5,028 research outputs found

    Modelling of a post-combustion CO₂ capture process using neural networks

    Get PDF
    This paper presents a study of modelling post-combustion CO₂ capture process using bootstrap aggregated neural networks. The neural network models predict CO₂ capture rate and CO₂ capture level using the following variables as model inputs: inlet flue gas flow rate, CO₂ concentration in inlet flue gas, pressure of flue gas, temperature of flue gas, lean solvent flow rate, MEA concentration and temperature of lean solvent. In order to enhance model accuracy and reliability, multiple feedforward neural network models are developed from bootstrap re-sampling replications of the original training data and are combined. Bootstrap aggregated model can offer more accurate predictions than a single neural network, as well as provide model prediction confidence bounds. Simulated CO₂ capture process operation data from gPROMS simulation are used to build and verify neural network models. Both neural network static and dynamic models are developed and they offer accurate predictions on unseen validation data. The developed neural network models can then be used in the optimisation of the CO₂ capture process

    Modelling of a post-combustion CO2 capture process using extreme learning machine

    Get PDF
    This paper presents modelling of a post-combustion CO2 capture process using bootstrap aggregated extreme learning machine (ELM). ELM randomly assigns the weights between input and hidden layers and obtains the weights between the hidden layer and output layer using regression type approach in one step. This feature allows an ELM model being developed very quickly. This paper proposes using principal component regression to obtain the weights between the hidden and output layers to address the collinearity issue among hidden neuron outputs. Due to the weights between input and hidden layers are randomly assigned, ELM models could have variations in performance. This paper proposes combining multiple ELM models to enhance model prediction accuracy and reliability. To predict the CO2 production rate and CO2 capture level, eight parameters in the process were utilized as model input variables: inlet gas flow rate, CO2 concentration in inlet flow gas, inlet gas temperature, inlet gas pressure, lean solvent flow rate, lean solvent temperature, lean loading and reboiler duty. The bootstrap re-sampling of training data was applied for building each single ELM and then the individual ELMs are stacked, thereby enhancing the model accuracy and reliability. The bootstrap aggregated extreme learning machine can provide fast learning speed and good generalization performance, which will be used to optimize the CO2 capture process

    Energy efficient control and optimisation techniques for distillation processes

    Get PDF
    PhD ThesisDistillation unit is one of the most energy intensive processes and is among the major CO2 emitter in the chemical and petrochemical industries. In the quest to reduce the energy consumption and hence the environmental implications of unutilised energy, there is a strong motivation for energy saving procedures for conventional columns. Several attempts have been made to redesign and heat integrate distillation column with the aim of reducing the energy consumption of the column. Most of these attempts often involve additional capital costs in implementing. Also a number of works on applying the second law of thermodynamics to distillation column are focused on quantifying the efficiency of the column. This research aims at developing techniques of increasing the energy efficiency of the distillation column with the application of second law using the tools of advanced control and optimisation. Rigorous model from the fundamental equations and data driven models using Artificial neural network (ANN) and numerical methods (PLS, PCR, MLR) of a number of distillation columns are developed. The data for the data driven models are generated from HYSYS simulation. This research presents techniques for selecting energy efficient control structure for distillation processes. Relative gain array (RGA) and relative exergy array (REA ) were used in the selection of appropriate distillation control structures. The viability of the selected control scheme in the steady state is further validated by the dynamic simulation in responses to various process disturbances and operating condition changes. The technique is demonstrated on two binary distillation systems. In addition, presented in this thesis is optimisation procedures based on second law analysis aimed at minimising the inefficiencies of the columns without compromising the qualities of the products. ANN and Bootstrap aggregated neural network (BANN) models of exergy efficiency were developed. BANN enhances model prediction accuracy and also provides model prediction confidence bounds. The objective of the optimisation is to maximise the exergy efficiency of the column. To improve the reliability of the optimisation strategy, a modified objective function incorporating model prediction confidence bounds was presented. Multiobjective optimisation was also explored. Product quality constraints introduce a measure of penalization on the optimisation result to give as close as possible to what obtains in reality. The optimisation strategies developed were applied to binary systems, multicomponents system, and crude distillation system. The crude distillation system was fully explored with emphasis on the preflash unit, atmospheric distillation system (ADU) and vacuum distillation system (VDU). This study shows that BANN models result in greater model accuracy and more robust models. The proposed ii techniques also significantly improve the second law efficiency of the system with an additional economic advantage. The method can aid in the operation and design of energy efficient column.Commonwealth scholarship commissio

    25 Years of IIF Time Series Forecasting: A Selective Review

    Get PDF
    We review the past 25 years of time series research that has been published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985; International Journal of Forecasting 1985-2005). During this period, over one third of all papers published in these journals concerned time series forecasting. We also review highly influential works on time series forecasting that have been published elsewhere during this period. Enormous progress has been made in many areas, but we find that there are a large number of topics in need of further development. We conclude with comments on possible future research directions in this field.Accuracy measures; ARCH model; ARIMA model; Combining; Count data; Densities; Exponential smoothing; Kalman Filter; Long memory; Multivariate; Neural nets; Nonlinearity; Prediction intervals; Regime switching models; Robustness; Seasonality; State space; Structural models; Transfer function; Univariate; VAR.

    A Nonlinear Model Predictive Control Strategy Using Multiple Neural Network Models.

    Get PDF
    Combining multiple neural networks appears to be a very promising approach for improving neural network generalization since it is very difficult, if not impossible, to develop a perfect single neural network

    Identifying Real Estate Opportunities using Machine Learning

    Full text link
    The real estate market is exposed to many fluctuations in prices because of existing correlations with many variables, some of which cannot be controlled or might even be unknown. Housing prices can increase rapidly (or in some cases, also drop very fast), yet the numerous listings available online where houses are sold or rented are not likely to be updated that often. In some cases, individuals interested in selling a house (or apartment) might include it in some online listing, and forget about updating the price. In other cases, some individuals might be interested in deliberately setting a price below the market price in order to sell the home faster, for various reasons. In this paper, we aim at developing a machine learning application that identifies opportunities in the real estate market in real time, i.e., houses that are listed with a price substantially below the market price. This program can be useful for investors interested in the housing market. We have focused in a use case considering real estate assets located in the Salamanca district in Madrid (Spain) and listed in the most relevant Spanish online site for home sales and rentals. The application is formally implemented as a regression problem that tries to estimate the market price of a house given features retrieved from public online listings. For building this application, we have performed a feature engineering stage in order to discover relevant features that allows for attaining a high predictive performance. Several machine learning algorithms have been tested, including regression trees, k-nearest neighbors, support vector machines and neural networks, identifying advantages and handicaps of each of them.Comment: 24 pages, 13 figures, 5 table

    Bounded Influence Approaches to Constrained Mixed Vector Autoregressive Models

    Get PDF
    The proliferation of many clinical studies obtaining multiple biophysical signals from several individuals repeatedly in time is increasingly recognized, a recognition generating growth in statistical models that analyze cross-sectional time series data. In general, these statistical models try to answer two questions: (i) intra-individual dynamics of the response and its relation to some covariates; and, (ii) how this dynamics can be aggregated consistently in a group. In response to the first question, we propose a covariate-adjusted constrained Vector Autoregressive model, a technique similar to the STARMAX model (Stoffer, JASA 81, 762-772), to describe serial dependence of observations. In this way, the number of parameters to be estimated is kept minimal while offering flexibility for the model to explore higher order dependence. In response to (ii), we use mixed effects analysis that accommodates modelling of heterogeneity among cross-sections arising from covariate effects that vary from one cross-section to another. Although estimation of the model can proceed using standard maximum likelihood techniques, we believed it is advantageous to use bounded influence procedures in the modelling (such as choosing constraints) and parameter estimation so that the effects of outliers can be controlled. In particular, we use M-estimation with a redescending bounding function because its influence function is always bounded. Furthermore, assuming consistency, this influence function is useful to obtain the limiting distribution of the estimates. However, this distribution may not necessarily yield accurate inference in the presence of contamination as the actual asymptotic distribution might have wider tails. This led us to investigate bootstrap approximation techniques. A sampling scheme based on IID innovations is modified to accommodate the cross-sectional structure of the data. Then the M-estimation is applied to each bootstrap sample naively to obtain the asymptotic distribution of the estimates.We apply these strategies to the extracted BOLD activation from several regions of the brain from a group of individuals to describe joint dynamic behavior between these locations. We used simulated data with both innovation and additive outliers to test whether the estimation procedure is accurate despite contamination
    corecore