featureCounts (998) to quantify reads in gene exons annotated in the NCBI annotation, 

and separately in regions with significant sequence similarity to the RSX and FSX opossum 

exonic sequences. I then used the counts in the NCBI annotation to determine the sequencing 

depth of each library, which I used for RPKM normalization of the RSX- and FSX-aligned regions 

across samples from different individuals and tissues. 

=.6 Chromatin accessibility dynamics in mouse cerebellum development 

Data processing, clustering and cell type annotation – Raw sequencing data were converted 

to tabular fragment files using celllranger atac (C.C.W) (;;). Quality control, doublet removal and 

inference of gene scores was performed using ArchR (W.\) (8<:) as described in detail in 

Sarropoulos et al. 8B87 (8<<). For dimensionality reduction, I used an iterative latent semantic 

indexing (LSI) procedure with gradually increasing clustering resolution (W.C, W.D, W.F, W.[) to 

project the data into CWW dimensions. I then performed Louvain clustering on these components 

(resolution C.^), identifying a total of FZ clusters. Clusters that could be confidently matched to 

a single cell type and state were annotated as such, whereas the rest were subjected to 
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subclustering analyses, as described in detail in Sarropoulos et al. 8B87 (8<<). In total, this 

approach allowed the confident annotation of \Z% of cells in the mouse dataset. 

Integration with scRNA-seq data – I integrated the mouse snATAC-seq dataset with a scRNA-

seq study profiling the development of the mouse hindbrain and cerebellum (87B) using 

canonical correlation analysis (CCA) between gene expression (scRNA-seq) and gene scores 

(snATAC-seq) as implemented in Seurat (B.C) (8<A). To improve the computational efficiency 

and accuracy of the integration procedure, I reanalyzed the scRNA-seq and snATAC-seq data in 

a stage-wise manner using Seurat (8<A) and ArchR (8<:), respectively. This allowed me to use 

the CCA procedure to only integrate cells from corresponding developmental stages. For each 

stage, the integration was performed based on the B,WWW highly variable genes from the scRNA-

seq dataset, which was used as a query to transfer cell type annotations and to impute gene 

expression estimates to the snATAC-seq dataset, as described in detail in Sarropoulos et al. 8B87 

(8<<). After integration, I estimated the concordance in cell type annotations between the two 

studies based on a Jaccard similarity index for each pair of assigned (ATAC) and predicted (RNA) 

labels. To assess the utility of gene scores as a proxy for gene expression, I estimated, for each 

developmental stage and highly variable gene, Pearson’s correlations between its gene score and 

imputed RNA value. 

Identification of CREs and assignment to target genes – Open chromatin regions, as a proxy 

for putative CREs, were identified in a cluster-specific and replicate-aware manner using ArchR 

(W.\) (8<:), which internally utilizes MACSD (D.C.D) (8:B), as described in detail in Sarropoulos 

et al. 8B87 (8<<). ArchR’s iterative overlap merging procedure was used to collapse the cluster-

specific datasets into a single union peak annotation. To reduce the inclusion of noisy peaks 

from clusters with large numbers of cells or replicates, I also implemented an additional filtering 

step, requiring peaks to be accessible in at least ^% of cells in at least one cluster, resulting to 

the identification of DYC,YFD putative CREs. Putative CREs were annotated in terms of their 

genomic context based on their overlap or proximity to genes from the mmCW UCSC annotation, 

supplemented with the lncRNAs identified in Sarropoulos et al. 8B7A (889). I benchmarked this 

CRE annotation by comparing to other datasets (;8, 7:B, 89A, 8:8), estimating the fraction of 

different element sets recovered in the cerebellum snATAC-seq dataset.  

To associate CREs with their putative target genes, I combined two complementary approaches, 

as described in detail in Sarropoulos et al. 8B87 (8<<). First, I estimated correlations in the 

accessibility of protein-coding gene promoters and distal (intronic and intergenic) CREs within 

a D^W kb window upstream and downstream of the promoter. Since the sparsity of single-cell 
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data can hinder correlation-based analyses, I summarized accessibility profiles over F,W[B 

pseudocells, each aggregated across ^W nearest neighbors in the LSI embedding. The observed 

correlations were compared to a background distribution generated by correlating each 

promoter to CW,WWW random distal CREs from different chromosomes. I then used a lenient 

cutoff (r > W.C^, FDR < FW%) to select pairs that would be considered in the subsequent analysis. 

For this second step, I focused on gene scores, which reflect gene expression more accurately 

than promoter accessibility (8<:). I aggregated gene score and distal CRE accessibility estimates 

across cells from the same cell type and developmental stage, generating CDF “pseudobulks” 

comprised by at least FW cells. After scaling by sequencing depth (CPM) and applying a log-

transformation, I computed the Pearson’s correlation between gene scores and CRE accessibility 

for each gene-CRE pair that passed the first filtering step of promoter co-accessibility. Similar 

to the first step, I generated a background distribution using interchromosomal correlations. 

Using a strict cutoff (r > W.FC, FDR < ^%), and assigning distal CREs that were correlated with 

multiple genes to the one with the maximum correlation, I identified a total of BD,Z\D CRE-gene 

pairs. I evaluated the quality of these assignments by assessing the probability of the CRE and 

gene to be in the same TAD in neuronal progenitors (77:) and by estimating the correlation in 

eRNA and mRNA expression in a series of mouse cerebellar samples (8:8). 

CRE activity across cell types and stages – To summarize the major patterns of CRE activity 

during mouse cerebellum development, I aggregated CRE accessibility profiles across all cells 

from a given cell type and developmental stage, excluding samples from cell type mixtures (e.g., 

nuclear transitory zone) and non-neural cell types (e.g., vascular) and only considering groups 

with at least ^W cells. I scaled the data by sequencing depth (CPM) and then standardized 

accessibility profiles per CRE by scaling by its maximum CPM value across all cell types and 

developmental stages. I then used a two-step clustering procedure inspired by Trevino et al. 

8B8B (99;). First, I used k-means clustering to identify ^W clusters of CRE activity (primary 

clusters). Then, I estimated the average accessibility across cell types and developmental stages 

for each primary cluster and used it for hierarchical clustering (based on correlation distances). 

I then used the clustering dendrogram to iteratively merge the two most similar branches into 

a new cluster and compute a silhouette score for the new clustering. Based on these silhouette 

scores and the overall structure of the hierarchical clustering dendrogram, I determined the 

optimal number of final clusters to be DY. A similar approach was used for the CRE clusters in 

cerebellar progenitors (see below) where the optimal number of clusters was found to be CD. I 

further assessed the membership of each CRE by calculating the Pearson’s correlation between 

its accessibility and the cluster mean. CREs with r > W.^ were considered “confident cluster 
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members” and used for the identification of enriched gene ontology terms (99?) and TF motifs 

(99@). 

Analysis of cerebellar progenitors – The annotation of cerebellar progenitor subtypes was 

based on iterative subclustering and comparison to public databases (8<@), as described in detail 

in Sarropoulos et al. 8B87 (8<<). To assess potential lineage relationships between temporally 

distinct progenitor populations, I identified CREs that are specific to the late progenitor group 

using ArchR’s function getMarkerFeatures(). I then focused on earlier developmental stages and 

estimated, per cell, the fraction of fragments overlapping the CREs that are specific to the late 

progenitor population. Progenitor types with a higher accessibility in the CREs that are specific 

to a given population in a later developmental stage were considered more likely to belong to 

the same lineage.  

To validate the clustering of early progenitor cells by developmental stage, which I first observed 

in a UMAP projection, I aggregated CRE accessibility profiles across progenitor types and 

developmental stages, estimated Spearman’s correlations across progenitor groups and used the 

estimates for hierarchical clustering. I assessed the robustness of the clustering pattern by 

bootstrapping with C,WWW repetitions. To identify the CREs driving the observed clustering 

pattern I repeated the steps described in “CRE activity across cell types and stages” with BW 

primary k-means clusters and CD final clusters based on hierarchical clustering.  

To assess the effect of temporally-variant CREs on gene expression, I first sought to identify 

genes with higher gene score variability across developmental stages compared to across cell 

types. The precise procedure is described in detail in (8<<). In brief, I aggregated gene score 

profiles across cells from the same progenitor type, developmental stage and replicate, and then 

estimated standard deviations after grouping by each of these variables. Temporally-variant 

genes were identified as those with higher standard deviation across developmental stages 

compared to either across progenitor types or replicates. I then used a fuzzy c-means clustering 

algorithm for time-series from the R package Mfuzz (D.F.Y) (99A) to classify temporally-variant 

genes based on their decreasing or increasing activity during development. Next, I examined 

the gene expression profiles of these genes in cerebellar progenitors from different 

developmental stages in a published scRNA-seq dataset (87B), observing a high concordance 

between gene scores and RNA-seq measurements. 

CRE dynamics during differentiation – For these analyses I focused on the three most 

abundant cerebellar neuron types (granule cells, Purkinje cells and GABAergic interneurons). I 
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extracted cells assigned to each cell type and projected them into a new low-dimensional 

embedding using non-iterative LSI, as discussed in detail in Sarropoulos et al. 8B87 (8<<). As 

these embeddings still captured developmental signals that were independent of differentiation 

(e.g., pre- and postnatal granule cell progenitors were separated), I applied an additional 

correction using Harmony (C.W) (8:@). I then used diffusion-based pseudotime (8:A), estimated 

based on a DW-nearest-neighbors graph constructed from the Harmony-corrected embedding, 

as a proxy for gradual differentiation and maturation processes. To specify the root of the 

pseudotime, I selected a random cell belonging to the earliest developmental stage and to a 

cluster with high gene score for genes known to be highly expressed in early precursors of that 

cell type (e.g., Atoh7 in granule cells, Ptf7a in interneurons).  

To identify CREs with dynamic accessibility along pseudotime trajectories, I first divided cells 

for each neuron type into ̂ W bins based on their pseudotime ranks. I then aggregated chromatin 

accessibility profiles across all cells in the same bin and used mutual information between CRE 

accessibility and pseudotime to identify dynamic CREs, as described in detail in Sarropoulos et 

al. 8B87 (8<<). After identifying CREs with dynamic accessibility in each neuron type, I used 

Mfuzz (D.F.Y) (99A) to cluster CREs based on their accessibility patterns. For the PCA, I 

aggregated CRE accessibility profiles across cells from the same neuron type and pseudotime 

bin, applied a variance stabilizing transformation as implemented in DESeqD (C.DY) (989) and 

performed PCA using the R package FactoMineR (9<B). 

=.: Evolutionary conservation of CREs  

Evolutionary conservation metrics per CRE – To assess sequence constraints within each 

mouse CRE, I downloaded phastCons scores for vertebrates and eutherian mammals from the 

UCSC table browser and used a sliding window approach to estimate average phastCons scores 

over CWW bp intervals within each CRE using the UCSC utility bigWigAverageOverBed (9<7). For 

each CRE, I kept the average score of the most conserved CWW bp-window. To assign a minimum 

evolutionary age to each CRE, I assessed its presence or absence in the genomes of CY other 

vertebrate species based on syntenic alignments with the mouse. To this end, I used liftover  

(-minMatch=W.C -multiple -minSizeQ=^W -minSizeT=^W) to identify syntenic regions of mouse 

CREs in each vertebrate species. I then assigned a minimum age to each CRE based on the 

estimated time of divergence between mouse and the most distant species in which I could 

detect an alignment. Finally, I used bedtools intersect (D.D\) (987) to determine overlaps 

between mouse CREs and various repeats annotated in the RepeatMasker track for the mmCW 

genome (9<8). 
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Cell-wise conservation scores – To compare the evolutionary dynamics of CREs across cell 

types and developmental stages, I calculated mean statistics (phastCons score, minimum age, 

repeat fraction) per cell based on all intergenic CREs accessible (i.e., at least one fragment 

detected) in that cell. I focused this analysis on intergenic CREs to minimize biases from the 

overlap or proximity to protein-coding sequences which overall show very high sequence 

constraint. Due to the sparsity of snATAC-seq data, average statistics differ even across cells 

from the same cell type and developmental stage. To summarize estimates across groups of 

cells, I calculated the mean per biological replicate, observing overall much smaller variance 

between replicates than between cell types and developmental stages.  

To compare the contributions of different age groups and repeat elements to the chromatin 

accessibility profiles of different cell types, I estimated the fraction of accessible intergenic CREs 

per cell belonging to each class (i.e., assigned to a specific age group or overlapping a particular 

repeat class). I then summarized these estimates by calculating the mean across all cells from 

the same cell type, developmental stage and biological replicate. To compare the conservation 

of CREs associated with TFs or other genes, I estimated the average constraint (phastCons, 

minimum age) across all intergenic CREs assigned to each protein-coding gene (see 

Identification of CREs and assignment to target genes). I then compared the distributions of 

these estimates between genes annotated as TFs in AnimalTFDB vB (9<9) and all other protein-

coding genes with at least one intergenic CRE assigned to them using two-sided Mann-Whitney 

U tests.  

Effects of development, differentiation and pleiotropy on CRE conservation– I used a 

linear model to assess the relative contributions of differentiation (as inferred by pseudotime) 

and absolute developmental time (i.e., age of the mouse embryo) on the temporal decrease in 

CRE conservation. Both pseudotime and developmental stage were used as predictors of the 

mean CRE constraint (phastCons, minimum age) observed for each cell. The significance of each 

predictor term was estimated using ANOVA tests between the full model and an alternative 

model that excluded that term. To validate the presence of age-related differences in a 

pseudotime-independent manner, I focused on prenatal granule cell progenitors (ECB-PW), 

which clustered together even prior to any correction with Harmony, and are thus very similar 

to each other. I grouped cells from the same stage and biological replicate into pseudobulks and 

aggregated CRE accessibility profiles across them. I then used masigPro (C.^[.W) (88;) with a 

second-degree polynomial on variance-stabilized counts to identify temporally dynamic CREs 

(adjusted P-value < W.W^ and R( > W.Z). I classified these CREs into those with decreasing or 
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increasing accessibility during development based on Mfuzz (D.FY.W) (99A) with k=D and 

compared the sequence constraint between intergenic CREs from the two groups. Differential 

TF motif enrichment between the two groups was performed using Homer (99@).  

To assess the potential impact of these temporal changes in CRE accessibility on gene 

expression, I considered the protein-coding genes that were the closest to each of these CREs 

and examined their expression in granule cell progenitors from different developmental stages 

in a previously published scRNA-seq atlas of mouse cerebellum development (87B). I used 

proximity instead of my previously described correlation-based assignment strategy to avoid 

the circularity of examining the concordance between gene expression and chromatin 

accessibility after filtering for correlations between the two features.  

To assess the impact of CRE pleiotropy on the observed differences in evolutionary constraint 

during differentiation, I stratified CREs with dynamic profiles during granule cell differentiation 

based on their accessibility patterns (determined via clustering, see CRE dynamics during 

differentiation). For each cluster of CRE activity (i.e., accessibility pattern during 

differentiation), I compared constraint estimates between CREs only dynamic in granule cells 

or in at least one more cell type. 

Comparisons of CRE accessibility between mouse and opossum – The opossum snATAC-

seq was processed as described for mouse, with minor modifications detailed in Sarropoulos et 

al. 8B87 (8<<). Following CRE identification, I detected orthologous CRE pairs based on 

reciprocal syntenic alignments between mouse and opossum using liftover (-minMatch=W.C  

-multiple -minSizeQ=^W -minSizeT=^W). Since I used a fixed width of ^WW bp for CRE 

identification, besides reciprocal C:C matches, I also considered C:D matches when the two hits 

were up to ^WW bp from each other, retaining the CRE with the highest overlap. Additional one-

to-many and many-to-many matches were excluded from downstream analyses. To assess the 

overall conservation of chromatin accessibility between corresponding cell types and 

developmental stages, I focused on orthologous CRE pairs that are intergenic in both species. 

For each species, I aggregated accessibility profiles across all cells from the same cell type and 

state, scaled by sequencing depth (CPM) and estimated rank-based Spearman’s correlations 

across mouse and opossum cell types. To estimate the degree of conservation of individual CRE 

pairs, I calculated Pearson’s correlations of their accessibility profiles in mouse and opossum 

across all corresponding cell types and stages. I then compared the distribution of correlation 

coefficients to the same set of CREs with shuffled homology relationships.  
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To compare the degree of CRE activity conservation across cell types and developmental stages, 

I estimated the fraction of mouse CREs accessible per cell that have a CRE ortholog in opossum. 

To additionally compare cell types based on whether CRE activity was conserved in the same 

cell type and stage, I estimated the fraction of mouse CREs accessible per cell that have a CRE 

in the FW,WWW most accessible CREs for the corresponding cell type and stage of that cell in 

opossum. 

=.= Evolutionary innovation in CRE activity 

Cross-species multiomics atlases – To generate multiomic atlases of cerebellum development 

in human and mouse, I applied a uniform processing pipeline to previously published (7?A, 8<<) 

and newly generated data. For snRNA-seq data, I used STARsolo (997) to count reads in exons 

and full-length transcripts, allocating multimapping reads based on an expectation-

maximization algorithm. I identified barcodes corresponding to cells based on Gaussian mixture 

models with two groups on the distribution of full-length UMIs and the fraction of intronic 

reads, taking the intersection of barcodes in the group with the highest distribution for both 

metrics. I used scrublet to remove the CW% of cells with the highest doublet score from each 

sample, as well as cells with more than D.^ times the median number of full-length UMIs in that 

sample. For each sample, I used Seurat (F.W) (8<A) to regress out cell cycle scores (only 

correcting for the difference between S and GDM phases), applied SCTransform and projected 

the data into ^W principal components, which I utilized for low-resolution Louvain clustering 

(W.D). I then used these clusters as input to SoupX (C.^.D) (9<<) to correct the expression of 

transcripts associated with ambient RNA or cellular debris. Contamination estimates appeared 

much higher when considering exonic counts, suggesting that most contaminating transcripts 

are already spliced. Thus, I only corrected exonic counts, and subsequently reconstructed full-

length expression by adding the corrected exonic counts to the uncorrected intronic values. 

Additionally, I limited the correction to genes estimated to contribute more than W.W^% to the 

total contamination to avoid introducing noise in the expression of genes for which the 

background contamination level could not be reliably estimated. I then used the corrected full-

length values to repeat the Seurat analysis described above (cell cycle regression, SCTransform, 

PCA). Next, I integrated samples from the same developmental stage using the Seurat function 

IntegrateData() based on the corrected SCT counts in the B,WWW most highly variable features 

across biological replicates. These stage-wise integrated objects were used for integration with 

the corresponding snATAC-seq samples, as described below.  
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To annotate cells from the newly added snRNA-seq samples in a consistent way to our 

previously published annotation (7?A), I used liger (9<:) to integrate all samples within each 

species. For this, I used a variance threshold of W.C and k=Z^ for mouse and k=CWW for human. I 

then applied a neighbor-voting procedure, coupled with manual curation of clusters with a large 

fraction of unannotated cells, to annotate new cells in the dataset. In this process, previously 

annotated cells overwhelmingly received similar labels to their original ones, establishing the 

reproducibility of our annotation procedure. In the few cases of disagreement, I kept the old 

labels to maintain maximum compatibility with our previous studies. 

For snATAC-seq data, I identified barcodes corresponding to cells based on a similar procedure 

as described for snRNA-seq cells, applying Gaussian mixture models on the number of 

fragments and TSS enrichment score per cell, which I estimated using ArchR (C.W.D) (8<:). 

Additionally, I required barcodes annotated as cells to have a minimum of D,^WW fragments and 

a TSS enrichment score of D.^. I used ArchR (C.W.D) (8<:) to estimate doublet scores and removed 

the top CW% of cells in each sample, or any barcodes with more than D.^ times the median 

number of fragments in that sample. Samples from the same stage were then jointly analyzed 

using ArchR (C.W.D) (8<:), counting accessibility in ^WW bp-wide windows and inferring gene 

scores. Single-cell chromatin profiles were then projected into ^W latent dimensions based on 

an iterative LSI with gradually increasing clustering resolution (W.C, W.D, W.F, W.[). These 

dimensions were then corrected using Harmony (8:@) to facilitate integration between 

biological replicates. 

Integration across modalities was performed separately for each developmental stage using 

Seurat (F.W) CCA (8<A), as described in section ^.B for the mouse snATAC-seq dataset. In 

addition to transferring cell type labels from the snRNA-seq data to the cells profiled with 

snATAC-seq, I also used the integration to impute coordinates for the merged snRNA-seq 

embedding (originally estimated based on liger as described above) for all snATAC-seq cells. 

This allowed me to co-embed the two modalities in the same latent dimensions, which were 

also used for the UMAP projections shown in Figure 7.7C. Putative CREs in each species were 

identified using ArchR (C.W.D) (8<:) and MACSD (D.C.D) (8:B), grouping cells based on their most 

precise label, as predicted by the snRNA-seq dataset, and requiring a peak to be identified in at 

least two replicates. Peak annotations from different cell types were merged as described for 

mouse in section ^.B. Orthologous CREs between human and mouse were identified based on 

reciprocal syntenic alignments, as described for mouse and opossum in section ^.F. 
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Developmental correspondences between human and mouse – Corresponding 

developmental stages between human and mouse were identified using a dynamic time-

warping algorithm, as implemented in the R package dtw (C.DD-B) (9<;), applied on four 

different metrics of dissimilarity. First, I used Seurat (F.W) CCA (8<A) to transfer snRNA-seq 

annotations from mouse to human based on D,[YW C:C orthologous genes with highly variable 

expression in at least two samples in each species. Smoothing across the BW nearest neighbors, 

I predicted mouse developmental stage annotations for each human cell in the snRNA-seq 

dataset. Then, for each human developmental stage, I calculated the mean prediction score for 

every mouse developmental stage across all cells, which I subtracted from C to convert into an 

estimate of dissimilarity.  

As a second estimate, I considered similarities in cell type composition. To this end, I estimated 

the fraction of cells in each species and developmental stage belonging to every possible cell 

type (defined at an intermediate level of resolution of the cell type annotation that is consistent 

between human and mouse, referred to as “developmental state” in Sepp, Leiss et al. 8B87 (7?A)). 

I then estimated the Manhattan distance based on the fractions of cellular states between all 

possible combinations of human and mouse developmental stages. 

The third estimate of dissimilarity was based on direct comparisons between gene expression 

profiles. For this, I aggregated gene expression profiles across all cells from the same sample, 

applied a variance-stabilizing transformation as implemented in DESeqD (C.BD) (989), and used 

the residuals of a linear model to correct expression estimates of each gene for a known bias in 

CWX Genomics technology (vB versus vD). I then estimated mean gene expression values across 

replicates per developmental stage and identified highly variable genes (HVGs) as those with a 

variance greater or equal to CW% of their mean. Out of C,FCD human HVGs and C,ZF[ mouse HVGs 

during development, ZBF were shared between the two species and were used for estimating the 

Spearman’s correlation in expression profiles between all possible combinations of human and 

mouse developmental stages. I then subtracted correlation coefficients from C to convert these 

estimates into dissimilarity measurements.  

Finally, my fourth metric was based on chromatin accessibility comparisons between the two 

species. As for gene expression, I aggregated CRE accessibility profiles across all cells from the 

same sample, scaled for sequencing depth (CPM) and additionally applied a quantile 

normalization using the Bioconductor package preprocessCore (C.^F). I then estimated mean 

accessibility values across replicates from the same developmental stage and selected highly 

variable CREs as those with a variance of at least ^W% compared to their mean. A total of BZ,FZ^ 
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C:C orthologous CREs were found as highly variable in both species and were used for estimating 

Spearman’s correlation coefficients in accessibility profiles between all possible combinations 

of human and mouse developmental stages. As with the previous correlation approach, I then 

subtracted the coefficients from C to convert these estimates into dissimilarity measurements. 

Each of the four dissimilarity matrices was used as input for the package dtw (C.DD-B) (9<;). The 

four alignment paths and the consensus correspondences I inferred from them are shown in 

Figure 7.7C. 

Characterization of spatiotemporal CRE activity in human and mouse – To jointly 

characterize CRE accessibility profiles in both species, I first determined a set of groups 

(corresponding cell types, described at the “developmental state” level, and developmental 

stages) with at least ^W cells in at least two samples (i.e., biological replicates) for each modality 

(RNA, ATAC) in both species. I then aggregated gene expression/chromatin accessibility 

profiles across all cells from the group (cell type and developmental stage) and biological 

replicate. I then filtered, scaled and transformed these pseudobulks separately for each 

modality. For gene expression, I considered counts in full-length transcripts (as I found no 

evidence that these are less comparable between species than considering only exonic UMI 

counts) and filtered for protein-coding genes reaching at least DW CPM in at least two replicates 

from the same group (cell type and developmental stage). I applied a variance stabilizing 

transformation (989) and then used the residuals of a linear model to regress out the effects of 

CWX technology (vB versus vD) and of sex. For chromatin accessibility, I scaled for sequencing 

depth (CPM) and then applied a quantile normalization as implemented in the package 

preprocessCore (C.^F), filtering for putative CREs with at least ^ quantile-corrected CPM in at 

least two samples (note that the number of CREs is approximately D^ times larger than that of 

protein-coding genes, leading to a large shift in the distribution of CPM values). 

After filtering, I used non-negative matrix factorization (NMF) to summarize the patterns of 

CRE activity across cell types and developmental stages. To this end, I first calculated mean CRE 

accessibility values across all replicates from the same cell type and developmental stage. I then 

determined highly variable CREs across cell types and developmental stages in each species 

requiring a variance greater or equal to B times the mean (note that by separating cells from 

different cell types, CREs show much greater variance/mean ratios compared to when 

aggregating per developmental stage, hence the need for a higher cutoff than the one described 

in the developmental correspondences section). This filtering step resulted to ̂ F,ZDD and ZZ,^DW 

highly variable mouse and human CREs, respectively. The accessibility of each CRE was then 
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standardized as a fraction of its maximum value across all groups (i.e., corresponding cell types 

and developmental stages between human and mouse).  

Highly variable CREs from both species were used to learn an NMF representation of the 

dataset. In NMF, the original matrix [CREs x samples] is approximated by the multiplication of 

two new matrices that correspond to the loadings of a predetermined number of components 

on CREs and samples respectively, as illustrated below. 

 

To identify the optimal number of NMF components, I considered multiple values in a range 

between D and BW. After each factorization step, I evaluated the degree of mixing between 

species by calculating the Euclidean distance between human and mouse CREs in the [CRE x 

factors] matrix. Additionally, I estimated the reconstruction error between the original [CRE x 

samples] matrix and the one inferred by the multiplication of the two factor-based matrices. 

Naturally, the reconstruction error decreases with the addition of more components, albeit with 

a significantly smaller rate after C[ components. Similarly adding more components, especially 

above D^, leads to a greater separation of the two species in the factor space. Based on these two 

metrics, and by considering the biological relevance of the identified associations between 

samples and factors, I determined the optimal number of components to be C[.  

To assess the conservation of CREs associated with different components (i.e., accessible in 

different cell types and developmental stages), I had to be able to consider all CREs, to ensure 

that any differences are not due to biases in the cutoffs I used to define highly variable features. 

To this end, after learning the optimal [factors x samples] matrix by using the highly variable 

CREs, I multiplied the original [CRE x samples] matrix for all human and mouse CREs with the 

transpose of the [factors x samples] matrix to get a final matrix with loadings for all CREs on the 

C[ components. 
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I then used the loadings of all CREs to identify, in each species, the CW,WWW CREs most strongly 

associated with each component. For each component, I estimated the fraction of human 

intergenic CREs (amongst the CW,WWW assigned to that component) that were present in the 

mouse CRE annotation, and that had a C:C ortholog in the CW,WWW mouse CREs assigned to the 

same component. To visualize CRE accessibility patterns across corresponding cell types and 

developmental stages, I randomly selected ^WW CREs per species and component. To directly 

assess the level of conservation of spatiotemporal CRE activity between human and mouse, I 

considered C:C orthologs which were assigned to at least one component in at least one species. 

I then estimated the Euclidean distance between the component loadings of the human and 

mouse orthologs and compared the distribution of these distances to those observed when 

shuffling the orthology relationships. Obtaining loadings for all CREs and assigning a fixed 

number of CREs to each component were essential steps to facilitate unbiased comparisons of 

evolutionary conservation levels across components. All other analyses described below rely on 

the highly variable CREs, for which assignment to components is the most confident. 

For the TF motif enrichment analysis, I first identified the highly variable CREs with the highest 

loadings for each component in each species. To account for differences in the distribution of 

loadings between components, I used elbow plots to determine the optimal loading cutoff for 

each component, which resulted to Z,WWW-C^,WWW putative CREs assigned to each component 

in each species. I then used pycistarget (C.W.C) to determine enrichments of each CRE set for a 

collection of more than F\,^WF motifs collapsed into more than [,WWW clusters for human and 

mouse (9B:). I used a lenient normalized enrichment score (NES) cutoff of W.C to obtain 

enrichments for most motif clusters, then compared the similarity between human and mouse 

by calculating the Pearson’s correlation in NES scores between CRE sets for motif clusters with 

a NES of at least B in either species. 

Deep learning models of regulatory grammar – In this analysis I used deep learning models 

to learn the sequence features associated with the assignment of each CRE to different NMF 

components. This was framed as a classification task, in which each CRE is assigned to zero, one 
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or more NMF components based on its spatiotemporal activity and the model tries to predict 

its assignment probability for each component based on its DNA sequence. For each component 

and species, I selected the B,WWW CREs with the highest loadings in that component. 

Additionally, for each species, I selected the B,WWW CREs with the lowest maximum loading 

across all components, which I used as a proxy for “noisy CREs” (Component C\). Furthermore, 

to help the model learn features associated with general CRE activity, I also selected B,WWW 

random ^WW bp-long genomic regions that don’t overlap any CREs in my annotation 

(Component DW), additionally ensuring that they don’t overlap gaps in the genome assembly or 

contain undetermined nucleotides. After determining the coordinates of these regions in each 

species, I extracted their sequences using bedtools getfasta (D.D\) (987). These sequences were 

used for training and evaluating different deep learning models, as described below. 

The main training strategy was the same across all the models I developed during this work, 

and closely follows what was recently described by Janssens et al. 8B88 (7B7). In brief, DNA 

sequences were converted to a one-hot encoding, a matrix with four rows (one for each possible 

nucleotide) and ^WW columns (one for each nucleotide position in the CRE sequence). At each 

column, the observed nucleotide is marked with C and the remaining three options are marked 

with W. The total number of DNA sequences was split into [W% used for training the model, 

CW% for evaluating the performance across different training epochs (validation set), and CW% 

for testing the performance of the best-performing model (test set). To increase the number of 

sequences used for training and to allow the model to focus on relevant sequence features, 

augmentation was performed by extending the training sequences by CWW bp towards each side, 

then using a sliding window of ^WW bp with a stride of ^Wbp to generate partially overlapping 

sequences with the same label. 

The models use the architecture described by Janssens et al. 8B88 (7B7). Briefly, one-hot encoded 

sequences are used as input for a convolutional layer with ^CD kernels of size DF, followed by a 

max-pooling layer with size and stride of CY. This is followed by a time-distributed dense layer 

together with a bidirectional long short-term memory (LSTM) layer with D^Y neurons. Finally, 

the output of the LSTM layer is passed on to a flattened and then to a dense layer, which in turn 

uses a sigmoid activation function to estimate prediction probabilities for each of the DW 

possible classes (C[ NMF components, noisy peaks and random regions). To prevent overfitting, 

dropout layers are introduced after the max-pooling, LSTM and dense layers with dropout rates 

of W.^, W.D and W.^, respectively. Model performance was evaluated using the auROC and auPR 

metrics, estimated based on the testing dataset using the average_precision_score and 
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roc_auc_score functions from the scikit-learn package. All models used the same train-

validation-test split for human and mouse sequences, allowing me to compare performance 

based on sequences not seen by any model during training.  

DeepExplainer importance was estimated as described in Lundberg and Lee 8B7? (9<?), using 

^WW random regions from the non-augmented datasets for initialization. Importance scores for 

a particular class and sequence were multiplied with the one-hot encoded matrix and visualized 

based on the viz_sequence function of the package DeepLift (7B;), with custom modifications 

by Ibrahim Taskiran (7BB). For the in silico mutagenesis, all positions of a CRE sequence were 

sequentially mutated into all other three possible nucleotides, as described in Minnoye et al. 

8B8B (7BB). Thus, each new sequence differs from the original sequence by a single nucleotide. 

The model was then used to generate prediction scores for each of the simulated sequences. 

The difference in the prediction score between the original and each mutated sequence was 

estimated for the class of interest and visualized based on the position (x-axis) and nucleotide 

substitution (color) of each mutation. 

Cell type-specific changes in gene expression – To identify changes in the expression of C:C 

orthologous protein-coding genes between human and mouse, and to relate these to my 

previous analyses of CRE accessibility, I used the pseudobulks generated for the same samples 

(corresponding cell types and developmental stages) that were considered for the NMF analysis 

(see Characterization of spatiotemporal CRE activity in human and mouse). Briefly, these are 

aggregated gene expression profiles across all cells from the same cell type, developmental stage 

and biological replicate, only considering groups with enough cells in both species and 

modalities. As described above, gene expression measurements were transformed using a 

variance-stabilizing transformation (VST), and corrected for differences in CWX technology and 

sex. To further minimize biases in VST estimates between species, I applied an additional 

median-scaling normalization. 

To relate gene expression changes to different NMF components, I first identified the samples 

(cell types and developmental stages) with the highest loadings for each component. These were 

selected as all samples with at least FW% of the maximum loading for that component. For 

example, for component C, these included granule cell progenitors from newborn humans and 

PF-PZ mice, and differentiating granule cells (subtype C) from newborn and infant humans and 

PF-PCF mice. The goal of the analysis was to identify genes that are highly expressed in at least 

some of the samples associated with this component in one species but not in the other, while 
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accounting for known technical biases and limitations of cross-species comparisons of gene 

expression levels.  

Contrasting absolute expression levels (e.g., VST, CPM) between species is especially prone to 

differences in gene annotations (e.g., loss of reads in one species due to incomplete UTR 

annotations). Additionally, full-length transcripts are biased by the number of polyA stretches 

in gene introns (accounting for a significant fraction of total UMIs), which can differ markedly 

between species. Such confounders are expected to affect expression estimates in the same way 

across conditions (i.e., cell types and developmental stages) and can thus be addressed by 

standardizing expression values within each species (e.g., through estimating Z-scores). These 

relative gene expression values can then be compared between species, as a metric for changes 

in cell type- or time-specificity of expression (e.g., identifying a gene that is expressed in cell 

type A in mouse and in both cell types A and B in human). However, comparing relative 

expression values can also lead to the identification of genes that in practice only show minor 

quantitative differences between species, a problem especially prominent in lowly or broadly 

expressed genes. To address the technical issues associated with both approaches, I decided to 

consider both the difference in VST counts (as a quantitative measure) and the difference in Z-

scores (as a relative measure). 

Additionally, I aimed to identify changes that were reproducible across biological replicates. For 

this, I performed comparisons between human and mouse in an asymmetric way depending on 

whether I was testing for higher expression in human or mouse. For each sample (cell type and 

developmental stage) associated with a component, and for each species, I estimated the 

maximum and minimum expression value (VST or Z-score) across biological replicates. Since 

the goal of the analysis was to identify genes with high expression in at least some of the samples 

in one species but significantly lower expression in all samples in the other species, I then 

calculated the maximum values of these two estimates across all samples for that component. 

Then, to test for higher expression of a gene in human, I compared the minimum value across 

replicates in the sample with the maximum expression in human (Max. min. Hum.) to the 

maximum value across replicates in the sample with the maximum expression in mouse (Max. 

max. Mou.). Similarly, to test for higher expression of a gene in mouse, I compared the minimum 

value across replicates in the sample with the maximum expression in mouse (Max. min. Mou.) 

to the maximum value across replicates in the sample with the maximum expression in human 

(Max. max. Hum.). Thus, the identified differences in VST counts or Z-scores represent 
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conservative estimates of the minimum difference observed between the highest expression of 

that gene across corresponding samples in the two species, as shown in the diagram below. 

 
 

Collectively, for each component and for each gene, I estimated two metrics (based on VST 

counts and Z-scores, respectively) to test for higher expression in human and two metrics to 

test for higher expression in mouse. I then identified genes with higher expression in one species 

as those with ΔVST ³ D and ΔZ ³ W.^, additionally requiring the gene to reach at least Z.^ VST 

counts and a Z-score of W in at least one replicate across all samples associated with that 

component for the species in which it was called as highly expressed. These cutoffs were 

optimized based on manual inspection of the gene expression profiles of the identified genes, 

but are admittedly arbitrary. They serve the main purpose of this analysis, which is to identify 

the most striking and confident changes in gene expression as a first step towards exploring the 

regulatory basis of these changes. However, in the future, I plan to explore the possibility to 

obtain more unbiased estimates for these cutoffs and to infer the statistical significance of each 

identified gene expression change. 

Regulatory basis of gene expression changes – For the global analysis of the chromatin 

accessibility landscape around genes with changes in their expression, I considered all CREs 

within D^W kb upstream or downstream of a gene’s TSS. I compared the distribution of the 

loadings of human CREs adjacent to genes with higher expression in human or mouse in the 

samples associated with the corresponding component. I then compared the fraction of human 

CREs that were conserved in the mouse CRE annotation (based on reciprocal syntenic 

alignments) between CREs adjacent to genes with higher expression in human compared to 

mouse and those adjacent to genes with high expression in humans (VST ³ Z.^) but no 

significant increase compared to mouse. Finally, for C:C orthologous CREs that are adjacent to 

genes with higher expression in human or mouse, I estimated the difference in the loadings for 

the corresponding NMF component between the human and the mouse CRE ortholog. 

To associate specific CREs with the expression change in PIEZO8, I identified all human CREs 

within D^W kb upstream or downstream of its TSS. I then filtered for CREs with high loadings in 

the corresponding component (NMFD) based on the elbow plot procedure described above. I 
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considered CREs that were human-specific (no mouse CRE ortholog) and those for which the 

mouse CRE ortholog was not included in the CREs with high loadings for that component, 

identified based on the same elbow procedure (i.e., repurposed CREs). I then used the deep 

learning model trained with the full set of human and mouse CRE sequences to predict 

accessibility patterns (i.e., assignment to different components for the remaining human CRE 

sequences) and only considered those with a prediction score of at least W.D. 

The predictions of CRE accessibility across mammalian species were performed by Mr. Tetsuya 

Yamada, based on my original design and supervision. Briefly, Mr. Yamada downloaded 

genomic alignments across mammalian species from the Zoonomia consortium (8;@) in .hal 

format. He used halLiftover (9<@) to extract orthologous sequences for these CREs in each 

mammalian species, and then applied HALPER (9<A) to identify the putative summit of the 

orthologous region and to extend it by D^W bp to each direction. After converting the 

coordinates to fasta sequences and eventually to one-hot encoded matrices, as described above, 

he used the deep learning model I trained based on the full set of human and mouse CRE 

sequences to predict accessibility patterns for each mammalian species in which an alignment 

could be detected. He then used MAFFT (9:B) to generate multiple sequence alignments for 

each CRE. I used these data to manually inspect the predicted evolutionary histories of human 

CREs and to explore multiple sequence alignments — visualized using Jalview (9:7) — in regions 

of the human CREs highlighted as important by my DeepExplainer and in silico mutagenesis 

analyses. 
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G. Supplementary Figures 

 

Supplementary Figure (: Gene expression changes during mammalian organ development. 
Number of differentially expressed protein-coding genes (green) and dynamic lncRNAs (blue) between 
adjacent stages of organ development in human, rat, rabbit, opossum and chicken. Figure adapted from 
Sarropoulos et al. CDEF (CCG). 
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Supplementary Figure :: Clustering of dynamic lncRNAs based on developmental trajectories. 
Clusters of developmentally dynamic lncRNAs and protein-coding genes across mouse organs. Grey lines 
represent individual gene trajectories and solid lines posterior mean trajectories for each cluster. Clusters 
are arranged by decreasing fraction of lncRNAs. Enriched representative biological processes (Benjamini–
Hochberg adjusted P < U.UG, hypergeometric test) are shown for each cluster. Figure reproduced from 
Sarropoulos et al. CDEF (CCG). 
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Supplementary Figure =: Expression profiles of female-specific genes and their neighbors. Gene 
expression profiles (RPKM) across developing organs and sexes for four female-specific lncRNAs on the 
opossum X chromosome (left) and their closest protein-coding genes (right). 
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Supplementary Figure @: Expression profiles of other genes at the onset of marsupial X-
chromosome inactivation. (A) Expression profiles (RPKM) of the remaining four originally identified 
female-specific genes on the opossum X in single-cells from early opossum embryos. (B) Spearman’s 
correlation coefficients between the expression profiles of all opossum genes and RSX, sorted in 
decreasing order. FSX is highlighted in blue. 

 

 
 
 

  

Supplementary Figure O: Quality control of mouse snATAC-seq libraries. (A) Fragment size 
distribution of the snATAC-seq libraries, labeled by developmental stage, library code and sex (F: female; 
M: male; Mix: pooled embryos from both sexes). (B) TSS enrichment scores of the snATAC-seq libraries. 
Figure adapted from Sarropoulos et al. CDCE (CYY). 

 

  



 

 
 

CBY 

J. References 

!. Watson, J. D. & Crick, F. H. C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose 
Nucleic Acid. Nature (S(, F=F–F=Q (!JG=). 

:. Cobb, M. DU years ago, Francis Crick changed the logic of biology. PLoS Biol (O, e:UU=:@= (:U!F). 

=. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature @WU, QDU–J:! 
(:UU!). 

@. Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 
CDDG YCD:\FEN @:W, G:U–GD: (:UU:). 

G. Breschi, A., Gingeras, T. R. & Guigó, R. Comparative transcriptomics in human and mouse. Nat 
Rev Genet (T, @:G–@@U (:U!F). 

D. Ponting, C. P. & Hardison, R. C. What fraction of the human genome is functional? Genome Res 
:(, !FDJ–!FFD (:U!!). 

F. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 
@TU, GF–F@ (:U!:). 

Q. Doolittle, W. F. Is junk DNA bunk? A critique of ENCODE. Proceedings of the National Academy 
of Sciences ((W, G:J@–G=UU (:U!=). 

J. Graur, D. et al. On the Immortality of Television Sets: “Function” in the Human Genome 
According to the Evolution-Free Gospel of ENCODE. Genome Biol Evol O, GFQ–GJU (:U!=). 

!U. Eddy, S. R. The ENCODE project: Missteps overshadowing a success. Current Biology :=, R:GJ–
R:D! (:U!=). 

!!. Kellis, M. et al. Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S 
A (((, D!=!–D!=Q (:U!@). 

!:. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: Computational 
challenges and solutions. Nat Rev Genet (=, =D–@D (:U!:). 

!=. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: From 
conflicts to benefits. Nat Rev Genet (T, F!–QD (:U!F). 

!@. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet U, 
=JF–@UG (:UUQ). 

!G. Kaessmann, H. Origins, evolution, and phenotypic impact of new genes. Genome Research :W, 
!=!=–!=:D (:U!U). 

!D. Li, W., Notani, D. & Rosenfeld, M. G. Enhancers as non-coding RNA transcription units: Recent 
insights and future perspectives. Nat Rev Genet (S, :UF–::= (:U!D). 

!F. Gil, N. & Ulitsky, I. Production of Spliced Long Noncoding RNAs Specifies Regions with Increased 
Enhancer Activity. Cell Syst S, G=F-G@F.e= (:U!Q). 

!Q. Tan, J. Y., Biasini, A., Young, R. S. & Marques, A. C. Splicing of enhancer-associated lincRNAs 
contributes to enhancer activity. Life Sci Alliance =, e:U:UUUDD= (:U:U). 

!J. Ulitsky, I. & Bartel, D. P. lincRNAs: Genomics, Evolution, and Mechanisms. Cell (O@, :D–@D 
(:U!=). 



    

 
 

CBZ 

:U. Kopp, F. & Mendell, J. T. Functional Classification and Experimental Dissection of Long 
Noncoding RNAs. Cell (S:, =J=–@UF (:U!Q). 

:!. Blobel, G. & Potter, V. R. Studies on free and membrane-bound ribosomes in rat liver: I. 
Distribution as related to total cellular RNA. J Mol Biol :R, :FJ–:J: (!JDF). 

::. Esteller, M. Non-coding RNAs in human disease. Nat Rev Genet (:, QD!–QF@ (:U!!). 

:=. Schuller, A. P. & Green, R. Roadblocks and resolutions in eukaryotic translation. Nat Rev Mol Cell 
Biol (U, G:D–G@! (:U!Q). 

:@. Maniatis, T. & Reed, R. The role of small nuclear ribonucleoprotein particles in pre-mRNA 
splicing. Nature =:O, DF=–DFQ (!JQF). 

:G. Kiss, T. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J 
:W, =D!F–=D:: (:UU!). 

:D. Okamura, K. & Lai, E. C. Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol U, 
DF=–DFQ (:UUQ). 

:F. Bartel, D. P. Metazoan MicroRNAs. Cell (S=, :U–G! (:U!Q). 

:Q. Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally 
regulated piRNA clusters implicate MILI in transposon control. Science =(R, F@@–F@F (:UUF). 

:J. Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and Functions of Long Noncoding RNAs. Cell 
(=R, D:J–D@! (:UUJ). 

=U. Lee, S. et al. Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO 
Proteins. Cell (R@, DJ–QU (:U!D). 

=!. Munschauer, M. et al. The NORAD lncRNA assembles a topoisomerase complex critical for 
genome stability. Nature OR(, !=:–!=D (:U!Q). 

=:. Williamson, L. et al. UV Irradiation Induces a Non-coding RNA that Functionally Opposes the 
Protein Encoded by the Same Gene. Cell (RT, Q@=-QGG.e!= (:U!F). 

==. Ponting, C. P. & Haerty, W. Genome-Wide Analysis of Human Long Noncoding RNAs: A 
Provocative Review. Annu Rev Genomics Hum Genet :=, !G=-!F: (:U::). 

=@. Maston, G. A., Evans, S. K. & Green, M. R. Transcriptional regulatory elements in the human 
genome. Annu Rev Genomics Hum Genet S, :J–GJ (:UUD). 

=G. Andersson, R. & Sandelin, A. Determinants of enhancer and promoter activities of regulatory 
elements. Nat Rev Genet :(, F!–QF (:U:U). 

=D. Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: From properties to genome-
wide predictions. Nat Rev Genet (O, :F:–:QD (:U!@). 

=F. Long, H. K., Prescott, S. L. & Wysocka, J. Ever-Changing Landscapes: Transcriptional Enhancers 
in Development and Evolution. Cell (RS, !!FU–!!QF (:U!D). 

=Q. Bonev, B. & Cavalli, G. Organization and function of the =D genome. Nat Rev Genet (S, DD!–DFQ 
(:U!D). 

=J. Engreitz, J. M. et al. Local regulation of gene expression by lncRNA promoters, transcription and 
splicing. Nature O=U, @G:–@GG (:U!D). 



 

 
 

CB[ 

@U. Ørom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell (@=, 
@D–GQ (:U!U). 

@!. Gisselbrecht, S. S. et al. Transcriptional Silencers in Drosophila Serve a Dual Role as 
Transcriptional Enhancers in Alternate Cellular Contexts. Mol Cell SS, =:@-==F.eQ (:U:U). 

@:. Huang, D. & Ovcharenko, I. Enhancer-silencer transitions in the human genome. Genome Res 
=:, @=F–@@Q (:U::). 

@=. Lambert, S. A. et al. The Human Transcription Factors. Cell (S:, DGU–DDG (:U!Q). 

@@. Yandell, M. & Ence, D. A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet (=, 
=:J–=@: (:U!:). 

@G. Ulitsky, I. Evolution to the rescue: Using comparative genomics to understand long non-coding 
RNAs. Nat Rev Genet (S, DU!–D!@ (:U!D). 

@D. Villar, D. et al. Enhancer evolution across :U mammalian species. Cell (RW, GG@–GDD (:U!G). 

@F. Cabili, M. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global 
properties and specific subclasses. Genes Dev :O, !J!G–!J:F (:U!!). 

@Q. Necsulea, A. et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. 
Nature OWO, D=G–D@U (:U!@). 

@J. Washietl, S., Kellis, M. & Garber, M. Evolutionary dynamics and tissue specificity of human long 
noncoding RNAs in six mammals. Genome Res :@, D!D–D:Q (:U!@). 

GU. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev 
Genet (W, GF–D= (:UUJ). 

G!. Dominic Mills, J., Kawahara, Y. & Janitz, M. Strand-Specific RNA-Seq Provides Greater Resolution 
of Transcriptome Profiling. Curr Genomics (@, !F=–!Q! (:U!=). 

G:. Hon, C. C. et al. An atlas of human long non-coding RNAs with accurate G′ ends. Nature O@=, !JJ–
:U@ (:U!F). 

G=. Lagarde, J. et al. High-throughput annotation of full-length long noncoding RNAs with capture 
long-read sequencing. Nat Genet @U, !F=!–!F@U (:U!F). 

G@. Uszczynska-Ratajczak, B., Lagarde, J., Frankish, A., Guigó, R. & Johnson, R. Towards a complete 
map of the human long non-coding RNA transcriptome. Nat Rev Genet (U, G=G–G@Q (:U!Q). 

GG. Nord, A. S. et al. Rapid and pervasive changes in genome-wide enhancer usage during 
mammalian development. Cell (OO, !G:!–!G=! (:U!=). 

GD. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of 
DNA binding sites. Elife R, e:!QGD (:U!F). 

GF. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory 
epigenome. Nat Rev Genet :W, :UF–::U (:U!J). 

GQ. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native 
chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and 
nucleosome position. Nat Methods (W, !:!=–!:!Q (:U!=). 

GJ. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in 
the past decade. Nat Protoc (=, GJJ–DU@ (:U!Q). 



    

 
 

CB\ 

DU. Cabili, M. N. et al. Localization and abundance analysis of human lncRNAs at single-cell and 
single-molecule resolution. Genome Biol (R, :U (:U!G). 

D!. Liu, S. J. et al. Single-cell analysis of long non-coding RNAs in the developing human neocortex. 
Genome Biol (S, DF (:U!D). 

D:. Cusanovich, D. A. et al. A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility. Cell 
(S@, !=UJ-!=:@.e!Q (:U!Q). 

D=. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat 
Commun T, !@U@J (:U!F). 

D@. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-
cell transcriptomics. Nat Rev Genet (R, !==–!@G (:U!G). 

DG. Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial 
cellular indexing. Science =@T, J!U–J!@ (:U!G). 

DD. Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell 
development and intratumoral T cell exhaustion. Nat Biotechnol =S, J:G–J=D (:U!J). 

DF. Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin 
accessibility. Nat Biotechnol =S, J!D–J:@ (:U!J). 

DQ. Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 
OSR, @QF–@J! (:U!J). 

DJ. Ma, S. et al. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and 
Chromatin. Cell (T=, !!U=-!!!D.e:U (:U:U). 

FU. Derrien, T. et al. The GENCODE vF catalog of human long noncoding RNAs: Analysis of their 
gene structure, evolution, and expression. Genome Res ::, !FFG–!FQJ (:U!:). 

F!. Melé, M. et al. Chromatin environment, transcriptional regulation, and splicing distinguish 
lincRNAs and mRNAs. Genome Res :S, :F–=F (:U!F). 

F:. Unfried, J. P. & Ulitsky, I. Substoichiometric action of long noncoding RNAs. Nat Cell Biol :@, 
DUQ–D!G (:U::). 

F=. Soumillon, M. et al. Cellular Source and Mechanisms of High Transcriptome Complexity in the 
Mammalian Testis. Cell Rep =, :!FJ–:!JU (:U!=). 

F@. Murat, F. et al. The molecular evolution of spermatogenesis across mammals. bioRxiv 
:U:!.!!.UQ.@DFF!: (:U:!). 

FG. Hong, S. H., Han, G., Lee, S. J., Cocquet, J. & Cho, C. Testicular germ cell–specific lncRNA, Teshl, 
is required for complete expression of Y chromosome genes and a normal offspring sex ratio. Sci Adv S, 
eabgG!FF (:U:!). 

FD. Kung, J. T. Y., Colognori, D. & Lee, J. T. Long noncoding RNAs: Past, present, and future. Genetics 
(U=, DG!–DDJ (:U!=). 

FF. Hezroni, H. et al. Principles of Long Noncoding RNA Evolution Derived from Direct Comparison 
of Transcriptomes in !F Species. Cell Rep ((, !!!U–!!:: (:U!G). 

FQ. Kapusta, A. et al. Transposable Elements Are Major Contributors to the Origin, Diversification, 
and Regulation of Vertebrate Long Noncoding RNAs. PLoS Genet U, e!UU=@FU (:U!=). 



 

 
 

CFW 

FJ. Chen, J. et al. Evolutionary analysis across mammals reveals distinct classes of long non-coding 
RNAs. Genome Biol (S, !J (:U!D). 

QU. Wu, X. & Sharp, P. A. Divergent Transcription: A Driving Force for New Gene Origination? Cell 
(OO, JJU–JJD (:U!=). 

Q!. Carelli, F. N., Liechti, A., Halbert, J., Warnefors, M. & Kaessmann, H. Repurposing of promoters 
and enhancers during mammalian evolution. Nat Commun U, @UDD (:U!Q). 

Q:. Hezroni, H. et al. A subset of conserved mammalian long non-coding RNAs are fossils of ancestral 
protein-coding genes. Genome Biol (T, !D: (:U!F). 

Q=. Duret, L., Chureau, C., Samain, S., Weissanbach, J. & Avner, P. The Xist RNA gene evolved in 
eutherians by pseudogenization of a protein-coding gene. Science =(:, !DG=–!DGG (:UUD). 

Q@. Yotova, I. Y. et al. Identification of the human homolog of the imprinted mouse Air non-coding 
RNA. Genomics U:, @D@–@F= (:UUQ). 

QG. Kirk, J. M. et al. Functional classification of long non-coding RNAs by k-mer content. Nat Genet 
OW, !@F@–!@Q: (:U!Q). 

QD. Young, A. I., Benonisdottir, S., Przeworski, M. & Kong, A. Deconstructing the sources of 
genotype-phenotype associations in humans. Science =RO, !=JD–!@UU (:U!J). 

QF. Clemson, C. M., McNeil, J. A., Willard, H. F. & Lawrence, J. B. XIST RNA paints the inactive X 
chromosome at interphase: Evidence for a novel RNA involved in nuclear/chromosome structure. Journal 
of Cell Biology (=:, :GJ–:FG (!JJD). 

QQ. Brown, C. J. et al. The human XIST gene: Analysis of a !F kb inactive X-specific RNA that contains 
conserved repeats and is highly localized within the nucleus. Cell S(, G:F–G@: (!JJ:). 

QJ. Loda, A. et al. Genetic and epigenetic features direct differential efficiency of Xist-mediated 
silencing at X-chromosomal and autosomal locations. Nat Commun T, DJU (:U!F). 

JU. Chu, C. et al. Systematic Discovery of Xist RNA Binding Proteins. Cell (R(, @U@–@!D (:U!G). 

J!. Rinn, J. L. et al. Functional Demarcation of Active and Silent Chromatin Domains in Human HOX 
Loci by Noncoding RNAs. Cell (:U, !=!!–!=:= (:UUF). 

J:. Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic Maps of Long Noncoding 
RNA Occupancy Reveal Principles of RNA-Chromatin Interactions. Mol Cell @@, DDF–DFQ (:U!!). 

J=. Liu, S. J. et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci 
in human cells. Science =OO, aahF!!! (:U!F). 

J@. Bester, A. C. et al. An Integrated Genome-wide CRISPRa Approach to Functionalize lncRNAs in 
Drug Resistance. Cell (S=, D@J-DD@.e:U (:U!Q). 

JG. Castro-Mondragon, J. A. et al. JASPAR :U::: the Jth release of the open-access database of 
transcription factor binding profiles. Nucleic Acids Res OW, D!DG–D!F= (:U:!). 

JD. Thanos, D. & Maniatis, T. Virus induction of human IFN beta gene expression requires the 
assembly of an enhanceosome. Cell T=, !UJ!–!!UU (!JJG). 

JF. Wasserman, W. W. & Sandelin, A. Applied bioinformatics for the identification of regulatory 
elements. Nat Rev Genet O, :FD–:QF (:UU@). 

JQ. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with Deep Convolutional 
Neural Networks. Communications of the ACM RW, Q@–JU (:U!F). 



    

 
 

CFC 

JJ. Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: Learning the regulatory code of the accessible genome 
with deep convolutional neural networks. Genome Res :R, JJU–JJJ (:U!D). 

!UU. Minnoye, L. et al. Cross-species analysis of enhancer logic using deep learning. Genome Res =(, 
!Q!G–!Q=@ (:U:U). 

!U!. Janssens, J. et al. Decoding gene regulation in the fly brain. Nature RW(, D=U–D=D (:U::). 

!U:. Trevino, A. E. et al. Chromatin and gene-regulatory dynamics of the developing human cerebral 
cortex at single-cell resolution. Cell (T@, GUG=-GUDJ.e:= (:U:!). 

!U=. Avsec, Ž. et al. Base-resolution models of transcription-factor binding reveal soft motif syntax. 
Nat Genet O=, =G@–=DD (:U:!). 

!U@. de Almeida, B. P., Reiter, F., Pagani, M. & Stark, A. DeepSTARR predicts enhancer activity from 
DNA sequence and enables the de novo design of synthetic enhancers. Nat Genet O@, D!=–D:@ (:U::). 

!UG. Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range 
interactions. Nat Methods (T, !!JD–!:U= (:U:!). 

!UD. Shrikumar, A., Greenside, P. & Kundaje, A. Learning Important Features Through Propagating 
Activation Differences. arXiv !FU@.U:DQG (:U!F). 

!UF. Shrikumar, A. et al. Technical Note on Transcription Factor Motif Discovery from Importance 
Scores (TF-MoDISco) version U.G.D.G. arXiv !Q!!.UU@!D (:U!Q). 

!UQ. Nair, S., Shrikumar, A., Schreiber, J. & Kundaje, A. fastISM: performant in silico saturation 
mutagenesis for convolutional neural networks. Bioinformatics =T, :=JF–:@U= (:U::). 

!UJ. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science =R(, 
!=@!–!=@G (:U!Q). 

!!U. Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. 
Nat Rev Genet :W, @=F–@GG (:U!J). 

!!!. Stadhouders, R., Filion, G. J. & Graf, T. Transcription factors and =D genome conformation in 
cell-fate decisions. Nature ORU, =@G–=G@ (:U!J). 

!!:. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of 
chromatin interactions. Nature @TO, =FD–=QU (:U!:). 

!!=. Berthelot, C., Muffato, M., Abecassis, J. & Roest Crollius, H. The =D organization of chromatin 
explains evolutionary fragile genomic regions. Cell Rep (W, !J!=–!J:@ (:U!G). 

!!@. Eres, I. E. & Gilad, Y. A TAD Skeptic: Is =D Genome Topology Conserved? Trends in Genetics =S, 
:!D–::= (:U:!). 

!!G. Bonev, B. et al. Multiscale =D Genome Rewiring during Mouse Neural Development. Cell (S(, GGF-
GF:.e:@ (:U!F). 

!!D. Ahanger, S. H. et al. Distinct nuclear compartment-associated genome architecture in the 
developing mammalian brain. Nat Neurosci :@, !:=G–!:@: (:U:!). 

!!F. Berthelot, C., Villar, D., Horvath, J. E., Odom, D. T. & Flicek, P. Complexity and conservation of 
regulatory landscapes underlie evolutionary resilience of mammalian gene expression. Nat Ecol Evol :, 
!G:–!D= (:U!Q). 

!!Q. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-
option of endogenous retroviruses. Science =O(, !UQ=–!UQF (:U!D). 



 

 
 

CFD 

!!J. Roller, M. et al. LINE retrotransposons characterize mammalian tissue-specific and 
evolutionarily dynamic regulatory regions. Genome Biol ::, D: (:U:!). 

!:U. Vierstra, J. et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory 
evolution. Science =@R, !UUF–!U!: (:U!@). 

!:!. Schmidt, D. et al. Five-vertebrate ChlP-seq reveals the evolutionary dynamics of transcription 
factor binding. Science =:T, !U=D–!U@U (:U!U). 

!::. Stefflova, K. et al. Cooperativity and Rapid Evolution of Cobound Transcription Factors in Closely 
Related Mammals. Cell (O@, G=U–G@U (:U!=). 

!:=. Villar, D., Flicek, P. & Odom, D. T. Evolution of transcription factor binding in metazoans-
mechanisms and functional implications. Nat Rev Genet (O, ::!–:== (:U!@). 

!:@. Stergachis, A. B. et al. Conservation of trans-acting circuitry during mammalian regulatory 
evolution. Nature O(O, =DG–=FU (:U!@). 

!:G. Arendt, D. et al. The origin and evolution of cell types. Nat Rev Genet (S, F@@–FGF (:U!D). 

!:D. Cheng, Y. et al. Principles of regulatory information conservation between mouse and human. 
Nature O(O, =F!–=FG (:U!@). 

!:F. Carter, B. & Zhao, K. The epigenetic basis of cellular heterogeneity. Nat Rev Genet ::, :=G–:GU 
(:U:!). 

!:Q. Carroll, S. B. Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic Theory of 
Morphological Evolution. Cell (=@, :G–=D (:UUQ). 

!:J. Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and 
principles. Genes Dev (O, =UGJ–=UQF (:UU!). 

!=U. Leto, K. et al. Consensus Paper: Cerebellar Development. Cerebellum (O, FQJ–Q:Q (:U!D). 

!=!. Bermingham, N. A. et al. Math!: an essential gene for the generation of inner ear hair cells. Science 
:T@, !Q=F–!Q@! (!JJJ). 

!=:. Ben-Arie, N. et al. Functional conservation of atonal and Math! in the CNS and PNS. Development 
(:S, !U=J–!U@Q (:UUU). 

!==. Yang, Q., Bermingham, N. A., Finegold, M. J. & Zoghbi, H. Y. Requirement of Math! for secretory 
cell lineage commitment in the mouse intestine. Science :U@, :!GG–:!GQ (:UU!). 

!=@. Kawaguchi, Y. et al. The role of the transcriptional regulator Ptf!a in converting intestinal to 
pancreatic progenitors. Nat Genet =:, !:Q–!=@ (:UU:). 

!=G. Fujitani, Y. et al. Ptf!a determines horizontal and amacrine cell fates during mouse retinal 
development. Development (==, @@=J–@@GU (:UUD). 

!=D. Leung, C. Y. & Zernicka-Goetz, M. Mapping the journey from totipotency to lineage specification 
in the mouse embryo. Curr Opin Genet Dev =@, F!–FD (:U!G). 

!=F. Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. 
Nature ORR, @JU–@JG (:U!J). 

!=Q. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature ORR, 
@JD–GU: (:U!J). 



    

 
 

CFB 

!=J. Heinz, S., Romanoski, C. E., Benner, C. & Glass, C. K. The selection and function of cell type-
specific enhancers. Nat Rev Mol Cell Biol (R, !@@–!G@ (:U!G). 

!@U. Nord, A. S. & West, A. E. Neurobiological functions of transcriptional enhancers. Nat Neurosci 
:=, G–!@ (:U:U). 

!@!. Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 
O=S, GUQ–G!@ (:U!D). 

!@:. Sagai, T., Hosoya, M., Mizushina, Y., Tamura, M. & Shiroishi, T. Elimination of a long-range cis-
regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse 
limb. Development (=:, FJF–QU= (:UUG). 

!@=. Weedon, M. N. et al. Recessive mutations in a distal PTF!A enhancer cause isolated pancreatic 
agenesis. Nat Genet @R, D!–D@ (:U!=). 

!@@. Claringbould, A. & Zaugg, J. B. Enhancers in disease: molecular basis and emerging treatment 
strategies. Trends Mol Med :S, !UDU–!UF= (:U:!). 

!@G. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A Phase Separation Model 
for Transcriptional Control. Cell (RU, !=–:= (:U!F). 

!@D. Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in mammalian 
development. Nature OO@, :=J–:@= (:U!Q). 

!@F. Kvon, E. Z., Waymack, R., Gad, M. & Wunderlich, Z. Enhancer redundancy in development and 
disease. Nat Rev Genet ::, =:@–==D (:U:!). 

!@Q. Roadmap Epigenomics Consortium et al. Integrative analysis of !!! reference human epigenomes. 
Nature O(T, =!F–=:J (:U!G). 

!@J. Meuleman, W. et al. Index and biological spectrum of human DNase I hypersensitive sites. 
Nature OT@, :@@–:G! (:U:U). 

!GU. Gorkin, D. U. et al. An atlas of dynamic chromatin landscapes in mouse fetal development. 
Nature OT=, F@@–FG! (:U:U). 

!G!. Preissl, S. et al. Single-nucleus analysis of accessible chromatin in developing mouse forebrain 
reveals cell-type-specific transcriptional regulation. Nat Neurosci :(, @=:–@=J (:U!Q). 

!G:. Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science =SW, eabaFD!: 
(:U:U). 

!G=. Pijuan-Sala, B. et al. Single-cell chromatin accessibility maps reveal regulatory programs driving 
early mouse organogenesis. Nat Cell Biol ::, @QF–@JF (:U:U). 

!G@. Li, Y. E. et al. An atlas of gene regulatory elements in adult mouse cerebrum. Nature OUT, !:J–
!=D (:U:!). 

!GG. Stergachis, A. B. et al. Developmental Fate and Cellular Maturity Encoded in Human Regulatory 
DNA Landscapes. Cell (O@, QQQ–JU= (:U!=). 

!GD. Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human genome. Cell (T@, GJQG-
DUU! (:U:!). 

!GF. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and 
mouse. Nature OUT, !!!–!!J (:U:!). 

!GQ. Mayr, E. Animal Species and Evolution. Harvard University Press, !JD=. 



 

 
 

CFF 

!GJ. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature :SR, GDG–GFU (!JFQ). 

!DU. Pearson, J. C., Lemons, D. & McGinnis, W. Modulating Hox gene functions during animal body 
patterning. Nat Rev Genet R, QJ=–JU@ (:UUG). 

!D!. Heide, M. et al. Human-specific ARHGAP!!B increases size and folding of primate neocortex in 
the fetal marmoset. Science =RU, G@D–GGU (:U:U). 

!D:. Namba, T. et al. Human-Specific ARHGAP!!B Acts in Mitochondria to Expand Neocortical 
Progenitors by Glutaminolysis. Neuron (WO, QDF-QQ!.eJ (:U:U). 

!D=. Fiddes, I. T. et al. Human-Specific NOTCH:NL Genes Affect Notch Signaling and Cortical 
Neurogenesis. Cell (S=, !=GD-!=DJ.e:: (:U!Q). 

!D@. Enard, W. et al. Molecular evolution of FOXP:, a gene involved in speech and language. Nature 
@(T, QDJ–QF: (:UU:). 

!DG. Schreiweis, C. et al. Humanized Foxp: accelerates learning by enhancing transitions from 
declarative to procedural performance. Proc Natl Acad Sci U S A (((, !@:G=–!@:GQ (:U!@). 

!DD. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science (TT, 
!UF–!!D (!JFG). 

!DF. Necsulea, A. & Kaessmann, H. Evolutionary dynamics of coding and non-coding transcriptomes. 
Nat Rev Genet (O, F=@–F@Q (:U!@). 

!DQ. Kvon, E. Z. et al. Progressive Loss of Function in a Limb Enhancer during Snake Evolution. Cell 
(RS, D==-D@:.e!! (:U!D). 

!DJ. Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature @ST, 
=@=–=@Q (:U!!). 

!FU. Romero, I. G., Ruvinsky, I. & Gilad, Y. Comparative studies of gene expression and the evolution 
of gene regulation. Nat Rev Genet (=, GUG–G!D (:U!:). 

!F!. Perry, G. H. et al. Comparative RNA sequencing reveals substantial genetic variation in 
endangered primates. Genome Res ::, DU:–D!U (:U!:). 

!F:. Cardoso-Moreira, M. et al. Gene expression across mammalian organ development. Nature OS(, 
GUG–GUJ (:U!J). 

!F=. Cardoso-Moreira, M. et al. Developmental Gene Expression Differences between Humans and 
Mammalian Models. Cell Rep ==, !UQ=UQ (:U:U). 

!F@. Bakken, T. E. et al. A comprehensive transcriptional map of primate brain development. Nature 
O=O, =DF–=FG (:U!D). 

!FG. Sousa, A. M. M. et al. Molecular and cellular reorganization of neural circuits in the human 
lineage. Science =OT, !U:F–!U=: (:U!F). 

!FD. la Manno, G. et al. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem 
Cells. Cell (RS, GDD-GQU.e!J (:U!D). 

!FF. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. 
Nature OS=, D!–DQ (:U!J). 

!FQ. Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature OTR, :D:–
:DJ (:U:U). 



    

 
 

CF^ 

!FJ. Sepp, M. et al. Cellular development and evolution of the mammalian cerebellum. bioRxiv 
:U:!.!:.:U.@F=@@= (:U:!). 

!QU. Cotney, J. et al. The Evolution of Lineage-Specific Regulatory Activities in the Human Embryonic 
Limb. Cell (O@, !QG–!JD (:U!=). 

!Q!. Reilly, S. K. et al. Evolutionary changes in promoter and enhancer activity during human 
corticogenesis. Science =@S, !!GG–!!GJ (:U!G). 

!Q:. Prescott, S. L. et al. Enhancer Divergence and cis-Regulatory Evolution in the Human and Chimp 
Neural Crest. Cell (R=, DQ–Q= (:U!G). 

!Q=. Liu, X. et al. Extension of cortical synaptic development distinguishes humans from chimpanzees 
and macaques. Genome Res ::, D!!–D:: (:U!:). 

!Q@. Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain 
development. Nature OS@, @!Q–@:: (:U!J). 

!QG. Abzhanov, A. Von Baer’s law for the ages: Lost and found principles of developmental evolution. 
Trends in Genetics :U, F!:–F:: (:U!=). 

!QD. Irie, N. & Kuratani, S. The developmental hourglass model: a predictor of the basic body plan? 
Development (@(, @D@J–@DGG (:U!@). 

!QF. Kalinka, A. T. et al. Gene expression divergence recapitulates the developmental hourglass 
model. Nature @RT, Q!!–Q!D (:U!U). 

!QQ. Liu, J. et al. The hourglass model of evolutionary conservation during embryogenesis extends to 
developmental enhancers with signatures of positive selection. Genome Res =(, !GF=–!GQ! (:U:!). 

!QJ. Potrzebowski, L. et al. Chromosomal gene movements reflect the recent origin and biology of 
therian sex chromosomes. PLoS Biol R, FUJ–F!D (:UUQ). 

!JU. Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome. Science :TR, 
JD@–JDF (!JJJ). 

!J!. Wilson, M. A. & Makova, K. D. Genomic analyses of sex chromosome evolution. Annu Rev 
Genomics Hum Genet (W, ===–=G@ (:UUJ). 

!J:. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell-Badge, R. Male development of 
chromosomally female mice transgenic for Sry. Nature =O(, !!F–!:! (!JJ!). 

!J=. Kashimada, K. & Koopman, P. Sry: The master switch in mammalian sex determination. 
Development (=S, =J:!–=J=U (:U!U). 

!J@. Charlesworth, B. & Charlesworth, D. The degeneration of Y chromosomes. Philosophical 
Transactions of the Royal Society B: Biological Sciences =OO, !GD=–!GF: (:UUU). 

!JG. Bachtrog, D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome 
degeneration. Nat Rev Genet (@, !!=–!:@ (:U!=). 

!JD. Cortez, D. et al. Origins and functional evolution of y chromosomes across mammals. Nature 
OWT, @QQ–@J= (:U!@). 

!JF. Julien, P. et al. Mechanisms and evolutionary patterns of mammalian and avian dosage 
compensation. PLoS Biol (W, e!UU!=:Q (:U!:). 

!JQ. Galupa, R. & Heard, E. X-chromosome inactivation: A crossroads between chromosome 
architecture and gene regulation. Annu Rev Genet O:, G=G–GDD (:U!Q). 



 

 
 

CFY 

!JJ. Graves, J. A. M. Evolution of vertebrate sex chromosomes and dosage compensation. Nat Rev 
Genet (S, ==–@D (:U!D). 

:UU. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription 
through HDAC=. Nature O:(, :=:–:=D (:U!G). 

:U!. Grant, J. et al. Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. 
Nature @TS, :G@–:GQ (:U!:). 

:U:. Chaumeil, J. et al. Evolution from XIST-Independent to XIST-Controlled X-Chromosome 
Inactivation: Epigenetic Modifications in Distantly Related Mammals. PLoS One R, e!JU@U (:U!!). 

:U=. Sathyanesan, A. et al. Emerging connections between cerebellar development, behaviour and 
complex brain disorders. Nat Rev Neurosci :W, :JQ–=!= (:U!J). 

:U@. Guerreiro Stucklin, A. S. & Grotzer, M. A. Cerebellar tumors. Handb Clin Neurol (OO, :QJ–:JJ 
(:U!Q). 

:UG. Butts, T., Green, M. J. & Wingate, R. J. T. Development of the cerebellum: Simple steps to make 
a ‘little brain’. Development (@(, @U=!–@U@! (:U!@). 

:UD. White, J. J. & Sillitoe, R. v. Development of the cerebellum: From gene expression patterns to 
circuit maps. Wiley Interdiscip Rev Dev Biol :, !@J–!D@ (:U!=). 

:UF. Cerrato, V. et al. Multiple origins and modularity in the spatiotemporal emergence of cerebellar 
astrocyte heterogeneity. PLoS Biol (R, e:UUGG!= (:U!Q). 

:UQ. Parmigiani, E. et al. Heterogeneity and bipotency of astroglial-like cerebellar progenitors along 
the interneuron and glial lineages. Journal of Neuroscience =O, F=QQ–F@U: (:U!G). 

:UJ. Carter, R. A. et al. A Single-Cell Transcriptional Atlas of the Developing Murine Cerebellum. 
Current Biology :T, :J!U-:J:U.e: (:U!Q). 

:!U. Vladoiu, M. C. et al. Childhood cerebellar tumours mirror conserved fetal transcriptional 
programs. Nature OS:, DF–F= (:U!J). 

:!!. Wizeman, J. W., Guo, Q., Wilion, E. M. & Li, J. Y. H. Specification of diverse cell types during 
early neurogenesis of the mouse cerebellum. Elife T, e@:=QQ (:U!J). 

:!:. Aldinger, K. A. et al. Spatial and cell type transcriptional landscape of human cerebellar 
development. Nat Neurosci :@, !!D=–!!FG (:U:!). 

:!=. Butts, T., Modrell, M. S., Baker, C. V. H. & Wingate, R. J. T. The evolution of the vertebrate 
cerebellum: Absence of a proliferative external granule layer in a non-teleost ray-finned fish. Evol Dev (R, 
J:–!UU (:U!@). 

:!@. Iulianella, A., Wingate, R. J., Moens, C. B. & Capaldo, E. The generation of granule cells during 
the development and evolution of the cerebellum. Developmental Dynamics :@T, GUD–G!= (:U!J). 

:!G. Kebschul, J. M. et al. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type 
set. Science =SW, eabdGUGJ (:U:U). 

:!D. Libé-philippot, B. & Vanderhaeghen, P. Cellular and Molecular Mechanisms Linking Human 
Cortical Development and Evolution. Annu Rev Genet OO, GGG-GQ! (:U:!). 

:!F. Pinson, A. & Huttner, W. B. Neocortex expansion in development and evolution—from genes to 
progenitor cell biology. Curr Opin Cell Biol S=, J–!Q (:U:!). 



    

 
 

CFZ 

:!Q. Herculano-Houzel, S., Catania, K., Manger, P. R. & Kaas, J. H. Mammalian Brains Are Made of 
These: A Dataset of the Numbers and Densities of Neuronal and Nonneuronal Cells in the Brain of Glires, 
Primates, Scandentia, Eulipotyphlans, Afrotherians and Artiodactyls, and Their Relationship with Body 
Mass. Brain Behav Evol TR, !@G–!D= (:U!G). 

:!J. Barton, R. A. Embodied cognitive evolution and the cerebellum. Philosophical Transactions of 
the Royal Society B: Biological Sciences =RS, :UJF–:!UF (:U!:). 

::U. Barton, R. A. & Venditti, C. Rapid evolution of the cerebellum in humans and other great apes. 
Current Biology :@, :@@U–:@@@ (:U!@). 

::!. Neubauer, S., Hublin, J. J. & Gunz, P. The evolution of modern human brain shape. Sci Adv @, 
eaaoGJD! (:U!Q). 

:::. Haldipur, P. et al. Spatiotemporal expansion of primary progenitor zones in the developing 
human cerebellum. Science =RR, @G@–@DU (:U!J). 

::=. Sarropoulos, I., Marin, R., Cardoso-Moreira, M. & Kaessmann, H. Developmental dynamics of 
lncRNAs across mammalian organs and species. Nature OS(, G!U–G!@ (:U!J). 

::@. Sarropoulos, I. Functional roles and evolutionary dynamics of mammalian developmentally 
dynamic lncRNAs. MSc thesis, Heidelberg University, :U!F. 

::G. Zerbino, D. R. et al. Ensembl :U!Q. Nucleic Acids Res @R, DFG@–DFD! (:U!Q). 

::D. Conesa, A., Nueda, M. J., Ferrer, A. & Talón, M. maSigPro: A method to identify significantly 
differential expression profiles in time-course microarray experiments. Bioinformatics ::, !UJD–!!U: 
(:UUD). 

::F. Yevshin, I., Sharipov, R., Valeev, T., Kel, A. & Kolpakov, F. GTRD: A database of transcription 
factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res @O, DD!–DDF (:U!F). 

::Q. Olson, E. N. Gene regulatory networks in the evolution and development of the heart. Science 
=(=, !J::–!J:F (:UUD). 

::J. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature OWS, 
@GG–@D! (:U!@). 

:=U. Quek, X. C. et al. lncRNAdb v:.U: Expanding the reference database for functional long 
noncoding RNAs. Nucleic Acids Res @=, D!DQ–D!F= (:U!G). 

:=!. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-
coding RNAs in mammals. Nature @OT, ::=–::F (:UUJ). 

:=:. Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P. Conserved function of lincRNAs in 
vertebrate embryonic development despite rapid sequence evolution. Cell (@S, !G=F–!GGU (:U!!). 

:==. Amaral, P. P. et al. Genomic positional conservation identifies topological anchor point RNAs 
linked to developmental loci. Genome Biol (U, =: (:U!Q). 

:=@. Jiang, W., Liu, Y., Liu, R., Zhang, K. & Zhang, Y. The lncRNA DEANR! facilitates human endoderm 
differentiation by activating FOXA: expression. Cell Rep ((, !=F–!@Q (:U!G). 

:=G. Jian, X. & Felsenfeld, G. Insulin promoter in human pancreatic β cells contacts diabetes 
susceptibility loci and regulates genes affecting insulin metabolism. Proc Natl Acad Sci U S A ((O, E@D==–
E@D@! (:U!Q). 



 

 
 

CF[ 

:=D. Spigoni, G., Gedressi, C. & Mallamaci, A. Regulation of Emx: expression by antisense transcripts 
in murine cortico-cerebral precursors. PLoS One O, eQDGQ (:U!U). 

:=F. Sauvageau, M. et al. Multiple knockout mouse models reveal lincRNAs are required for life and 
brain development. Elife :, eU!F@J (:U!=). 

:=Q. Luo, S. et al. Divergent lncRNAs regulate gene expression and lineage differentiation in 
pluripotent cells. Cell Stem Cell (T, D=F–DG: (:U!D). 

:=J. Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA Enhancer Browser - A database 
of tissue-specific human enhancers. Nucleic Acids Res =O, DQQ–DJ: (:UUF). 

:@U. Studer, T. The developmental sex-biased expression of genes escaping X chromosome 
inactivation across mammals. PhD thesis, Heidelberg University, :U!Q. doi:!U.!!GQQ/HEIDOK.UUU:GF@U. 

:@!. Mahadevaiah, S. K., Sangrithi, M. N., Hirota, T. & Turner, J. M. A. A single-cell transcriptome 
atlas of marsupial embryogenesis and X inactivation. Nature OTR, D!:–D!F (:U:U). 

:@:. Sprague, D. et al. Nonlinear sequence similarity between the Xist and Rsx long noncoding RNAs 
suggests shared functions of tandem repeat domains. RNA :O, !UU@–!U!J (:U!J). 

:@=. Hobbs, M. et al. A transcriptome resource for the koala (Phascolarctos cinereus): Insights into 
koala retrovirus transcription and sequence diversity. BMC Genomics (O, FQD (:U!@). 

:@@. Sarropoulos, I. et al. Developmental and evolutionary dynamics of cis-regulatory elements in 
mouse cerebellar cells. Science =S=, eabg@DJD (:U:!). 

:@G. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin 
accessibility analysis. Nat Genet O=, @U=–@!! (:U:!). 

:@D. Millen, K. J., Steshina, E. Y., Iskusnykh, I. Y. & Chizhikov, V. v. Transformation of the cerebellum 
into more ventral brainstem fates causes cerebellar agenesis in the absence of Ptf!a function. Proc Natl 
Acad Sci U S A (((, E!FFF–E!FQD (:U!@). 

:@F. Prekop, H. T. et al. Sox!@ is required for a specific subset of cerebello–olivary projections. Journal 
of Neuroscience =T, JG=J–JGGU (:U!Q). 

:@Q. Allen Institute for Brain Science, Developing Mouse Brain Atlas. http://developingmouse.brain-
map.org/ (:UUQ). 

:@J. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell (SS, !QQQ-!JU:.e:! (:U!J). 

:GU. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol U, R!=F (:UUQ). 

:G!. Birnbaum, R. Y. et al. Coding exons function as tissue-specific enhancers of nearby genes. Genome 
Res ::, !UGJ–!UDQ (:U!:). 

:G:. Dalby, M., Rennie, S. & Andersson, R. FANTOMG transcribed enhancers in mm!U [Data set]. 
http://doi.org/!U.G:Q!/zenodo.!@!!:!! (:U!Q). 

:G=. Pliner, H. A. et al. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin 
Accessibility Data. Mol Cell S(, QGQ-QF!.eQ (:U!Q). 

:G@. Sabarís, G., Laiker, I., Preger-Ben Noon, E. & Frankel, N. Actors with Multiple Roles: Pleiotropic 
Enhancers and the Paradigm of Enhancer Modularity. Trends in Genetics =O, @:=–@== (:U!J). 

:GG. Sagner, A. et al. A shared transcriptional code orchestrates temporal patterning of the central 
nervous system. PLoS Biology (U, e=UU!@GU (:U:!). 



    

 
 

CF\ 

:GD. Zhang, T. et al. Generation of excitatory and inhibitory neurons from common progenitors via 
Notch signaling in the cerebellum. Cell Rep =O, !UJ:UQ (:U:!). 

:GF. Seto, Y. et al. Temporal identity transition from Purkinje cell progenitors to GABAergic 
interneuron progenitors in the cerebellum. Nat Commun O, ===F (:U!@). 

:GQ. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat 
Methods (R, !:QJ–!:JD (:U!J). 

:GJ. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly 
reconstructs lineage branching. Nat Methods (=, Q@G–Q@Q (:U!D). 

:DU. la Manno, G. et al. Molecular architecture of the developing mouse brain. Nature OUR, J:–JD 
(:U:!). 

:D!. Telley, L. et al. Temporal patterning of apical progenitors and their daughter neurons in the 
developing neocortex. Science =R@, eaav:G:: (:U!J). 

:D:. Geirsdottir, L. et al. Cross-Species Single-Cell Analysis Reveals Divergence of the Primate 
Microglia Program. Cell (SU, !DUJ-!D::.e!D (:U!J). 

:D=. Götz, M., Sirko, S., Beckers, J. & Irmler, M. Reactive astrocytes as neural stem or progenitor cells: 
In vivo lineage, In vitro potential, and Genome-wide expression analysis. Glia R=, !@G:–!@DQ (:U!G). 

:D@. Volterra, A. & Meldolesi, J. Astrocytes, from brain glue to communication elements: The 
revolution continues. Nat Rev Neurosci R, D:D–D@U (:UUG). 

:DG. Vierstra, J. et al. Global reference mapping of human transcription factor footprints. Nature OT=, 
F:J–F=D (:U:U). 

:DD. Zhu, F. et al. The interaction landscape between transcription factors and the nucleosome. 
Nature OR:, FD–Q! (:U!Q). 

:DF. Ibarra, I. L. et al. Mechanistic insights into transcription factor cooperativity and its impact on 
protein-phenotype interactions. Nat Commun ((, !:@ (:U:U). 

:DQ. Genereux, D. P. et al. A comparative genomics multitool for scientific discovery and conservation. 
Nature OTS, :@U–:@G (:U:U). 

:DJ. Nobrega, M. A., Ovcharenko, I., Afzal, V. & Rubin, E. M. Scanning Human Gene Deserts for Long-
Range Enhancers. Science =W:, @!= (:UU=). 

:FU. Iyer, M. K. et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 
@S, !JJ–:UQ (:U!G). 

:F!. Yan, X. et al. Comprehensive Genomic Characterization of Long Non-coding RNAs across Human 
Cancers. Cancer Cell :T, G:J–G@U (:U!G). 

:F:. Du, Z. et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in 
human cancer. Nat Struct Mol Biol :W, JUQ–J!= (:U!=). 

:F=. Kumarswamy, R. et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients 
with heart failure. Circ Res ((@, !GDJ–!GFG (:U!@). 

:F@. de Goede, O. M. et al. Population-scale tissue transcriptomics maps long non-coding RNAs to 
complex disease. Cell (T@, :D==-:D@Q.e!J (:U:!). 

:FG. Matsui, M. & Corey, D. R. Non-coding RNAs as drug targets. Nat Rev Drug Discov (R, !DF–!FJ 
(:U!F). 



 

 
 

C^W 

:FD. Short, P. J. et al. De novo mutations in regulatory elements in neurodevelopmental disorders. 
Nature OOO, D!!–D!D (:U!Q). 

:FF. Northcott, P. A. et al. Enhancer hijacking activates GFI! family oncogenes in medulloblastoma. 
Nature O((, @:Q–@=@ (:U!@). 

:FQ. Gjoneska, E. et al. Conserved epigenomic signals in mice and humans reveal immune basis of 
Alzheimer’s disease. Nature O(T, =DG–=DJ (:U!G). 

:FJ. Calderon, D. et al. Landscape of stimulation-responsive chromatin across diverse human immune 
cells. Nat Genet O(, !@J@–!GUG (:U!J). 

:QU. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide 
association summary statistics. Nat Genet @S, !::Q–!:=G (:U!G). 

:Q!. Matharu, N. & Ahituv, N. Modulating gene regulation to treat genetic disorders. Nat Rev Drug 
Discov (U, FGF–FFG (:U:U). 

:Q:. Mich, J. K. et al. Functional enhancer elements drive subclass-selective expression from mouse 
to primate neocortex. Cell Rep =@, !UQFG@ (:U:!). 

:Q=. Graybuck, L. T. et al. Enhancer viruses for combinatorial cell-subclass-specific labeling. Neuron 
(WU, !@@J-!@D@.e!= (:U:!). 

:Q@. Snetkova, V., Pennacchio, L. A., Visel, A. & Dickel, D. E. Perfect and imperfect views of 
ultraconserved sequences. Nat Rev Genet :=, !Q:–!J@ (:U:!). 

:QG. Snetkova, V. et al. Ultraconserved enhancer function does not require perfect sequence 
conservation. Nat Genet O=, G:!–G:Q (:U:!). 

:QD. Fish, A., Chen, L. & Capra, J. A. Gene regulatory enhancers with evolutionarily conserved activity 
aremore pleiotropic than those with species-specific activity. Genome Biol Evol U, :D!G–:D:G (:U!F). 

:QF. Fuqua, T. et al. Dense and pleiotropic regulatory information in a developmental enhancer. 
Nature OTS, :=G–:=J (:U:U). 

:QQ. Kvon, E. Z. et al. Comprehensive In Vivo Interrogation Reveals Phenotypic Impact of Human 
Enhancer Variants. Cell (TW, !:D:-!:F!.e!G (:U:U). 

:QJ. Taskiran, I. I., Spanier, K. I., Christiaens, V. & Mauduit, D. Cell type directed design of synthetic 
enhancers. bioRxiv :U::.UF.:D.GU!@DD (:U::). 

:JU. Xu, Y. et al. A single-cell transcriptome atlas of human early embryogenesis. bioRxiv 
:U:!.!!.=U.@FUGQ= (:U:!). 

:J!. Vaishnav, E. D. et al. The evolution, evolvability and engineering of gene regulatory DNA. Nature 
RW=, @GG–@D= (:U::). 

:J:. Bustamante, C. D. et al. Natural selection on protein-coding genes in the human genome. Nature 
@=S, !!G=–!!GF (:UUG). 

:J=. Pollard, K. S. et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet 
:, !GJJ–!D!! (:UUD). 

:J@. McLean, C. Y. et al. Human-specific loss of regulatory DNA and the evolution of human-specific 
traits. Nature @S(, :!D–:!J (:U!!). 

:JG. Vermunt, M. W. et al. Epigenomic annotation of gene regulatory alterations during evolution of 
the primate brain. Nat Neurosci (U, @J@–GU= (:U!D). 



    

 
 

C^C 

:JD. Uebbing, S. et al. Massively parallel discovery of human-specific substitutions that alter enhancer 
activity. Proc Natl Acad Sci U S A ((T, e:UUFU@J!!Q (:U:!). 

:JF. Keough, K. et al. Machine-learning dissection of Human Accelerated Regions in primate 
neurodevelopment. bioRxiv :GD=!= (:U::). 

:JQ. Haygood, R., Fedrigo, O., Hanson, B., Yokoyama, K. D. & Wray, G. A. Promoter regions of many 
neural- and nutrition-related genes have experienced positive selection during human evolution. Nat 
Genet =U, !!@U–!!@@ (:UUF). 

:JJ. Taylor, M. S. et al. Rapidly evolving human promoter regions. Nat Genet @W, !:D:–!:D= (:UUQ). 

=UU. Liu, J. & Robinson-Rechavi, M. Robust inference of positive selection on regulatory sequences in 
the human brain. Sci Adv R, eabcJQD= (:U:U). 

=U!. Wilson, M. D. et al. Species-specific transcription in mice carrying human chromosome :!. 
Science =::, @=@–@=Q (:UUQ). 

=U:. Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. & Luscombe, N. M. A census of human 
transcription factors: Function, expression and evolution. Nat Rev Genet (W, :G:–:D= (:UUJ). 

=U=. Fleck, J. S. et al. Inferring and perturbing cell fate regulomes in human cerebral organoids. bioRxiv 
:U:!.UQ.:@.@GF@DU (:U:!). 

=U@. Kamal, A. et al. GRaNIE and GRaNPA: Inference and evaluation of enhancer-mediated gene 
regulatory networks applied to study macrophages. bioRxiv :U:!.!:.!Q.@F=:JU (:U:!). 

=UG. González-Blas, C. B. et al. SCENIC+: single-cell multiomic inference of enhancers and gene 
regulatory networks. bioRxiv :U::.UQ.!J.GU@GUG (:U::). 

=UD. Argelaguet, R., Lohoff, T., Li, J. G., Nakhuda, A. & Drage, D. Decoding gene regulation in the 
mouse embryo using single-cell multi-omics. bioRxiv :U::.UD.!G.@JD:=J (:U::). 

=UF. Frank, C. L. et al. Regulation of chromatin accessibility and Zic binding at enhancers in the 
developing cerebellum. Nat Neurosci (T, D@F–DGD (:U!G). 

=UQ. Zuin, J. et al. Nonlinear control of transcription through enhancer–promoter interactions. Nature 
RW@, GF!–GFF (:U::). 

=UJ. Blassberg, R. et al. Sox: levels regulate the chromatin occupancy of WNT mediators in epiblast 
progenitors responsible for vertebrate body formation. Nat Cell Biol :@, D==–D@@ (:U::). 

=!U. Neumayr, C. et al. Differential cofactor dependencies define distinct types of human enhancers. 
Nature RWR, @UD–@!= (:U::). 

=!!. Kvon, E. Z. Using transgenic reporter assays to functionally characterize enhancers in animals. 
Genomics (WR, !QG–!J: (:U!G). 

=!:. Inoue, F. & Ahituv, N. Decoding enhancers using massively parallel reporter assays. Genomics 
(WR, !GJ–!D@ (:U!G). 

=!=. Cooper, Y. A. et al. Functional regulatory variants implicate distinct transcriptional networks in 
dementia. Science =SS, eabiQDG@ (:U::). 

=!@. Dutrow, E. V. et al. Modeling uniquely human gene regulatory function via targeted humaniza-
tion of the mouse genome. Nat Commun (=, =U@ (:U::). 

=!G. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq 
reads. Nat Biotechnol ==, :JU–:JG (:U!G). 



 

 
 

C^D 

=!D. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments 
with TopHat and Cufflinks. Nat Protoc S, GD:–GFQ (:U!:). 

=!F. Wang, L. et al. CPAT: Coding-potential assessment tool using an alignment-free logistic 
regression model. Nucleic Acids Res @(, eF@ (:U!=). 

=!Q. Washietl, S. et al. RNAcode: Robust discrimination of coding and noncoding regions in 
comparative sequence data. RNA (S, GFQ–GJ@ (:U!!). 

=!J. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search 
tool. J Mol Biol :(O, @U=–@!U (!JJU). 

=:U. Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: Identification of Ortholog Groups for Eukaryotic 
Genomes. Genome Res (=, :!FQ–:!QJ (:UU=). 

=:!. Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. 
Bioinformatics :R, Q@!–Q@: (:U!U). 

=::. Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput 
sequencing data. Bioinformatics =(, !DD–!DJ (:U!G). 

=:=. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-
seq data with DESeq:. Genome Biol (O, GGU (:U!@). 

=:@. Yanai, I. et al. Genome-wide midrange transcription profiles reveal expression level relationships 
in human tissue specification. Bioinformatics :(, DGU–DGJ (:UUG). 

=:G. Wucher, V. et al. FEELnc: A tool for long non-coding RNA annotation and its application to the 
dog transcriptome. Nucleic Acids Res @O, eGF (:U!F). 

=:D. Hensman, J., Rattray, M. & Lawrence, N. D. Fast nonparametric clustering of structured time-
series. IEEE Trans Pattern Anal Mach Intell =S, =Q=–=J= (:U!G). 

=:F. Hensman, J., Rattray, M. & Lawrence, N. D. Fast variational inference in the conjugate 
exponential family. in Advances in Neural Information Processing Systems @, :QQQ–:QJD (:U!:). 

=:Q. Hensman, J., Lawrence, N. D. & Rattray, M. Hierarchical Bayesian modelling of gene expression 
time series across irregularly sampled replicates and clusters. BMC Bioinformatics (@, :G: (:U!=). 

=:J. Wang, J., Vasaikar, S., Shi, Z., Greer, M. & Zhang, B. WebGestalt :U!F: A more comprehensive, 
powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res @O, W!=U–W!=F 
(:U!F). 

==U. Gel, B. & Serra, E. karyoploteR: an R/Bioconductor package to plot customizable genomes 
displaying arbitrary data. Bioinformatics ==, =UQQ–=UJU (:U!F). 

==!. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics :U, !G–:! (:U!=). 

==:. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning 
sequence reads to genomic features. Bioinformatics =W, J:=–J=U (:U!@). 

===. Rice, P., Longden, L. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software 
Suite. Trends in Genetics (R, :FD–:FF (:UUU). 

==@. Bailey, T. L. Discovering Novel Sequence Motifs with MEME. Curr Protoc Bioinformatics doi: 
!U.!UU:/U@F!:GUJG=.biU:U@sUU (:UU=). 

==G. Hahne, F. & Ivanek, R. Visualizing genomic data using Gviz and Bioconductor. Methods in 
Molecular Biology (@(T, ==G–=G! (:U!D). 



    

 
 

C^B 

==D. Trevino, A. E. et al. Chromatin accessibility dynamics in a model of human forebrain 
development. Science =RS, eaay!D@G (:U:U). 

==F. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat 
Biotechnol :T, @JG–GU! (:U!U). 

==Q. Heinz, S. et al. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-
Regulatory Elements Required for Macrophage and B Cell Identities. Mol Cell =T, GFD–GQJ (:U!U). 

==J. Kumar, L. & Futschik, M. E. Mfuzz: A software package for soft clustering of microarray data. 
Bioinformation :, G–F (:UUF). 

=@U. Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J Stat Softw :O, 
!–!Q (:UUQ). 

=@!. Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed: Enabling 
browsing of large distributed datasets. Bioinformatics :R, ::U@–::UF (:U!U). 

=@:. Karolchik, D. et al. The UCSC table browser data retrieval tool. Nucleic Acids Res =:, D@J=-D@JD 
(:UU@). 

=@=. Hu, H. et al. AnimalTFDB =.U: A comprehensive resource for annotation and prediction of animal 
transcription factors. Nucleic Acids Res @S, D==–D=Q (:U!J). 

=@@. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based 
single-cell RNA sequencing data. Gigascience U, giaa!G! (:U:U). 

=@G. Welch, J. D. et al. Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain 
Cell Identity. Cell (SS, !QF=-!QQF.e!F (:U!J). 

=@D. Giorgino, T. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw 
Package. J Stat Softw =(, doi:!U.!QD=F/jss.vU=!.iUF (:UUJ). 

=@F. Lundberg, S. M. & Lee, S. I. A Unified Approach to Interpreting Model Predictions. arXiv 
!FUG.UFQF@ (:U!F). 

=@Q. Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for storing 
and analyzing multiple genome alignments. Bioinformatics :U, !=@!–!=@: (:U!=). 

=@J. Zhang, X., Kaplow, I. M., Wirthlin, M., Park, T. Y. & Pfenning, A. R. HALPER facilitates the 
identification of regulatory element orthologs across species. Bioinformatics =R, @==J–@=@U (:U:U). 

=GU. Katoh, K., Misawa, K., Kuma, K. I. & Miyata, T. MAFFT: a novel method for rapid multiple 
sequence alignment based on fast Fourier transform. Nucleic Acids Res =W, =UGJ–=UDD (:UU:). 

=G!. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version :--
a multiple sequence alignment editor and analysis workbench. Bioinformatics :O, !!QJ–!!J! (:UUJ). 

 


