7,870 research outputs found

    Machine Learning Applications in Traumatic Brain Injury: A Spotlight on Mild TBI

    Full text link
    Traumatic Brain Injury (TBI) poses a significant global public health challenge, contributing to high morbidity and mortality rates and placing a substantial economic burden on healthcare systems worldwide. The diagnosis of TBI relies on clinical information along with Computed Tomography (CT) scans. Addressing the multifaceted challenges posed by TBI has seen the development of innovative, data-driven approaches, for this complex condition. Particularly noteworthy is the prevalence of mild TBI (mTBI), which constitutes the majority of TBI cases where conventional methods often fall short. As such, we review the state-of-the-art Machine Learning (ML) techniques applied to clinical information and CT scans in TBI, with a particular focus on mTBI. We categorize ML applications based on their data sources, and there is a spectrum of ML techniques used to date. Most of these techniques have primarily focused on diagnosis, with relatively few attempts at predicting the prognosis. This review may serve as a source of inspiration for future research studies aimed at improving the diagnosis of TBI using data-driven approaches and standard diagnostic data.Comment: The manuscript has 34 pages, 3 figures, and 4 table

    Development and External Validation of a Deep Learning Algorithm to Identify and Localize Subarachnoid Hemorrhage on CT Scans

    Full text link
    OBJECTIVE In medical imaging, a limited number of trained deep learning algorithms have been externally validated and released publicly. We hypothesized that a deep learning algorithm can be trained to identify and localize subarachnoid haemorrhage (SAH) on head computed tomography (CT) scans, and that the trained model performs satisfactorily when tested using external and real-world data. METHODS We used non-contrast head CT images of patients admitted Helsinki University Hospital between 2012 and 2017. We manually segmented (i.e. delineated) SAH on 90 head CT scans, and used the segmented CT scans together with 22 negative (no SAH) control CT scans in training an open-source convolutional neural network (U-Net) to identify and localize SAH. We then tested the performance of the trained algorithm by using external datasets (137 SAH and 1242 control cases) collected in two foreign countries, and also by creating a dataset of consecutive emergency head CT scans (8 SAH and 511 control cases) performed during on call hours in 5 different domestic hospitals in September 2021. We assessed the algorithm's capability to identify SAH by calculating patient- and slice-level performance metrics, such as sensitivity and specificity. RESULTS In the external validation set of 1379 cases, the algorithm identified 136 out of 137 SAH cases correctly (sensitivity 99.3%, specificity 63.2%). Of the 49064 axial head CT slices, the algorithm identified and localized SAH in 1845 out of 2110 slices with SAH (sensitivity 87.4%, specificity 95.3%). Of 519 consecutive emergency head CT scans imaged in September 2021, the algorithm identified all 8 SAH cases correctly (sensitivity 100.0%, specificity 75.3%). The slice-level (27167 axial slices in total) sensitivity and specificity were 87.3% and 98.8%, as the algorithm identified and localized SAH in 58 out of 77 slices with SAH. The performance of the algorithm can be tested on through a webservice. CONCLUSIONS We show that the shared algorithm identifies SAH cases with a high sensitivity, and that the slice-level specificity is high. In addition to openly sharing a high-performing deep learning algorithm, our work presents infrequently used approaches in designing, training, testing and reporting deep learning algorithms developed for medical imaging diagnostics. CLASSIFICATION OF EVIDENCE This study provides Class III evidence a deep learning algorithm correctly identifies the presence of subarachnoid hemorrhage on CT scan

    Cross-Modal Data Programming Enables Rapid Medical Machine Learning

    Full text link
    Labeling training datasets has become a key barrier to building medical machine learning models. One strategy is to generate training labels programmatically, for example by applying natural language processing pipelines to text reports associated with imaging studies. We propose cross-modal data programming, which generalizes this intuitive strategy in a theoretically-grounded way that enables simpler, clinician-driven input, reduces required labeling time, and improves with additional unlabeled data. In this approach, clinicians generate training labels for models defined over a target modality (e.g. images or time series) by writing rules over an auxiliary modality (e.g. text reports). The resulting technical challenge consists of estimating the accuracies and correlations of these rules; we extend a recent unsupervised generative modeling technique to handle this cross-modal setting in a provably consistent way. Across four applications in radiography, computed tomography, and electroencephalography, and using only several hours of clinician time, our approach matches or exceeds the efficacy of physician-months of hand-labeling with statistical significance, demonstrating a fundamentally faster and more flexible way of building machine learning models in medicine

    PHE-SICH-CT-IDS: A Benchmark CT Image Dataset for Evaluation Semantic Segmentation, Object Detection and Radiomic Feature Extraction of Perihematomal Edema in Spontaneous Intracerebral Hemorrhage

    Full text link
    Intracerebral hemorrhage is one of the diseases with the highest mortality and poorest prognosis worldwide. Spontaneous intracerebral hemorrhage (SICH) typically presents acutely, prompt and expedited radiological examination is crucial for diagnosis, localization, and quantification of the hemorrhage. Early detection and accurate segmentation of perihematomal edema (PHE) play a critical role in guiding appropriate clinical intervention and enhancing patient prognosis. However, the progress and assessment of computer-aided diagnostic methods for PHE segmentation and detection face challenges due to the scarcity of publicly accessible brain CT image datasets. This study establishes a publicly available CT dataset named PHE-SICH-CT-IDS for perihematomal edema in spontaneous intracerebral hemorrhage. The dataset comprises 120 brain CT scans and 7,022 CT images, along with corresponding medical information of the patients. To demonstrate its effectiveness, classical algorithms for semantic segmentation, object detection, and radiomic feature extraction are evaluated. The experimental results confirm the suitability of PHE-SICH-CT-IDS for assessing the performance of segmentation, detection and radiomic feature extraction methods. To the best of our knowledge, this is the first publicly available dataset for PHE in SICH, comprising various data formats suitable for applications across diverse medical scenarios. We believe that PHE-SICH-CT-IDS will allure researchers to explore novel algorithms, providing valuable support for clinicians and patients in the clinical setting. PHE-SICH-CT-IDS is freely published for non-commercial purpose at: https://figshare.com/articles/dataset/PHE-SICH-CT-IDS/23957937

    Development and External Validation of a Deep Learning Algorithm to Identify and Localize Subarachnoid Hemorrhage on Computed Tomography Scans

    Get PDF
    Diagnosing subarachnoid hemorrhages is commonly done through cranial computed tomography. Subarachnoid hemorrhages are associated with high mortality rates and a rapid and correct diagnosis is essential in the treatment of this disease. In midst of the recent advances in machine learning in neuroradiology, the Artificial Intelligence Team of the University Hospital Helsinki developed a convolutional neural network algorithm that can recognize and segment subarachnoid hemorrhages in axial slices of cranial computed tomography scans. The goal was to externally validate the convolutional neural network algorithm and assess its sensitivity and specificity
    • …
    corecore