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ABSTRACT 

Distillation unit is one of the most energy intensive processes and is among the major 

CO2 emitter in the chemical and petrochemical industries. In the quest to reduce the 

energy consumption and hence the environmental implications of unutilised energy, 

there is a strong motivation for energy saving procedures for conventional columns. 

Several attempts have been made to redesign and heat integrate distillation column with 

the aim of reducing the energy consumption of the column. Most of these attempts often 

involve additional capital costs in implementing. Also a number of works on applying 

the second law of thermodynamics to distillation column are focused on quantifying the 

efficiency of the column. This research aims at developing techniques of increasing the 

energy efficiency of the distillation column with the application of second law using the 

tools of advanced control and optimisation. Rigorous model from the fundamental 

equations and data driven models using Artificial neural network (ANN) and numerical 

methods (PLS, PCR, MLR) of a number of distillation columns are developed. The data 

for the data driven models are generated from HYSYS simulation. This research 

presents techniques for selecting energy efficient control structure for distillation 

processes. Relative gain array (RGA) and relative exergy array (REA ) were used in the 

selection of appropriate distillation control structures. The viability of the selected 

control scheme in the steady state is further validated by the dynamic simulation in 

responses to various process disturbances and operating condition changes. The 

technique is demonstrated on two binary distillation systems. In addition, presented in 

this thesis is optimisation procedures based on second law analysis aimed at minimising 

the inefficiencies of the columns without compromising the qualities of the products.  

ANN and Bootstrap aggregated neural network (BANN) models of exergy efficiency 

were developed. BANN enhances model prediction accuracy and also provides model 

prediction confidence bounds. The objective of the optimisation is to maximise the 

exergy efficiency of the column. To improve the reliability of the optimisation strategy, 

a modified objective function incorporating model prediction confidence bounds was 

presented. Multiobjective optimisation was also explored. Product quality constraints 

introduce a measure of penalization on the optimisation result to give as close as 

possible to what obtains in reality. The optimisation strategies developed were applied 

to binary systems, multicomponents system, and crude distillation system. The crude 

distillation system was fully explored with emphasis on the preflash unit, atmospheric 

distillation system (ADU) and vacuum distillation system (VDU). This study shows that 

BANN models result in greater model accuracy and more robust models. The proposed 
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techniques also significantly improve the second law efficiency of the system with an 

additional economic advantage. The method can aid in the operation and design of 

energy efficient column.  
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𝛾𝑖  Activity coefficient 
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CHAPTER 1: INTRODUCTION 

1.1 Preamble 

The most widely used separation technique (contrary to predictions of being superseded 

by other separation technique) in the chemical and petrochemical industry is distillation. 

It is however a highly energy intensive process and contributes significantly to the 

capital investment in chemical and petrochemical industries. Of all the industries, the 

refinery industry is one of the most highly energy intensive industries with the cost of 

energy for heat and power accounting for 40% of the operating costs (White, 2012) and 

3 % of the world energy consumption (Humphrey and Siebert, 1992). Crude in its 

original state is of limited value until it is separated into its constituents which may be 

further processed and distillation processes are used extensively in achieving this 

separation, thus make refinery processes an energy intensive processes. According to 

the North America Industry Classification System (NAICS), the petroleum refineries 

consumed 3.1 quadrillion Btu in 2002, almost 20% of the fuel energy consumed by the 

U.S. About 35% of this is consumed in two types of distillation processes in the 

refinery, the atmospheric crude distillation unit (ADU) and vacuum distillation unit 

(VDU) (Sankaranarayanan et al., 2010). It can be concluded that operating costs of 

distillation column are often a major part of the total operating cost of the refinery. 

Developing effective and reliable system for the efficient operation of the distillation 

unit is therefore of paramount importance. 

Process intensification of distillation unit has always attracted the interest of researchers 

and quite a number of publications have been focused on ways to reduce the energy 

consumption of distillation processes via alternate energy efficient arrangements. Of 

note amongst these are the petyluk column (Amminudin et al., 2001), heat integrated 

distillation column (HIDC)  (Nakaiwa et al., 2003, Amiya, 2010), thermally coupled 

dividing wall column and intensified distillation column (Errico et al., 2009, Vazquez–

Castillo et al., 2009). Conventional distillation column sequences with minimum energy 

consumption has also been studied (Aguirre et al., 1997). The column configuration that 

will consume the least total energy was studied and a number of examples were 

presented to substantiate the proposed methodology. Heat integration has also been the 

focus of some researchers with emphasis on where to place or not place side reboilers or 

side condensers (Bandyopadhyay, 2007, Mascia et al., 2007), exchange of heat between 

crude distillation unit and delay coking unit of a refinery (Plesu et al., 2003) and focus 

on the self-heat recuperation for a crude distillation unit (Kansha et al., 2012).  
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Furthermore, attempts at understanding the happenings within the column that could 

lead to increased energy efficiency has led to the application of first and second laws of 

thermodynamics to the analysis of the column. Previous works on the thermodynamic 

efficiency of the crude distillation unit revealed a high energy and exergy loss of the 

column with the overall efficiency of the column ranging from 5-23% (Rivero et al., 

2004, Al-Muslim et al., 2003, Al-Muslim and Dincer, 2005). This shows that there is a 

lot of room for improvement of the energy efficiency of distillation columns and 

indicates a high entropy generation within the column is making the irreversibility of 

the column to be highly significant. In the past, there have been efforts at devising 

methods of minimising entropy production rate in distillation columns. (Mullins and 

Berry, 1984, Ogunnaike and Ray, 1994, Ratkje et al., 1995, Aguirre et al., 1997, de 

Koeijer et al., 2002). One of such attempts is targeted at diabatic binary distillation 

systems (de Koeijer et al., 2002). The issue of energy conservation in distillation 

processes has always been important in both academia and industry. Ways of 

minimising energy usage have been studied extensively in recent years. These include 

the use of self-heat recuperation technology (SHRT) (Kansha et al., 2012, Matsuda et 

al., 2011). In this method, two compressors are installed in the overhead for the reflux 

stream and the overhead product stream. The authors suggested that SHRT was able to 

reduce the energy consumption of the column significantly. Nakkash (2011) 

demonstrated that a 20% saving in total energy consumption was possible in 

multicomponent distillation by using a heat pump with and without split tower 

techniques. An energy saving of about 12.6% in the condenser duty by introducing the 

vapour feed into the upper stages of distillation column was proposed by (Arjmand et 

al., 2011). The proposal was conducted on an industrial case of crude distillation unit 

using ASPENHYSYS for simulation. 

Efficient operation of the distillation unit cannot be over emphasised. A slight 

improvement in thermal efficiency of the unit can make a large difference in 

profitability. It has been observed that a 10% energy saving in distillation column is 

equivalent to about 100,000 barrels of petroleum per day (Fitzmorris and Mah, 1980). 

Energy generation leads to release of greenhouse gas (GNG) especially in developing 

countries that are just coming up industrially leading to environmental pollution and 

thus defeating the concept of sustainable development (Dincer and Rosen, 1998, Dincer, 

1998). Improved efficiency of chemical processes is one of the ways of reducing the 

GNG. Also, improved efficiency of distillation column will result in better yield of 
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product and improved product quality. It will also reduce the consumption of energy 

and thereby lengthen the depleting energy reserve. 

1.2 Motivation 

Although distillation process has been extensively studied by researchers, the issue of 

energy efficiency still remains an unresolved. Determination of minimum energy 

requirements for a distillation process is useful in the design stage. This is because a 

high energy requirement in distillation column culminates in a high number of stages 

and increases the complexity and subsequently the cost of the column. An initial 

understanding of the minimum energy for a separation process gives room for the 

understanding of its cost implication as there is a direct relationship between the 

minimum energy and the diameter and length of the column. The basic question 

therefore is how can a column’s minimum energy requirement be determined right from 

the design stage? How can this minimum energy requirement be actualised in the 

operation of the column especially for the special case of multicomponent non ideal 

system?  

There is a need to develop a model that will evolve methods of column improvement 

which will incorporate the principle of second law analysis in determining points of 

inefficiency in the column, bring about a control mechanism of the unit to achieve the 

optimum energy efficiency and develop optimization procedures aimed at minimising 

the inefficiencies without compromising the qualities of the products. 

This research work is focused on novel methods of increasing the efficiency of 

distillation units either in the simple binary system or the complex crude distillation 

system of the refinery by the application of second law principle using the tools of 

advanced control and optimisation. This increased efficiency can then translate to 

reduction in the energy requirements of the column. 

1.3 Aim and Objectives 

The main aim of this research work is to develop energy efficient operating techniques 

for distillation columns. 

Briefly, the objectives can be itemised as 

 Develop  rigorous and data driven models of distillation columns 
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 Develop methodology for energy efficient control structure selection of 

distillation columns 

 Develop methods of incorporating exergy analysis in optimising the energy 

efficiency of distillation  columns 

 Investigate, compare and further improve the reliability of the optimisation 

procedures 

1.4 Contributions 

In this thesis, the contribution is on developing methods to bring about the application 

of second law analysis to improve the energy efficiency of various forms of distillation 

columns. Past studies in examining the second law analysis of distillation columns has 

been majorly focused on quantifying its energy and exergy efficiency and pinpointing 

the area of the column with most exergy loss. This study goes a step further to use 

exergy analysis not only as an analytical tool but also a retrofitting and a design tool in 

improving the exergy efficiency of the distillation unit.   

In selection of energy efficient control structures for distillation columns, relative 

exergy array (REA) has been used in some past work. However, detailed analysis of the 

control structure in the steady and dynamic state is lacking. This study presents methods 

of selecting energy efficient control structures in the steady state and validating the 

methods in the dynamic state.  

This study also presents an optimisation framework based on exergy analysis to 

improve the energy efficiency of distillation column. Bootstrap aggregated neural 

network (BANN) is presented in this study for enhanced model accuracy. This is in lieu 

of artificial neural network (ANN) which has been commonly used in past studies.  The 

presented techniques were applied on a wide range of columns from the simple binary 

system to more complex crude distillation systems with remarkable results. 

Usually, to improve the process unit, design and process engineers often use advance 

control and optimisation in lieu of designing new processes because of its cost 

implications. This study introduces a new way of controlling and optimising the column 

using the second law of thermodynamics.   

The contributions in each chapter that make up the thesis are outlined in the next 

section.  
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1.5 Structure of the thesis 

In Chapter 2, the knowledge gap on energy efficiency of chemical processes, distillation 

systems and application of thermodynamics analysis is highlighted. The theory on 

which the research is based on and a general review of literatures related to the research 

is presented. 

Chapter 3 is focused on modelling and the choice of the models used in this research. 

Rigorous models and dynamic models of distillation column are presented as well as 

method of solution of the models. Linear data driven models such as multiple linear 

regression (MLR), principal component regression (PCR) and partial least square (PLS) 

are discussed. Artificial neural network model are also discussed extensively. 

In Chapter 4, energy efficient control strategies based on relative gain array (RGA) and 

relative exergy array (REA) was discussed. The developed method incorporates energy 

efficiency in control structure selection. Detailed analysis of the control structures in the 

steady and dynamic states is reported. Application of the methods to binary distillation 

systems was highlighted.  

In Chapter 5, a neural network based strategy for the modelling and optimisation of 

distillation columns incorporating the second law of thermodynamics was discussed. 

Neural network models for exergy efficiency and product compositions are developed 

from simulated process operation data and are used to maximise exergy efficiency while 

satisfying product quality constraints. Applications to binary and multicomponent 

systems demonstrate the effectiveness of the method. Bootstrap aggregated neural 

network (BANN) is introduced 

In Chapter 6, Bootstrap aggregated neural network (BANN) was further elaborated for 

enhanced model accuracy. Multiobjective optimisation of the column based on BANN 

was developed. Application to a complex system of crude distillation unit (comprising 

of atmospheric distillation unit and vacuum distillation unit) was discussed. A further 

study on effect of preflash unit (preflash drum and preflash column) on the crude 

distillation unit was also made.  

Chapter 7 is focused on highlighting the conclusions from the research and 

recommendations for further work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Distillation processes 

Distillation is the separation of a mixture into its different constituents due to boiling 

point difference. The process could be batch or continuous. In batch distillation the feed 

is fed to the distillation tower, the products are removed one at a time until the 

distillation process is ended. Continuous distillation on the other hand separates large 

quantities of mixture such as those found in the chemical and petrochemical industries. 

The feed are fed continuously to a distillation tower and the products or fractions are 

withdrawn continuously at the same time from the different stages of the tower. A 

distillation process that separates only two distinct products is said to be binary 

distillation while multicomponent distillation has at least three products from the 

separation process. 

Crude oil distillation is a multicomponent, continuous distillation process. Crude oil is 

made up of a mixture of different hydrocarbons and sometimes referred to as fractions. 

The separation of these fractions based on boiling point differences is referred to as 

fractionation. The distillation process does not produce a product of a distinct boiling 

point rather it produces fraction based on a boiling point range. Each fraction can be 

further separated into a number of components. For example the naphtha product from 

the top of the Atmospheric distillation (ADU) column of the refinery can be separated 

to liquefied petroleum gas (LPG) such as propane, butane etc. while the residue from 

the bottom can be further distilled to more products in the Vacuum distillation unit. A 

distillation tower is a series of distillation process with tray such as sieve and bubble gas 

stacked on each other or with a series of packings such as Raschig ring and Berl saddle.  

The feed is introduced to the column at its flash point where a portion of the feed 

vaporises. The portion above the flash zone is the rectifying section and the lower part 

is the stripping section. Figure 2.1 shows a schematic diagram of a distillation column. 

At the onset of separation process within the distillation tower, the openings on each 

tray allows the vapour to travel up the column and as the vapour comes in contact with 

the liquid, the heavier part of the vapour are condensed  back to the liquid state and the 

lighter part move up the column. The tray is built with weirs that allow liquid to be 

retained; liquid that overflows the weirs flows into the downcomer and moves down the 

column. The heavier fractions that may still be retained in the upper part of the column 

are condensed by the external reflux to give a higher purity of product while the lighter 

fraction in the bottom of the column are vaporised by the reboiler.  
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Figure 2.1 : Schematic diagram of a distillation column 

2.2 Vapour liquid equilibrium (VLE) and distillation 

Processes such as distillation bring phases of different compositions into contact. When 

the phases are not in equilibrium, mass transfer between the phases alters the 

composition. The rate of change of compositions in different phases depend largely on 

the deviation from equilibrium hence the equilibrium temperature, phase composition 

and pressure is of great importance. The tendency for given chemical species to co-exist 

in the liquid and vapour phase is defined as its equilibrium ratio. 

Equilibrium ratio is the ratio of vapour to liquid phase of mole fraction of species. The 

constant for the expression of this ratio is K 

𝐾𝑖 = 
𝑦𝑖

𝜒𝑖
           2.1  

Where 𝐾𝑖 is the equilibrium constant, 𝑦𝑖 is the mole fraction of species 𝑖 in the vapour 

state and 𝜒𝑖 is the mole fraction of specie𝑠 𝑖 in the liquid state 
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For an ideal mixture, Raoult’s law applies  

𝑃 = ∑𝜒𝑖𝑝𝑖
𝑠𝑎𝑡           2.2 

Where P is the total pressure and 𝑝𝑖
𝑠𝑎𝑡 is the saturated pressure for component 𝑖 

𝑃 =  
1

∑𝑦𝑖/𝑝𝑖
𝑠𝑎𝑡           2.3 

If constant relative volatility applies, 

𝛼𝑖𝑗 =
𝐾𝑖

𝐾𝑗
= 

𝑦𝑖
𝜒𝑖⁄

𝑦𝑗
𝜒𝑗⁄

          2.4 

For non ideality of the liquid phase, a more rigorous VLE data is required in terms of 

activity coefficient and it is given as 

𝐾𝑖 =
∅̅𝑖𝐿

∅̅𝑖𝑉
            2.5 

where  ∅𝑖𝐿 = 
𝑓̅𝑖𝐿

𝜒𝑖𝑃
   and  𝑓𝑖̅𝐿 = 𝛾𝑖𝐿𝜒𝑖𝑓𝑖𝐿

0 

𝛾𝑖𝐿 ≡ 
𝑎𝑖𝐿

𝜒𝑖
  

𝑎
𝑖 ≡

 𝑓̅𝑖
  𝑓𝑖
𝑜

  

∅̅𝑖𝐿 implies partial fugacity coefficient of a specie in a mixture 

𝑓𝑖̅𝐿 implies partial fugacity 

𝛾𝑖𝐿 activity coefficient 

𝑎𝑖 is the activity 

For a simplified system where the pressure is low (<150psia) and the vapour phase is 

close to ideal, it can be safely assumed that 

𝑦𝑖𝑃 = 𝛾𝑖𝜒𝑖𝑃𝑖
𝑠𝑎𝑡           2.6 

The liquid activity coefficient will be modelled by a correlating equation such as 

Wilson, Van Laar, NRTL, or UNIQUAC (Gmehling and Onken, 1991). 

Pure component pressure will be modelled from Antoine equation. 
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2.2.1 Enthalpy 

Usually enthalpy of the vapour and liquid stream should be calculated as functions of 

temperature, pressure and composition of each stream. However, because liquid are 

incompressible and if low to moderate pressure system is assumed, then the enthalpy is 

calculated as function of temperature and composition based on a linear fit of heat 

capacity with temperature. 

ℎ𝑖
𝐿 = 𝐴𝑖

𝐿𝑇 + 𝐵𝑖
𝐿𝑇2          2.7 

ℎ𝑖
𝑣 = 𝐴𝑖

𝑣𝑇 + 𝐵𝑖
𝑣𝑇2 + ∆𝐻𝑖

𝑣         2.8

   

ℎ𝑖
𝐿 , ℎ𝑖

𝑣  implies liquid and vapour pure component specific enthalpy  

A, B implies the correlation constants 

∆𝐻𝑖
𝑣  implies pure component heat of vapourisation at reference temperature (0oF in this 

case) 

For multicomponent systems, mixing rule applies. The molar average of the pure 

component enthalpy is the vapour enthalpy while for liquid enthalpy, non idealities is 

accounted for by heat of mixing. 

ℎ𝑚𝑖𝑥
𝐿 = −𝑅𝑇2∑ 𝜒𝑖

𝜕𝑙𝑛𝛾𝑖

𝜕𝑇𝑖          2.9 

Vapour and liquid enthalpy for mixture therefore is given as 

ℎ𝑣 = ∑ 𝑦𝑖ℎ𝑖
𝑣

𝑖   

 ℎ𝐿 = ∑ 𝜒𝑖ℎ𝑖
𝐿

𝑖 + ℎ𝑚𝑖𝑥
𝐿  

2.2.2 Liquid Density 

Pure component liquid density is given as 

𝜌𝑖 = 𝐴𝐵−(1−𝑇𝑟)
2/7

          2.10 

𝜌𝐿 = 𝑀𝐿/ (∑
𝜒𝑖𝑀𝑖

𝜌𝑖
𝑖 )           2.11 

Where 𝜌𝑖  = pure component liquid density (lb/ft3) 
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𝜌𝐿   = density of liquid mixture (lb/ft3) 

𝑀𝐿  = molecular weight of liquid mixture (lb/lbmol) 

𝑀𝑖  = molecular weight of pure component (lb/lbmol) 

𝑇𝑟 = reduced temperature 

A, B = Pure component density correlation constants 

Francis weir equation for liquid hydraulics is given as 

𝐿𝑛 =  𝐶𝜌𝑛
𝐿𝑤𝑙𝑒𝑛𝐻𝑜𝑤

1.5 (C is a constant for unit conversion)    2.12 

Method for accurate prediction of equilibrium constant is of great interest in the correct 

modelling of a crude distillation unit (Tarighaleslami et al., 2011). There are many 

approaches to obtaining the K value. This could be from experimental measurements, 

use of correlations (empirical) such as nomographs and use of Equation of state (EOS). 

Methods based on EOS and empirical correlations are explored further. Correlations 

that could be applicable for the predictions of K value for crude mixtures at low 

pressure and high pressure include but not limited to the following.  

Wilson correlation (Wilson, 1968) 

𝐾𝑖 =
𝑝𝑐𝑖

𝑃
𝑒𝑥𝑝[5.37(1 + 𝜔𝑖)(1 − 𝑇𝑐𝑖/𝑇)]                2.13 

Where 𝑝𝑐𝑖 is the critical pressure of component 𝑖 (psia) 

𝑇𝑐𝑖 is the critical temperature of component 𝑖 (oR) 

𝜔𝑖 is the acentric factor of component 𝑖 

𝑇 is the system temperature (oR) 

𝑃 is the system pressure (psia) 

Whitson and Torp modified Wilson correlation to allow for composition induced effects 

at high pressure by incorporating the convergence pressure 𝑃𝑘  (Whitson and Torp, 

1983).  

𝐾𝑖 = (
𝑝𝑐𝑖

𝑃𝑘
)
𝐴−1 𝑝𝑐𝑖

𝑃
𝑒𝑥𝑝[5.37𝐴(1 + 𝜔𝑖)(1 − 𝑇𝑐𝑖/𝑇)]     2.14 

where 
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𝐴 = 1 − (
𝑝−14.7

𝑝𝑘−14.7
)
0.6

  

Almehaideb further modified Whitson and Torp to give (Almehaideb et al., 2001, 

Almehaideb et al., 2003) 

𝐾𝑖 = (
𝑝𝑐𝑖

𝑃𝑘
)
𝐴−1 𝑝𝑐𝑖

𝑃
𝑒𝑥𝑝[𝐴 × 𝐾𝑖

∗]            2.15 

Where 𝐾𝑖
∗ =

𝑎𝑇1

𝑇2
+
𝑎𝑇2

𝑇
+ 𝑎𝑇3 + 𝑎𝑝1𝑙𝑛𝑝 +

𝑎𝑝2

𝑝2
+
𝑎𝑝3

𝑝
+
𝑎𝑤

𝑤
 

 𝑎𝑇1, 𝑎𝑇2, 𝑎𝑇3, 𝑎𝑝1, 𝑎𝑝2, 𝑎𝑝3 are constants 

Almehaideb et al., (2003) opined that the correlation based on PVT analysis of crude oil 

supersedes that of Wilson, Whison and Torp, and Peng-Robinson.  He concluded that 

the K values from Wilson correlation were underestimated for C4 to C7+ and 

overestimated for N2. Also, the Whitson and Torp correlation underestimated the K 

values for C7+ and overestimated the K values of non-hydrocarbon (Mittal et al., 2011). 

For low pressure of under 100psia, Standing correlation and Wilson correlation were 

considered in the work of Almehaideb  and were found to compare relatively well with 

the extracted K values from the new work. 

To determine K value, some Hydrocarbon properties need to be determined. These 

properties include critical temperature, critical pressure, acentric factor etc. Several 

methods of estimating parameters for the evaluation of K value are available in the 

literatures. Of note is the methods of Riazi and Daubert; and Edmister (Edmister, 1938, 

Riazi and Daubert, 1987). 

The VLE data are of paramount importance in the modelling of distillation unit because 

it has great impact on the accuracy of the model. 

2.3 Thermodynamics  

Thermodynamics is a concept derived from the two words thermo and dynamics, which 

means heat in motion. It was limited to heat engines of which the steam engine was an 

example but now is applicable in determining heat and work effects associated with 

processes in terms of obtainable maximum work from a process or minimum work 

required for processes. It is also applicable in describing relationships among variables 

for a process in equilibrium. The history of thermodynamics could be dated back to the 

18th century when James Watts in 1769 built the first steam engine and thus starting the 
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development of heat engines (Wall, 2009). In 1824, Sadi Carnot claimed that the 

efficiency of a heat engine depends on the temperature only, the so-called Carnot factor 

(Smith et al., 2005, Holman, 1980). Thermodynamics developed out of a desire to 

increase the efficiency of the steam engine. Carnot introduced two ideas in his analysis 

of heat engines. The first was the idea of a cycle; a process which occurs through 

several stages but which leads back to the same conditions of temperature, pressure and 

volume. The second was that the cycle could be reversible if equilibrium is maintained 

in the system at all times. Carnot’s ideas were later brought to limelight by Claypero 

(Szargut et al., 1988).  Joule in his experiments in the 1840’s showed that heat is a form 

of energy that can be conserved (Smith et al., 2005, Szargut et al., 1988). Joule’s and 

Carnot’s theories formed the basis of the first and second laws of thermodynamics. In 

1854, William J. R. Rankine started to use what he called “thermodynamic function” in 

his calculations. This was shown to be identical to the concept of entropy formulated in 

1865 by Clausius which was an important aid to the theory of thermodynamics (Modell 

and Reed, 1974, Holman, 1980, Smith et al., 2005).  

In 1873-1878, Gibbs presented his phase rule which increased the usability of 

thermodynamics into new areas. He also established a basis for the exergy concept 

(Sciubba and Wall, 2004). Boltzman in 1877 suggested that probability order is linked 

to entropy diagram.  He is perhaps the most significant contributor in the kinetic theory 

as he introduced many of the fundamental concepts in the theory. Shannon in 1948 

verified the relation between entropy and probability which linked thermodynamics to 

information theory through statistical mechanics (Wall, 2009). In I953 Rant proposed 

the word exergy (Wall, 2009, Sciubba and Wall, 2007, Hinderink et al., 1996, 

Cornelissen, 1997). 

 The science of thermodynamics is built primarily on two fundamental laws known as 

the first and second laws. The first law is simply an expression of the conservation of 

energy principle. The law has been proved for many mechanical motions from 

Newton’s laws but its generalisation to all forms of energy was slowly established by 

several people including Joule (1843), William Grove (1846) and Herman Helmoholtz 

(1847).  It asserts that energy is a thermodynamic property and that during an 

interaction, energy can change from one form to another but the total amount of energy 

remains constant. The second law of thermodynamics asserts that energy has quality, 

and actual processes occur in the direction of decreasing quality of energy. The second 

law relates to spontaneous change. It originates from Carnot’s cycle but the main 
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advance was introduced by Clausius in 1850. The attempts to quantify the quality or 

“work potential” of energy in the light of the second law of thermodynamics has 

resulted in the definition of the properties of entropy and exergy (Dincer and Cengel, 

2001). 

2.3.1 First law of thermodynamics 

The law of conservation and conversion of energy is the fundamental general law of 

nature. It is also referred to as the first law of thermodynamics. It states that energy 

cannot be created or destroyed but can only be changed from one form to the other. 

Consider an open system depicted in figure 2.2, the first law balance can be written as 

(Perry, 2008)  

𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛        2.16 

Considering the system and surrounding, the first law can be also written as (Smith et 

al., 2001, Kyle ,1992) 

∆(𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚) + ∆(𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑠) = 0   2.17 

 

Figure 2.2: Energy flow for a process 

The energy input or the energy of the system consists of all the net heat transferred, 

Q ; all the net external work transferred,  SW , and the energy brought into the 

system as a result of  mass entering,  
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 
1
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1
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g

g
pvum 


 

where u  is the internal energy of the mass at inlet conditions per units mass                                   

relative to some reference level, pv  is the energy per unit mass as a result of flow, 

called flow energy, 
cg2

2
 is the kinetic energy of unit mass relative to some reference 

body, 
c

z

g

g
is the gravitational or potential energy of unit mass relative to some datum 

level and 1m  is the mass flow per unit time at inlet and subscript 1 denotes inlet 

condition. 

The energy output or the energy of the surrounding is the energy associated with the 

mass leaving the system and is   

 
2

2

2
2 c

z

c g

g

g
pvum 


    

where 
2m  is the mass flow per unit time at exit and subscript 2 signifies exit condition. 

The energy that is accumulated in the system is given by 

 
c

z

c g

g

g
pvudm  2

2
                          

Substituting all the terms into Equation (2.16) we have  

  SWQ  
1

2

1
2 c

z

c g

g

g
pvum 


=     

2
2

2

2 
c

z

c g

g

g
pvum


 

 
c

z

c g

g

g
pvudm  2

2
             2.18  

Equation 2.18 represents the general energy balance equation for an open system. If the 

open system is operating at steady state conditions then the accumulation term is zero 

for equation 2.16 and for 2.18, the energy of the system equals the energy of the 

surrounding. For the special case of steady state flow and neglecting the changes in 

kinetic and gravitational energy, Equation (2.18) becomes. 

  SWQ =  
1122 pvumpvum                                2.19                                 
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The specific enthalpy h  is defined by  

pvuh            2.20 

Therefore the general equation for the steady state open system becomes 

 1122 hmhmWQ S                                                       2.21  

The sigma summation sign takes care of the fact that there may be more than one 

entrance and exit stream. Here the convention that heat and work entering the system be 

taken as positive is used. 

The first law of thermodynamics defines internal energy as a state function and 

provides a formal statement of the conservation of energy. However, it provides no 

information about the direction in which process can spontaneously occur. The first law 

is deficient in evaluating the efficiency of a process and the conclusions drawn from the 

first law are limited because it does not distinguish the various energy forms.  

Fortunately with the second law of thermodynamics, it is possible to determine true 

thermodynamic performance of a process.  

2.3.2 The second law of thermodynamics 

The first law of thermodynamics gives a quantitative measure of the energy conversion 

in a process. The second law of thermodynamics however gives the qualitative side of 

these conversions. It imposes restrictions on the quality of energy and the direction of 

energy transformations (Smith et al., 2005).  

The second law of thermodynamics establishes the difference in quality between 

different forms of energy. The second law is often defined in terms of entropy. An ideal 

process is a reversible process that has the total entropy of streams entering the process 

equal to that leaving the process. Real processes often have the entropy leaving the 

process greater than the entropy entering the process because of the generation of 

entropy within the process. It is the entropy rise that drives the process and thus makes 

real process having elements of irreversibility in them (Jin et al., 1997) 

Entropy being a state of disorderliness of a system is at a maximum when the system is 

at thermodynamic equilibrium. Hence for a system to proceed to a high degree of 

efficiency, the entropy generation must be as low as possible in order to convert the 

useful energy of the system to work.  
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Some proposals of the second law of thermodynamics have been made. Clausius in1850 

proposed that “heat cannot pass spontaneously from a body of lower temperature to a 

body of higher temperature”. Thomson in 1851 proposed that “It is impossible by 

means of an inanimate material agency to derive mechanical effect from any portion of 

matter by cooling it below the temperature of the coldest of the surrounding objects”. 

Kelvin in 1851 arrived at the same conclusion but expressed the law in a different form. 

“It is impossible to construct an engine which when working in a complete cycle will 

produce no effect other than the exchange of heat with a reservoir and the performance 

of an equivalent amount of heat”. This is modified as perpetual motion machine of the 

second kind is impossible (Granet and Bluestein, 2014, Alattas et al., 2011, Holman, 

1980). 

Clausius in 1854 gave a detailed analysis of the Carnot cycle and represented it 

mathematically as  

𝑞ℎ

𝑇ℎ 
+
𝑞𝑐

𝑇𝑐
= 0              2.22 

It states that the heat given out to the cold reservoir divided by its temperature is equal 

to the heat received at the hot reservoir divided by its temperature. 

For a cycle operating reversibly and with various temperature changes,  

∫
𝑑𝑞

𝑇
= 0           2.23 

For an irreversible cycle,  

∫
𝑑𝑞

𝑇
> 0           2.24 

Clausius later introduced the concept of entropy in 1865. This led to a more general 

statement that the entropy production in any system must be greater than or equal to 

zero. This statement can be written mathematically for an open system as (Holman, 

1980): 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑖𝑛𝑓𝑙𝑜𝑤 +

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛        

     2.25 
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The entropy outflow is given by 𝑚2𝑠2, where 
2s is the entropy per unit mass flow at 

exit. The entropy inflow consists of the entropy inflow from mass transport, 𝑚1𝑠1, and 

the entropy inflow from heat transfer at boundary of the control volume,
0T

Q
. The 

entropy accumulation is given by    msd . Substituting all the terms into equation 

2.25 we have 

     0
0

1122   msd
T

Q
smsm                                     2.26 

Assuming steady state operation, the accumulation term becomes zero. Also quantifying 

the entropy production by the identity   and rewriting equation 2.26, we have  

  
0

1122
T

Q
smsm                                                      2.27 

Rearranging and solving forQ , 

 0110220 TsmTsmTQ                                     2.28 

2.4  Concept of Exergy 

Exergy is a concept, which follows from a combination of the first and second laws of 

thermodynamics. It is a key aspect of providing better understanding of the process; 

quantifying sources of inefficiency and distinguishing quality of energy used (Rosen 

and Dincer, 1997). It corresponds to the maximum available work, which can be 

obtained when taking a system through reversible process with the environments.  

Szargut (1988) defined exergy as “the amount of work obtainable when some matter is 

brought to a state of thermodynamic equilibrium with the common components of the 

natural surroundings by means of reversible processes, involving interaction only with 

the abovementioned components of nature”. In real processes, irreversibilities always 

occur. These lead to loss of exergies or loss of available energy. Exergy is then the 

energy that is available to be used. After the system and surroundings reach equilibrium, 

the exergy is zero. During a process, exergy is not conserved but it is destroyed due to 

irreversibility. For a real process, the exergy input always exceeds the exergy output; 

this imbalance is due to irreversibilities, which some have referred to as exergy 
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destruction or anergy or exergy loss as shown in figure 2.3 (Dincer and Al-Muslim, 

2001, Szargut et al., 1988).    

 

Figure 2.3: Exergy flow of a process 

Exergy analysis is a tool for assessing quality of energy and quantifying sources of 

inefficiency and recoverable energy. Exergy analysis evaluates quality of energy lost 

and distinguishes between recoverable and non recoverable energy. It is a tool for 

determining how energy efficient a process is. Exergy analysis of processes gives 

insights into the overall energy usage evaluation of the process, potentials for efficient 

energy usage of such processes can then be identified and energy usage improving 

measures of the processes can be suggested (Asada and Boelman, 2004). It also 

provides a supplementary tool in identifying design and operation modification targets 

for processes (Cornelissen, 1997). 

The basis of the exergy concept was laid almost a century ago but was introduced as a 

tool for process analysis in the 1950s by Keenan and Rant (Dincer and Al-Muslim, 

2001, Cornelissen, 1997, Hinderink et al., 1996). Szargut introduced the concept of 

chemical exergy and its associated reference states in 1986 (Cornelissen, 1997). It is 

common to use ambient pressure and temperature as 0P  = 101.325 kPa and 0T = 298.15 

K  (Dincer and Rosen, 2012). 

2.4.1  Derivation of the exergy function 

The first law energy balance given by equation 2.21 and the second law entropy balance 

given by equation 2.28 are combined by eliminating Q  in the two equations to obtain 

 PROCESS  

 

Total exergy 
input 

Useful process 
work 

Exergy loss 
(Recoverable 
energy) 



 

21 
 

11220110220 hmhmWTsmTsmT S        2.29 

Rearranging further we have. 

     020221011 TsThmWsThm S                2.30  

For a steady state flow operation,   21 mm . 

 Considering the case of a reversible process 00 T and equation (2.11) becomes    

       101202 sThmsThmW
revS                        2.31 

Or     12012 ssThhmW
revS   

    =    sThm 0   

Dropping the summation sign      

    STHExexmsThmW
revS  00                         2.32 

sTh  0  is a thermodynamic function called exergy. It is the minimum work 

requirement or the maximum work obtainable depending on whether the process 

requires or produces work in bringing the system to its dead states, that is, equilibrium 

with the environment. 

2.4.2 Exergy calculation 

Exergy is the amount of useful work that a system can provide when moving reversibly 

from the reference environment. It always decreases or at least remains constant when 

the process is reversible. If the system is a closed system, exergy will be calculated as: 

 𝐸𝑥 = (𝑈 − 𝑈0) + 𝑃0(𝑣 − 𝑣0) − 𝑇0(𝑠 − 𝑠0)     2.33 

Or if the system is an open system  

 𝐸𝑥 = (ℎ − ℎ0) − 𝑇0(𝑠 − 𝑠0)       2.34 
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2.4.3 Forms of exergy 

Excluding the nuclear, magnetic, electrical and interfacial effects, the exergy of a stream 

of matter has four different forms which include: 

i. Kinetic exergy 

ii. Potential exergy 

iii. Physical (Thermo-mechanical) exergy 

iv. Chemical exergy 

Physical exergy is the work obtainable by taking the substance reversibly from an initial 

temperature and pressure to the reference temperature and pressure of the environment. 

Chemical exergy is the work obtainable by taking the substance in chemical equilibrium 

with the reference level components of the environment.  Kinetic exergy is the exergy 

when the velocity of a stream is considered relative to the surface of the earth while 

potential exergy is evaluated with respect to the average level of the earth surface. The 

total exergy of a stream is 

𝐸𝑥𝑇𝑜𝑡𝑎𝑙 = 𝐸𝑥𝑘𝑖𝑛𝑒𝑡𝑖𝑐 + 𝐸𝑥𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 + 𝐸𝑥𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 + 𝐸𝑥𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙   2.35 

Kinetic exergy and potential exergy though often neglected in analysis can be calculated 

as  

𝐸𝑥𝑘 = 𝑚(
2 /2)         2.36 

 𝐸𝑥𝑝 = 𝑚𝑔𝑧          2.37 

2.4.4 Physical exergy 

It can also be defined as the state that can be obtained from taking it to physical 

equilibrium (of temperature and pressure) with the environment (Rivero, 2001). 

Physical exergy can be calculated as: 

𝐸𝑥𝑝ℎ𝑦 = 𝑚((ℎ − ℎ0) − 𝑇0(𝑠 − 𝑠0))       

 2.38 

where ℎ  denotes enthalpy, 𝑠   connotes entropy,  𝑇  connotes temperature and the 

subscript 0 connotes reference condition. 
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For a perfect gas with constant specific heat (Cp) 

𝐸𝑥𝑝ℎ𝑦 = 𝑚(𝑐𝑝(𝑇 − 𝑇0) − 𝑇0 (𝑙𝑛
𝑇

𝑇0
− 𝑅𝑇0𝑙𝑛

𝑃

𝑃0
))      2.39 

2.4.5 Chemical exergy 

It is the maximum amount of work obtainable when the system under consideration is 

brought from the environmental state (T0, P0) to the dead state (To, P0 and µ0) by 

processes in heat transfer and exchange of substance only with the environment. It can 

also be defined as the maximum work (useful energy) that can be obtained from it in 

taking it to chemical equilibrium (of compositions) with the chemical environment 

(Rivero et al., 2004). Similar to physical exergy, chemical exergy depends on the 

temperature and pressure of a system as well as its composition. Depending on the 

process, the amount of chemical exergy may be negligible or large. For instance, a 

binary, non reactive distillation system, the chemical exergy might be quite negligible 

because distillation here is basically a physical process. Different substances have 

different ways of chemical exergy calculation.  

Chemical exergy of most mixtures is calculated as 

𝐸𝑥𝑐ℎ𝑒𝑚 = 𝑚(ℎ0 − ∑𝑧𝑖ℎ̅0𝑖 − 𝑇0(𝑠0 − ∑𝑧𝑖𝑠̅0𝑖))      2.40 

where 𝑧𝑖 is the mole fraction of the ith component,  ℎ̅0𝑖 and 𝑠̅0𝑖 are the partial specific 

enthalpy and entropy of the component at reference conditions respectively, h is the 

specific enthalpy, s is the specific entropy, 0T  is the reference temperature, 0h and 0s are 

specific enthalpy and entropy measured at reference conditions. 

For a crude stream which is of high interest here, standard molar chemical exergy is 

calculated from the standard molar chemical exergies of all identified components and 

pseudo-components as: 

𝐸𝑥𝑐ℎ𝑒𝑚 = 𝑚[∑𝑏𝑞𝑖 + ∑𝑏𝑐ℎ𝑖 + 𝑅𝑇0∑ 𝑙𝑛𝑎𝑖]        2.41 

Where 

 𝑏𝑐ℎ𝑖 is the chemical exergy for component, 

 𝑏𝑞𝑖 is the chemical exergy for pseudo component, and 

 𝑎𝑖 is the activity coefficient of component 𝑖.  
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The standard chemical exergy for pseudo-components can be determined from heuristic 

empirical expression as a function of the elementary composition and their heating 

values (Szargut et al., 1988). 

𝑏𝑞𝑖 = 𝜗𝑖𝐶𝑖           2.42 

where 𝜗𝑖  is the regression equation to express the ratios H/C, N/C, O/C and S/C for 

pseudo-component 𝑖, 

𝐶𝑖 is the net calorific heating value of the pseudo-component 𝑖.  

where   𝜗𝑖 = 1.0401 + 0.1728
ZH2

ZC
+ 0.0432

ZO2

ZC
+ 0.2169      2.43 

𝐸𝑥𝑐ℎ𝑒𝑚 = 𝑚 [∑𝐶𝑖(1.0401 + 0.1728
ZH2

ZC
+ 0.0432

ZO2

ZC
+ 0.2169 ) + ∑𝑏𝑐ℎ𝑖 +

𝑅𝑇0∑ 𝑙𝑛𝑎𝑖]          

           2.44 

Equation 2.44 is used for the calculation of chemical exergy streams in chapter 6 of this 

thesis. 

2.4.6 Evaluation of work equivalent 

If zQ  is a heat source at an absolute temperature zT and if 0T  is the ambient temperature, 

then the work equivalent of heat is given by 

 

z

zz

T

QTT
W 0

max


                              2.45                                                              

This is the absolute theoretical maximum work recoverable. 

2.4.7 Exergetic efficiency  

A criteria of performance based on exergy analysis is known as exergetic efficiency. 

Exergetic efficiency is used to compute the degree of thermodynamic perfection of a 

process.  

The second law efficiency is a measure of performance relative to the optimal possible 

performance of a system and hence provides insights to the quality of performance of a 

system relative to what could be in ideal situations. It is never greater than 1 because it 

is defined with reference to limitation imposed by the second law of thermodynamics. 
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Thermodynamic efficiency of an operation or an entire process depends on its goal and 

the work lost in accomplishing that goal. The efficiency of a process can be calculated 

as follows 

1. Simple efficiency 

This is mathematically represented as: 

                𝜑 =
∑𝐸𝑥𝑜𝑢𝑡

∑𝐸𝑥𝑖𝑛
         2.46    

2. Rational efficiency 

This is mathematically represented as: 

  𝜑 = ∑
𝐸𝑥𝐷𝑜𝑢𝑡

𝐸𝑥𝐷𝑖𝑛
        2.47 

Where 𝐸𝑥𝐷𝑜𝑢𝑡 implies total exergy desired out and 𝐸𝑥𝐷𝑖𝑛 implies total exergy desired 

in. 

Rational efficiency can be applied to any system except a dissipative system. 

3. Transiting exergy efficiency 

This form of efficiency subtracts the untransformed component from the incoming and 

outgoing streams. It is mathematically represented as 

𝜑 =
𝐸𝑥𝑜𝑢𝑡−𝐸𝑥𝑡𝑟𝑎𝑛𝑠

𝐸𝑥𝑖𝑛−𝐸𝑥𝑡𝑟𝑎𝑛𝑠
            2.48 

The efficiency calculations in this study are based on simple efficiency. 

2.4.8 Comparison between energy and exergy 

The concept of energy and exergy can be expressed in the following simple terms: 

i. Energy is motion or ability to produce. 

ii. Exergy is work or ability to do work. 

The laws of thermodynamics can be expressed in the following ways: 

i. Energy is always conserved in a process (1st law of thermodynamics). 



 

26 
 

ii. Exergy is always conserved in reversible process but always 

consumed in an irreversible process (2nd law of thermodynamics or 

exergy law) (Wall, 2009). 

Exergy is a better measure of the quality of energy than energy because it only accounts 

for the energy that can be converted into work (DOE, 1998). Also, the majority of the 

causes of thermodynamic imperfection of thermal and chemical processes cannot be 

detected by means of an energy balance. For example, 1,000 kW/hour of low-pressure 

steam would compare equally with 1,000 kW/hour of electricity in terms of energy 

measurement. In reality, the amount of usable energy from the low-pressure steam is 

less than a third of that represented by the electricity, because the energy quality of the 

low-pressure steam is much lower. Quantifying the quality of energy and hence 

determining its irreversibility can only be made possible with exergy analysis (DOE, 

2000). Generally, table 2.1 shows the main characteristics of exergy and energy. 

Table 2.1: Main characteristics of Exergy and Energy 

S/N Energy Exergy 

1. It is subject to law of 

conservation. 

It is exempt from law of conservation. 

2. It is a function of the state of 

the matter under consideration. 

It is a function of the state of the matter 

under consideration and of the matter in 

the environment. 

3. Increases with increase in 

temperature. 

For isobaric processes reaches a 

minimum at the temperature of the 

environment; at lower temperature, it 

increases as the temperature drops. 

4. May be calculated on the basis 

of any assumed state of 

reference. 

The state of reference is imposed by the 

environment, which may vary 

5. In the case of ideal gas, does 

not depend on pressure. 

Always depends on pressure 

Source: (Szargut et al., 1988) 
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2.5 Process control 

There has been a considerable improvement in the development of software for the 

modelling of distillation processes but in the art of control and optimisation of the 

process, there is still much to be done. Hence there is a need for resource or methods for 

the operation, design and troubleshooting of distillation process control system. In this 

thesis the emphasis will be on the continuous distillation column in lieu of batch. Stage 

column as well as rigorous rate based columns will be considered. 

Control of a process basically contains three steps; to measure, compare and adjust. In 

this regards, variables which are factors that can change the condition of the process are 

used. Control systems could be single loop, multi loop or multivariable. Single loop 

control refers to the situation where there is only one controlled variable which can be 

either controlled by a feed forward or a feedback controller loop. In multi-loop control, 

there are more than one controlled variables which are paired with the corresponding 

manipulated variables. In multivariable control, all the manipulated variables are used to 

control all the controlled variables through advanced control technology such as model 

predictive control. 

The control of crude distillation units has always been of particular interest to 

researchers. Advanced process control is usually implemented through the traditional 

chemical engineering approach of  multiple control loops and the measurements of 

flows, temperature, pressure and heat and mass balances (Simpson et al., 2010). Model 

predictive control was later developed to meet the specialised control needs of the 

petrochemical industries with the objective of driving the outputs as close as possible to 

the set points (Qin and Badgwell, 2003).  

The online estimation and optimisation of products is another control issue that is of 

great interest (Kumar et al., 2001, Simpson et al., 2010). In this respect, inferential 

estimation models of product quality from different crude feeds was developed by some 

authors (Zhou et al., 2012) while others considered developing soft sensor model for 

estimation and control of products (Ujević et al., 2011, Rogina et al., 2011, Bolf et al., 

2010).  

Energy efficiency of the crude distillation unit is a very important aspect of the control 

of the crude distillation process but surprisingly not much work has been devoted to it. 

A number of authors have tackled the control of energy efficiency of the crude 

distillation unit via fouling and corrosion control (Kim et al., 2011, Kumana et al., 
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2010). It has however been observed from the second law analysis of the crude 

distillation unit that the inefficiency of the column is from the entropy generation within 

the column (Al-Muslim and Dincer, 2005, Al-Muslim et al., 2003, Rivero et al., 2004). 

A method of control of distillation columns based on minimising entropy generation 

within the column will be of paramount importance. This work is set to develop energy 

efficient control strategies for the distillation unit from the angle of the second law 

analysis of the process and hence provide a novel way of controlling the distillation 

unit. 

2.5.1 Control structure selection 

Process control is the active changing of a process based on the result of process 

monitoring. It is desirable to have rapid response to changes in set point and rapid return 

to set point in the face of any disturbance. Usually in processes three levels of control 

that are of great importance are the composition control, level control and pressure 

control. For a distillation column, the composition of the products are affected by the 

reflux ratio (fractionation) and the feed splits (specified products quantities). Pressure is 

usually held constant in distillation columns except for cases where a change in pressure 

will aid in effective fractionation. This is because sudden decrease in pressure will lead 

to excessive vaporisation of the liquid and thereby causing flooding of the column while 

sudden increase in pressure can cause low vapour rate in the column that will result in 

the weeping of the column. 

Though the control strategies for distillation systems varies in cost and complexity, 

valves and sensor systems to which they are connected largely influence the 

effectiveness of these strategies. A careful selection of the valve and sensor system is 

therefore of paramount importance. Some of the column control sensor issues include 

sensor location (the required separation the column is expected to maintain has an 

influence on the location of the sensor that will facilitate the control system), sensor 

sensitivity, sensor consistency and sensor reliability (Luyben, 1992). The column 

control valve issues include range (how large an adjustment for the control system), 

resolution (how small an adjustment), size, dynamics and plant wide implication of each 

valve. 

The design of a control structure for a distillation system involves the selection of 

controlled and manipulated variables. Usually for a binary distillation process, the 

manipulated variables are reflux flow rate, reboiler heat load, distillate flow rate, 
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bottoms flow rate and cooling water flow rate. The controlled variables are often 

distillate compositions, bottom composition, reflux drum level, reboiler level and 

pressure (Luyben, 1990). 

The aim of control structure synthesis is to develop mechanism that can bring about the 

realisation of the objectives of the plant and account for interactions associated with the 

expected multivariate nature of the plant. Most works on the control structure selection 

of chemical process could be majorly classified into two. The first is based on  rule of 

thumb or simple controllability indicators resulting from process experience and 

judgement (Luyben et al., 1997, Luyben, 1998). Using this approach some authors 

employ the concept of partial control such that the control of dominant variables 

identified  stabilizes the entire system results (Price et al., 1994). In a related work, the 

concept of finding the self optimising control variables was introduced (Skogestad, 

2000). Groenendijk et al., (2000) proposed the application of linear control theoretic 

analysis such as relative gain array, singular value decomposition and disturbance gain. 

Most of these approaches are without consideration to the energy efficiency of the 

control structures. This work is set to present a methodology that corrects this 

deficiency. The method has the advantages of not requiring quantitative information and 

can be easily applied to large scale problems such as plant wide control problem.  

The second involves systematic methodology using classical mathematical formulation 

based on dynamic system theory, optimisation and control to identify the most 

promising super structures. This method is accurate within the limit imposed from the 

mathematical models and mathematical programming techniques used. It however 

suffers from model convergence problems and guaranteed only local optimality. The 

following researchers have presented mathematically oriented approach among others 

(Assali and McAvoy, 2010, Bansal et al., 2000, Kookos, 2005) . A review of the two 

methods is presented by Larsson and Skogestad (Larsson and Skogestad, 2000). In the 

past control of processes were done via instrumentation approach which is a qualitative 

method that is based on practice and intuition. Recently there have been advances in 

systematic choice of optimal control structure using inverse model and mixed integer 

quadratic programming (Yelchuru and Skogestad, 2012, Sharifzadeh and Thornhill, 

2012). The optimization framework for the control structure selection are economically 

based, hence there is still a need for a structure that will encompass the optimal energy 

usage. 
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2.5.1.1 Relative gain array 

Relative gain array (RGA) was introduced in 1966 by Bristol (Bristol, 1966). It has 

been widely used to assess process interaction in multi-input multi-output (MIMO) 

control loops. Loops that exhibit large interaction can then be discarded for further 

consideration. In a RGA matrix, the following properties hold true (Seborg, 1989). The 

sum of the elements in each row or column is one; the permutation of rows and columns 

in the matrix results in the same permutation in the RGA; and the RGA elements are 

dimensionless. Shinskey (Shinskey, 1988) popularised the use of RGA by applying it to 

a number of examples including blending, distillation and energy conservation. RGA is 

advantageous in that it requires minimal process information, it is simple to calculate 

and it does not depend on process disturbances and control system tuning (Mc Avoy et 

al., 2003). However, the fact that RGA does not consider dynamics may lead to 

incorrect loop parings.  A number of authors have modified RGA to have application in 

the dynamic state (Jain and Babu, 2012, Huang et al., 1994). There are different 

possibilities for RGA analysis of process systems. The following are some of the 

possibilities and their interpretations. 

1. 𝛼𝑖𝑗  = 1. Manipulated variable 𝑢𝑗  affects the controlled variable 𝑦𝑖  but has no 

interaction with other control loops. 

2. 𝛼𝑖𝑗= 0. Manipulated variable 𝑢𝑗  has no effect on the controlled variable 𝑦𝑖. 

3. 𝛼𝑖𝑗= 0.5. There is a high degree of interaction. The other control loops have the 

same effect on the controlled variable 𝑦𝑖 as the manipulated variable 𝑢𝑗  

4. 0.5 < 𝛼𝑖𝑗< 1. There is interaction between the control loops. However, this would 

be the preferable pairing as it would minimise interactions. 

5. 𝛼𝑖𝑗> 1. The interaction reduces the effect gain of the control loop. Higher 

controller gains are required. 

6. 𝛼𝑖𝑗> 10. The pairing of variables with large RGA elements is undesirable.  

7. 𝛼𝑖𝑗< 0. Care must be taken with negative RGA elements. Negative off-diagonal 

elements can indicate the control loop is unstable for any feedback controller (integral 

instability). 

Only conditions 1, 4 and 5 are advised for possible pairings 

2.5.1.2 Relative exergy array 

Relative exergy array (REA) is defined analogous to RGA. It is the extension of exergy 

analysis in the calculation of RGA. It gives the exergetic efficiency of pairing the 

control variable with the manipulated variable (Montelongo-Luna et al., 2011). REA 
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can be directly determined by placing the exergy concept in place of the control gain. 

As RGA can be calculated from the steady state gain matrix, REA can also be obtained 

from the steady state generic exergy gain matrix (Munir et al., 2012b). RGA and REA 

have been used to assess interactions and exergy efficiency of control loops for 

processes such as CSTRs and distillation columns (Letcher, 2015, Munir et al., 2012b) . 

The application has been extended to processes with recycle streams as well. 

A number of other tools based on REA have been introduced for determining the exergy 

efficiency of control loop while expanding the boundary of interactions. This include 

relative exergy destroyed (REDA) (Munir et al., 2012c) and exergy eco-efficiency 

factor (EEF) (Munir et al., 2013b, Munir et al., 2012a). These tools have been extended 

to include processes with recycle streams as well (Munir et al., 2013a, Munir et al., 

2012b). 

However, the fact that REA is based on steady state system introduces a measure of 

unreliability especially when the system is operated in the dynamic state. Since most 

chemical processes are operated in the dynamic state, the application of REA to all 

processes might be limited. This work presents the application of REA analysis both in 

the steady and the dynamic state. This is with a view to remove the limitation imposed 

by the steady state analysis. 

The interpretations of REA for a number of possible values are defined as follows 

𝛽𝑖𝑗 = 1 exergy efficiency is not affected by other loops interaction. A good pairing 

because maximum change in exergy is neither increased nor decreased by the loop 

interaction 

𝛽𝑖𝑗 > 1  exergy changes for open loop are larger than the changes caused by loop 

interaction. The interaction of the variable is decreasing the changes in exergy 

𝛽𝑖𝑗 < 1 Exergy changes due to loop interactions are larger than the exergy changes 

when all the loops are opened.  

2.5.2 Control of distillation unit 

Distillation column control varies a great deal. The control system could be proportional 

integral derivative (PID) or model based algorithm. Some control strategies use 

distributed control system (DCS) while others may use conventional electronic and 

pneumatic control devices.  
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PID control is the most widely used practical control strategy. Three basic controller 

actions that determines the controller output in a PID controller are proportional, 

integral and derivative actions (Luyben, 1990, Ogunnaike and Ray, 1994, Robbins, 

2011). 

Proportional action is the action of the controller that is proportional to the error 

between the controlled process variables and the set point. 

It is given as 𝐶𝑂 = 𝑏𝑖𝑎𝑠 ± 𝐾𝑐 𝑒       2.49 

Where 𝐶𝑂 is controller output, 𝐾𝑐  is the controller gain and 𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑒𝑟𝑟𝑜𝑟 =

𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  

Integral action moves the control valve based on the time integral of the error. It 

eliminates offset error at steady state. 

𝐶𝑂 = 𝑏𝑖𝑎𝑠 + 
1

𝜏𝑖
∫ 𝑒𝑑𝑡         2.50 

𝜏𝑖 is the integral time or the reset time 

Derivative action anticipates where the process is heading by looking at the time rate of 

change of the controlled variable. It responds to the rate of change of error. 

𝐶𝑂 = 𝑏𝑖𝑎𝑠 + 𝜏𝐷
𝑑𝑒

𝑑𝑡
           2.51 

The three actions could be used individually or combined. Hence we have proportional 

integral (PI), proportional integral derivative (PID) and proportional (P) controllers. A 

diagrammatic expression of the PID is given in figure 2.4. 

 

 

 

 

 

 

Figure 2.4: Schematic diagram of a conventional PID controller 
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The traditional way of process control is to compare the variables being controlled after 

measurement with its desired value or set point and feed the difference to a controller 

that will drive the controlled variable to its desired level by changing the manipulated 

variable. This mode of controller which is frequently used in the process industry is 

termed feedback controller. In the feed forward controller, the disturbance is detected as 

it enters the process, the controlled variable is then kept constant by appropriate change 

in the manipulated variable. The control of crude distillation with multiple 

pumparounds has for a long time been difficult because of a number of reasons. These 

include interaction between circulating refluxes as a result of line up in crude preheat 

train leading to slow control circulating reflux return temperature and difficulty in 

achieving closed loop quality control due to linkage in the heat and material balances. 

The difficulty has been addressed with multivariable column tray temperature; 

multivariable quality constraint control and circulating pumparound return temperature 

control (van Wijk and Pope, 1992). The payoff between yield and energy efficiency of 

the column is another important strategy which is yet to gain wide spread recognition. 

2.5.3 Tuning strategy in controller 

Many process control loops are tuned by trial and error which consists of changing one 

or more of the proportional, integral and derivative. This method, though has the merits 

of returning the controller back to the initial values and the re-use of existing equipment 

suffers in its requirement of a long learning curve and the difficulty of a beginner to 

pick the change in response of variables (Robbins, 2011). Also, each of the settings of 

KC, 𝜏𝑅 and 𝜏𝐷 can be varied from 0.01 to 100 and considering the fact that various lags 

and delays associated with process plant are often large, trial and error tuning will be 

cumbersome (Love, 2007). This has resulted in the proposal of many PID controller 

tuning methods in the literature. Two of such methods are discussed here (Love, 2007, 

Robbins, 2011, Coughanowr and LeBlanc, 2009).  

2.5.3.1 Continuous cycling method 

This method tuned the controller as installed rather than as designed. The process 

consist of setting the system up with proportional only control by setting the integral 

time to infinity and the derivative time to zero. The gain of the controller is altered until 

the smallest gain that forces the loop into self sustained oscillation of constant 

amplitude is obtained as shown in figure 2.5. This is the ultimate gain µ. The period of 

these constant oscillations known as ultimate period  𝑃𝑈  is also evaluated (Robbins, 

2011). Then the critical frequency is  
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𝜔𝑐 =
2𝜋

𝑃𝑈
           2.52 

The values of µ and 𝑃𝑈 obtained are substituted in the Zeigler and Nichols formulae 

given in table 2.2 to determine the optimum settings for the controller. A flow chart for 

the procedure is given in figure 2.6. 

Ziegler and Nichols formulae was first published in 1941 (Love, 2007) and has been 

used extensively in the industry. However, the formula do not predict the optimum 

settings precisely (often within 10% of the optimum) and further tuning of a trial and 

error may be required. In this study, biggest modulus tuning (BLT) is combined with 

Ziegler Nichols tuning for the controllers in chapter four. 

 

Figure 2.5: Response at ultimate gain 

 

Table 2.2: Ziegler and Nichols formulae 

Controller type Controller gain Reset Derivative  

P     
𝜇

2
   

PI 
𝜇

2.2
 

𝑃𝑢
1.2

  

PID 
𝜇

1.7
 

𝑃𝑢
2

 
𝑃𝑢
1.8
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Put loop into auto and set low 

value of Kc

Establish control with zero 

offset at normal set point

Set 1/TR  =1/TD=0

Apply small step change to 

set point

Is response limit cycling?

Has any signal saturated

Is response overdamped or 

underdamped stable?

No

Are oscillations continuous?

No

Note Kc and measure

Yes

No Reduce Kc

Yes
Allow system 

to settle

Increase Kc

Reduce Kc

Yes

 

Figure 2.6: Continuous cycling method 

Source:  (Love, 2007) 

2.5.3.2 Reaction curve method 

This is an open loop method of controller tuning. The system is allowed to reach 

equilibrium, while the controller is in a manual mode. The open loop response of the 

process to a step change in the manipulated variable U as shown in Figure 2.6 is 

measured and recorded. Since y2 is the steady state effect of the open loop elements 

operating on the step change U the steady state gain can be obtained from the ratio 𝐾𝑐 =

∆𝑦

∆𝑈
.  Then drawing a tangent to the curve at the point of inflexion and finding its 

intersection with the asymptote and the time axis as shown in figure 2.7, the values of 

Ts and Td can be determined. The values are substituted in table 2.3 to determine the 

Gain G. 
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Figure 2.7: Open loop response to a step change in manipulated variable 

Table 2.3: Tuning rules using slope and intercept I 

Controller type Controller gain Reset Derivative  

P 
𝑇𝑠

𝑇𝑑
   

PI 
0.9𝑇𝑠

𝑇𝑑
 3.3𝑇𝑑  

PID 
1.2𝑇𝑠

𝑇𝑑
 2.0𝑇𝑑 0.5𝑇𝑑 

 

The gain calculated here is  

𝐺 =  𝜇 ∗ 𝐾𝑐          2.53 

Where  𝜇 is the controller setting gain and 𝐾𝑐 is the steady state gain. The controller 

setting gain is then obtained from table 2.4. 
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Table 2.4: Tuning rules using slope and intercept II 

Controller type Controller gain Reset Derivative  

P 
𝑇𝑠. ∆𝑈

𝑇𝑑. ∆𝑦
   

PI 
0.9𝑇𝑠. ∆𝑈

𝑇𝑑. ∆𝑦
 3.3𝑇𝑑  

PID 
1.2𝑇𝑠. ∆𝑈

𝑇𝑑. ∆𝑦
 2.0𝑇𝑑 0.5𝑇𝑑 

 

This method however has the disadvantage of being prone to disturbances. It is often 

difficult to insulate the system from disturbance’s long enough to obtain the curve 

(Love, 2007) and also it doesn’t work well for complex processes (Robbins, 2011). 

Other methods have since evolved and this includes internal model control and neural 

networks based methodologies (Hultmann Ayala and dos Santos Coelho, 2012, Vijayan 

and Panda, 2012). 

2.5.4 Model predictive control 

The control of processes has evolved from the simple closed loop control to a more 

advanced control technologies in response to the drive by industries for more consistent 

attainment of high product quality, more efficient energy usage and increasing strict 

environmental and safety policies. This has led to the development of Dynamic matrix 

control (DMC) and model algorithm control (MAC) both of which can be classified as 

Model predictive control (MPC) (Ogunnaike and Ray, 1994). 

One of the main process control technique in the process industries is model predictive 

control. It is the prediction of future control action and trajectories based on the 

knowledge of current input and output variables and future control signals (Kumar and 

Ahmad, 2012). It is a form of control obtained by solving an online optimal control 

problem in the open loop and using the current state of the plant as the initial state to 

yield a mathematical programming problem. Predictive control utilises sampled data of 

system responses for its model unlike dynamic matrix control that utilises sampled data 

of step responses as its predictive model (Mingjian et al., 2007). 

Model predictive control could be based on linear or non-linear models. Non-linear 

MPC has been the focus of quite a number of authors. It has been applied on a number 
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of processes such as cryogenic process, continuous stirred tank reactors CSTR), 

evaporator and distillation processes (Chen et al., 2010, Rivotti et al., 2012, Rewagad 

and Kiss, 2012, Cao, 2005). For most chemical and petrochemical industries however, 

linear MPC has always been the focus (Darby and Nikolaou, 2012, Porfírio and Odloak, 

2011, Porfı́rio et al., 2003). The idea of multiprogramming and model reduction method 

was combined in model predictive control (Rivotti et al., 2012). 

The first element of a model predictive control is reference trajectory specification. This 

simply is the desired target trajectory which could be a step to the new set point value. 

The next is an appropriate model which is used to predict the process output over a 

period of time. Then the model is used in calculating a sequence of control moves that 

could minimise the deviation of the predicted output from target subject to some 

specified process constraints. Finally, the real plant measurement is compared with the 

model prediction an the error obtained is used to update future predictions (Darby and 

Nikolaou, 2012, Ogunnaike and Ray, 1994). A diagrammatic representation of the 

elements in a predictive control is represented in figure 2.8. 

Model predictive control has been applied in a large number of industries especially the 

petrochemical industries because of its ability to cope well with hard constraints on 

control and states (Dua et al., 2008). In their review of commercially available model 

predictive technology for both non-linear and linear systems, Qin and Badgwell (2003) 

concluded that  most products use multiple steps signals for test and requires the close 

attention of experienced engineers for the test; error identification algorithm are mostly 

of the least squares type; and most has uncertainty estimate though most do not use 

uncertainty bound in control design.  

MPC is advantageous in that it could handle multivariable control problems, could 

simultaneously take the effects of manipulated variables to all controlled variables and 

allows operation with input and output constraints (Porfı́rio et al., 2003).   
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Figure 2.8: Elements in model predictive control 

2.6 Optimisation 

The control and optimisation of processes especially in the refineries overlap and may 

be difficult to actually separate. Three basic technology of this application are : Real 

time optimisation (RTO) based on non-linear steady state model sending steady state 

targets to a linear MPC controller, a non-linear steady state model setting the gains of an 

adaptive model predictive controller (MPC), and a non-linear empirical dynamic models 

(neural network) for control and optimisation. 

In a process system with varying disturbances such as feed composition and feed flow 

rate, a method that deals with the most effective way of operating a process under such 

frequent disturbances is real time optimisation (RTO) (Adetola and Guay, 2010). RTO 

involves components for steady state detection, data acquisition and validation, process 

model updating, optimisation calculation and optimal operating policies transfer to 

advanced controllers. Multilayer approach of RTO is usually in three layers. In the 

upper layer RTO optimises equipment constraints, product specification and operating 

conditions at steady state; optimum values of these input and output are passed to an 

intermediate layer. Feasible targets of these input and output are then recomputed and 

fed to the dynamic layer that contains the model predictive controller (Ying and Joseph, 

1999).  
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However, the approach of multilayer may not be feasible if different disturbances alter 

the optimum operating points and the typical sampling time of the RTO may be of 

several hours. Dynamic real time optimisation with a non-linear dynamic model or non-

linear MPC with economic objective may be appropriate (Adetola and Guay, 2010, 

Hosen et al., 2011). The demerits notwithstanding, RTO has been proved useful 

especially in the refinery and has been applied in the ethylene plant, toluene distillation 

system, fluid catalytic cracking and olefins production (Porfírio and Odloak, 2011, 

Diehl et al., 2002, Geddes and Kubera, 2000). RTO identifies and continually adapts 

optimal operating points within a process while control system keep the plant as close 

as possible to the optimal point and minimises economic losses. The optimisation of 

crude distillation unit using RTO is not yet popular (Basak et al., 2002). It is expected 

that the methods to be developed from this study could be adapted for real time 

optimisation of distillation process in future work. 

Optimisation of chemical processes involve solving a number of non linear constrained 

problems with conflicting objectives (Edgar, 2001). A number of algorithms are 

available for solving optimisation problem. Most of the methods these algorithms used 

especially for solving non linear problems are based on trust region (Jorge and 

Sorensen, 1983). In this study, two of such algorithms are used. Sequential quadratic 

programming algorithm was used for the optimisation of constrained single objective 

distillation process and goal attainment method for the multi objective process. 

2.6.1 Sequential quadratic programming 

Sequential Quadratic Programming (SQP) has become the most successful method for 

solving nonlinearly constrained optimization problems. It was found to outperform 

every other compared method in terms of accuracy, efficiency and percentage over a 

range of test problems (Schittkowski, 1986) 

Usually, the nonlinear programming problem to be solved is of the form 

 
)(min xJ

X

 

Subject to : {
ℎ(𝑥) = 0
𝑔(𝑥) ≤ 0

        2.54 

Where ℎ and 𝑔 are define constraints and 𝐽 is linear or quadratic. 

SQP is not a feasible point method. This gives the method an edge over others because 

finding a feasible point especially for non linear constraint as found in distillation 
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processes may be nearly as hard as solving the optimisation problem itself. Also SQP 

method depends on the existence of accurate algorithm for solving quadratic programs 

(Boggs and Tolle, 1995). One of such algorithms fmincon is used for the optimisation 

problems in this study.  

In previous studies, SQP has been augmented with a lagragian line search function 

(Schittkowski, 1983) and hybridised with harmony search algorithm (Fesanghary et al., 

2008).  

2.6.2 Goal attainment method 

This method uses a set of objectives 𝐽 = {𝐽1(𝑥), 𝐽2(𝑥), … 𝐽𝑚(𝑥) } with a set of design 

goals 𝐹 = {𝐹1(𝑥), 𝐹2(𝑥),…𝐹𝑚(𝑥) }. The degree of over or under achievement of goals 

is controlled by a set of weighting factor  𝑊 = {𝑊1,𝑊2, …𝑊𝑚 }. 

The problem can be expressed as 

min
x,δ

δ  

Such that    𝐽𝑖(𝑥) −𝑊𝑖𝛿 ≤ 𝐹𝑖 , 𝑖 = 1,…𝑚.      2.55 

The weighting factor introduces a measure of slackness to the problem and allows for 

trade off between the objectives. 

If there are a number of constraints to be satisfied, the problem becomes 

min
x,δ

δ

{
 
 

 
 
𝐽(𝑥) − 𝑤𝑒𝑖𝑔ℎ𝑡. δ ≤ 𝑔𝑜𝑎𝑙

𝑐(𝑥) ≤ 0

𝑐𝑒𝑞(𝑋) = 0
𝐴. 𝑥 ≤ 𝑏

𝐴𝑒𝑞. 𝑥 = 𝑏𝑒𝑞
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

        2.56 

Weight, goal b and beq are vectors, A and Aeq are matrices, and c(x), ceq(x) and F(x) 

are functions that return vectors. F(x), c(x) and ceq(x) can be non linear functions. X, lb 

and ub can be passed as vectors or matrices. Aeq is matrix of linear equalities 

constraints, beq is vector of linear equality constraint, lb is vector of lower bound and 

ub is vector of upper bound 

This minimization is supposed to be accomplished while satisfying all the constraints. 

Some study on evolutionary based multi objective optimisation techniques are given in 

the literatures (Coello Coello, 1999, Deb, 2001) 
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2.7 Summary 

Distillation column is one of the unit operations in chemical and petrochemical 

industries with a high potential for energy efficiency improvement. Economic, 

ecological and environmental benefit for such improvement is an enough incentive to 

seek for alternative ways of operating the column to bring about the desired change. 

Process control and optimisation of the column and alternative design of the column are 

some of the ways the column has been targeted for energy efficiency improvement in 

the past. This study is aimed at controlling and optimising the column albeit in terms of 

second law of thermodynamic application. It is novel ways of retrofitting existing 

columns for improve energy efficiency.  
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CHAPTER 3: MODELING AND OPTIMISATION OF 

DISTILLATION PROCESS 

3.1 Introduction 

Modelling and simulation is an insightful and productive process engineering tool. A 

model is a mathematical representation of the systems of a process while simulation is 

the computerised version of the model that gives a good understanding of the interaction 

of the model parameters. However, models are never a complete representation of 

reality as there will always be factors that cannot be included in the abstraction. The 

word model itself implies simplification and idealisation. A model simplifies and 

approximates reality and hence will not reflect all reality (Burnham and Anderson, 

2002). However, the most influential factors must be included in the model. Models are 

conditional on available information and with enough data; imperfections in a model 

can be detected. Perhaps the aphorism “all models are wrong but some are useful” (Box 

and Norman, 1987) might be another way of saying models cannot be 100% accurate. 

There will always be some elements of approximations and simplifications. Calling a 

model right or wrong is therefore a matter of perspective.  

Modelling provides the ability to base important engineering decisions on proven and 

tested numerical data, it helps to screen design alternatives without having to go through 

costly and time consuming experiments. It also synchronise the research and 

development with the industries, offering useful suggestions on ways of improving or 

designing processes and transferring knowledge and understanding between different 

groups involved in the development of a process. Models can be used in the design of a 

process with the particular specifications of the designer such as product quality and 

economy. It can also be used in the effective operation and improvement of an existing 

design. It equally finds relevance in the control of system design and could solve plant-

wide operability problems. Modelling of chemical processes allows for further insights 

of the processes. This can aid in further analysis and optimal operation of the process to 

respond to increasing performance demands.  

A number of approaches have been developed to model distillation columns. These 

approaches can be broadly classified as rigorous models and reduced models (Ochoa-

Estopier et al., 2014). Reduced models can be divided into simplified or short cut 

models and data driven models. A number of simplified models of distillation columns 

have been studied. Pashikanti and Liu (2011) considered a predictive model of the 



 

44 
 

FCCU of the refinery. The model was used on an excel sheet with Aspen plus. A model 

to describe the effects of crude blending on the energy, emission and economic  profit 

E3 was described and implemented in the HYSYS environment (Xu et al., 2011). The 

model was for the crude and vacuum distillation units of the refinery. In another study, a 

refinery planning model was developed (Alattas et al., 2011). Some other authors have 

presented works based on short cut models (Kumar et al., 2001, Mahalec and Sanchez, 

2012, Mizoguchi et al., 1995). This chapter however focuses extensively on rigorous 

model and data driven models 

The choice of model to be used for a distillation column depends on a number of 

factors. In control and optimisation which is the focus of this thesis, factors such as 

accuracy, simulation time and robustness need to be considered. In this wise, the 

strengths and weaknesses of a number modelling technique are outlined and some 

examples where they have been used are given. The choice of modelling methods used 

in this thesis is also presented against the pros and cons of other existing models. The 

chapter is divided as follows. Section 3.2 presents rigorous models both in the steady 

and dynamic state and their methods of solution. In section 3.3, linear data driven 

models such as multiple linear regression (MLR), principal component regression 

(PCR) and partial least square (PLS) are presented. Non linear data driven model in 

form of artificial neural network (ANN) and bootstrap aggregated neural network 

(BANN) is presented in section 3.4. Section 3.5 concludes the chapter with a brief 

summary. 

3.2 Rigorous Models  

Models of distillation system have always assumed equilibrium cases for the stages. 

Models could be classified as equilibrium or non-equilibrium model. Non-equilibrium 

models are either rate based or stage by stage. Non-equilibrium models however involve 

large number of variables,  leading to distillation models with differential equations that 

may exhibit high differential index and could generate stiff dynamics (Bonilla et al; 

2012). Modelling of a process and in particular distillation system could be done in the 

steady state mode or dynamic mode. 

3.2.1 Steady state modelling and simulation 

Mathematical model of distillation unit vary from simple to complex depending on the 

nature of assumptions used in formulating the model. Usually the model equations for 
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the equilibrium stage of a distillation column is represented by the MESH equations, 

that is, mass balance, equilibrium, summation and enthalpy equations. 

A distillation column with N equilibrium separation stages and C chemical species can 

be modelled with N(C+2) non-linear ordinary differential equations. Previously 

proposed models of crude distillation unit include the one by  Naphtali and Sandholm 

(1971) which used N(2C+1) model where the independent variables are  𝑙𝑗𝑖 , 𝑣𝑗𝑖  𝑎𝑛𝑑 𝑇𝑗, 

with N representing the no of trays and C representing the number of components. The 

mole fractions 2NC and total flow rates 2C were reduced to component flow rates.  

Therefore N(2C+3) stage variables were reduced to N(2C+1).  Tomich (1970) had a 

variation of N(C+2) variables with the independent variable being 𝑙𝑗𝑖 , 𝑉𝑗  𝑎𝑛𝑑 𝑇𝑗  while 

Russel (1983) and Kumar et al., (2001) used N(C+3) variables with 𝑙𝑗𝑖, 𝐿𝑗 , 𝑉𝑗𝑎𝑛𝑑 𝑇𝑗 as 

the independent variables. The explicit defined variables for each case were unique to 

each author.  

Often, columns are simulated in the steady state for energy consumption analysis of the 

column, parametric analysis, developing energy saving methodology and environmental 

analysis of the column’s operation. There have also been considerable efforts in 

simulating steady state operations of the distillation column for the determination of 

some online properties. Kumar et al.,(2001) focused on the model of a crude distillation 

unit for predicting the products from different specifications of crudes. The model was 

concluded to be suitable for production planning and scheduling, for online control and 

optimization and for process analysis and design. Online determination of the true 

boiling point (TBP) curve of the crude with a view to optimising the process were 

considered and steady state models for achieving the aim were developed (Dave et al., 

2004, Dave et al., 2003, Basak et al., 2002). The authors claimed that economic 

optimisation and quality control of products is possible when online data are available 

and hence the need for steady state online model of the distillation process. 

Most of these works are focused on predicting product qualities and composition of 

products. The need however arises to incorporate the dynamism of process energy 

efficiency and product qualities in the model of online predictions. 

So far, the steady state cases considered were equilibrium based model. Non-

equilibrium or rate based model are also of great importance because of additional 

insights to physical phenomenon in the column that can be gleaned from them. In this 

regard, the mass transfer rate equations and energy transfer rate equation for the liquid 
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and vapour phases were added to the MESH equations of each stage in the column. A 

procedure for solving each equation simultaneously using Newton’s method was 

outlined by Krishnamurthy and Taylor and was applied to a set of binary systems 

(Krishnamurthy and Taylor, 1985, Luyben, 2006). Lee and Dudukovic (2011) however 

claimed that the homotopy continuation method is superior to the Newton-Raphson 

method in the solution of the non-equilibrium model. This approach has been applied to 

reactive distillation column and binary column but application to multicomponent 

system like crude distillation unit is a difficult task. This is because of the interaction 

between the process heat and mass transfer as well as the interaction between the 

components.  

3.2.2 Dynamic modelling and simulation 

As much as steady state simulation of processes finds relevance in the chemical and 

petrochemical industries, dynamic simulation is more useful in practice. Dynamic 

simulation is a useful tool in the study of the behaviour of processes and it serves to 

explore proper control strategy for the process.  It can be used in investigating 

optimisation options of a process, start up and shut down procedures. It also finds 

applications in the quantitative and effective design of safety system in the column as a 

result of its accurate response time (Luyben, 2012). 

  In the dynamic simulation of a distillation column, a number of assumptions are made 

to simplify the models. Rarely can it be found in literature where rigorous dynamic 

models are made without simplifying assumptions (Van De Wal and De Jager, 2001). 

The assumptions fall under the categories of simplification to the vapour dynamics, the 

liquid dynamics and the energy balance. 

Assumption on vapour dynamics: Neglecting the vapour holdup on each stage. This 

assumption is valid when the vapour component hold up can be neglected compared to 

liquid phase. It is however invalid for volatile components, column with high pressure 

and for cryogenic substances.(Luyben, 1990, Robbins, 2011) Another assumption is to 

fix pressure and neglect vapour hold up or include vapour hold up. 

Assumption on energy balance: This include neglecting changes in energy hold up and 

changes in liquid enthalpy and assuming equal vapour flows up the column 
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Assumption on liquid dynamics: This is assuming a constant liquid hold up in the 

column. An often acceptable option is to linearize the dynamics of the column by using 

expressions such as Francis weirs equation. 

Several authors have reported their findings on the dynamic modelling and simulation 

of the crude distillation unit (Goncalves et al., 2010, Kreul et al., 1999). Most of these 

efforts are directed at studying the dynamic responses of the crude unit to step 

disturbances. 

3.2.3 Methods of solution of models 

Earlier before the advent of computer systems, approximate methods for making 

preliminary design and optimisation of crude distillation unit are the Kremser method, 

Edmister method and Fenske-Underwood-Gilliland (FUG) method (Green and Perry, 

2006). Kremser method uses absorption factor method to provide algebraic solutions for 

equilibrium cascades. FUG method estimates reflux, number of tray and feed tray for 

design of a new column. 

Solution methods for multicomponent require detail determination of pressure, 

temperature, flow rate, compositions and heat transfer on each tray of the column. This 

determination is made by solving the material balance equation, energy equations, 

equilibrium equations and summation equations (MESH).  For a complex column like 

the crude distillation unit having a great number of stages and numerous numbers of 

components, equations to be handled are not only large in number but are nonlinear 

with strong interactions. Early attempts of solving these equations resulted in stage by 

stage and equation by equation attempts of Matheson (1932) and Thiele-Geddes (1933). 

Amundson and Pontinen (1958) solved the MESH equations component by 

components. Friday and Smith (1964) modified Amundson and Pontinen approach for 

components of similar volatility and termed it the bubble point (BP) method (Green and 

Perry, 2006). In the BP method, all but the Material balance (M) equations are solved 

sequentially while the M equations are solved for each component with the use of 

tridiagonal matrix technique.  The BP method failed for components of wide volatility 

high boiling point difference and hence the sum of rates method (SR) was suggested. 

Because of the limits of the BP and SR methods, a simultaneous correction procedure 

that uses Newton Raphson method was developed. Other methods which have gained 

popularity are the Newton-Raphson method and the inside out method (Green and 

Perry, 2006). 
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3.2.4 Concluding Remarks 

Rigorous models are often considered appropriate for simulation of distillation columns. 

This is because they provide accurate stage by stage information making them ideal for 

the design of distillation columns and for monitoring real time operations of the 

columns. Rigorous models are however computationally demanding and might not be 

feasible for real time optimisation. They are often not robust enough to accommodate 

disturbances that significantly deviate from initial guesses and the complexity of 

rigorous models often limits networking the distillation system with other heat 

integrated systems (Ochoa-Estopier et al., 2014). Another complication of rigorous 

models is their numerical complexity and the difficulty of describing the 

physiochemical phenomena such as thermodynamics driving VLE in a distillation 

column (Bachnas et al., 2014). 

3.3 Linear Data Driven Models 

3.3.1 Multiple Linear Regression  

Multiple linear regression (MLR) is an extension of simple linear regression. It is a 

linear regression model that contains more than one predictor variable and could be 

more than one response variable. MLR models the relationship between two or more 

predictor variables and one or more response variable by fitting a linear equation to 

observe the data.  

A set of predictor variables 𝑋 and response variables 𝑌 can be represented by equations 

3.1 and 3.2 

𝑋 = 𝑥1 , 𝑥2, … 𝑥𝑛         3.1 

𝑌 = 𝑦1 , 𝑦2, … 𝑦𝑝         3.2  

Taking the case of  having a response variable 𝑦 with several predictor variables 𝑥𝑛, 

there will be an error on the measured value of y as given by equation 3.3 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+𝛽𝑛𝑥𝑛 + 𝜀       3.3 

Where 𝛽0  is the intercept, 𝛽1, 𝛽2…  𝛽𝑛  are the coefficients and 𝑥1, 𝑥2…  𝑥𝑛  are the 

predictor variables. There is a need to estimate the various 𝛽 coefficients.  From a set of 

empirical data, a collation in matrix form can be obtained as given in equation 3.4 
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[

𝑦1
𝑦2
⋮
𝑦𝑝

] = [

1 𝑥11 𝑥12 … 𝑥1𝑛
1 𝑥21 𝑥22 … 𝑥2𝑛
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑝1 𝑥𝑝2 … 𝑥𝑝𝑛

] 

[
 
 
 
 
𝛽0
𝛽1
𝛽2
⋮
𝛽𝑛]
 
 
 
 

+ [

𝜀1
𝜀2
⋮
𝜀𝑝

]     3.4 

The general form of the equation 3.4 is given in equation 3.5    

𝑌 = 𝑋. 𝛽 + 𝜀          3.5 

Where 𝑌 and 𝜀 are (𝑝 × 1) vector, 𝑋 is (𝑝 × (𝑛 + 1)) matrix and  𝛽 is a ((𝑛 + 1) × 1) 

vector.  MLR model parameter is obtained from equation 3.6 

𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌          3.6 

Equation 3.6  is the so called batch least squares (BLS) solution.  

Model prediction can then be calculated as  

𝑌𝑝 = 𝑋𝜃           3.7 

Model prediction residual is calculated as 

𝑒 = 𝑌 − 𝑌𝑝          3.8 

 Addition of more predictor variables creates more relationship among the variables. 

The predictor variables are related to response variable and potentially related to one 

another (Love, 2007). This is called multicolineraity. The ideal in applying MLR is for 

all the predictor variables to be correlated with the response variable and not with each 

other. Adding too many variables account for more variance and may not add to the 

model but might result in over fitting. Some preparation works are needed for MLR to 

be quite effective. This includes  

 checking the relationship among the predictor variables using the scatter plots 

and correlations 

 checking the relationship between each response variable and the predictor 

variable using the scatter plots and correlations 

 use the non redundant predictor variable in the analysis to find the best fitting 

model 

 Use the best fitting model to make predictions about the response variable. 
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In many chemical systems especially for distillation processes which are being 

considered here, most of the variables are correlated and highly non linear. To 

overcome the co linearity in the regression variables,  principal component 

regression (PCR) or partial least squares (PLS) models are used to obtain the 

linearised models (Geladi and Kowalski, 1986). 

3.3.2 Principal Component Regression  

PCR overcomes the co-linearity problem by finding uncorrelated principal components 

of the original predictor variables and then used MLR to regress the principal 

component scores (PCi) against the independent variable(s) Y. PCR incorporates PCA 

(principal component analysis) with a regression model.  

Assuming there is a set of predictor variables 𝑋 and a response variable 𝑌 

𝑋 = 𝑥1, 𝑥2, 𝑥3          3.9 

In figure 3.1, the PCA analysis of the X plane extracts the most variation of the data set 

yielding a representation of the sample in a space of fewer dimensions than the initial. A 

linear regression between the sample scores and the most collated factors in Y results in 

equation 3.10. Instead of using all the predictor variables for regression, the selected 

principal components are used 

X1

X3

X2

PC1

PC2

Y

PC2

PC1

 

Figure 3.1: Description of PCR 

𝑌 =  𝛽0 + 𝛽1𝑃𝐶1 + 𝛽2𝑃𝐶2        3.10 

One major use of PCR lies in overcoming the collinearity. PCR can aptly deal with such 

situations by excluding some of the low-variance principal components in the regression 

http://en.wikipedia.org/wiki/Multicollinearity
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step. In addition, by usually regressing on only a subset of all the principal components, 

PCR can result in dimension reduction. This can be particularly useful in settings with 

high-dimensional covariates. Also, through appropriate selection of the principal 

components to be used for regression, PCR can lead to efficient prediction of the 

outcome based on the assumed model. 

3.3.3 Partial Least Squares  

Partial least squares regression extends multiple linear regression without imposing the 

restrictions employed by discriminant analysis, principal components regression, and 

canonical correlation. Partial least squares regression has become a standard tool for 

modeling linear relations between multivariate measurements (de Jong, 1993). 

In PLS, the outer decomposition of both the X and Y data matrices are performed. This 

is to maximize the covariance between X and Y. 

Figure 3.2 shows a description of PLS 

X1
T1

X2

Y1

Y2

Y2

U1
X1

U1

T1

a b
c

 

Figure 3.2: Description of PLS 

Outer decomposition on X is as given in Figure 3.2(a) and is represented by the 

following equations 

𝑋 = 𝑇𝑃′ + 𝐸          3.11 

PCA on Y is as given in Figure 3.2(b) 

𝑌 = 𝑈𝑄′ + 𝐹           3.12 

http://en.wikipedia.org/wiki/Dimensionality_reduction
http://en.wikipedia.org/wiki/High-dimensional_statistics
http://en.wikipedia.org/wiki/Prediction
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𝑇  and 𝑈 are scores of 𝑋 and 𝑌 respectively while 𝑃′ and 𝑄′ are loadings. The PLS inner 

relation is as given in Figure 3.2(c). 

Principal components regression and partial least squares regression differ in the 

methods used in extracting factor scores. While, principal components regresses the 

covariance structure between the predictor variables, partial least squares regresses the 

covariance structure between the predictor and response variables. 

PLS is advantageous in that it deals with colinearity, takes the X and Y axis data 

structure into account, provides great visual result that helps in interpreting the data, and 

can model several response variables at the same time taking their structure in to 

account. 

3.3.4 Concluding remarks 

Distillation system even in its simplest form of binary distillation are highly non linear. 

When the modelling of the system involves system interaction and thermodynamic 

analysis as being considered in this report, linear models as discussed above might be 

highly inadequate to predict the outcome of the model and might give fictitious and 

unreliable results. Application of these linear models in the simplest case of distillation 

system-binary distillation is discussed in Chapter 5. 

3.4 Neural network model 

An artificial neural network is an information processing system using computing 

techniques that are analogous to the human processes of thought and reasoning. Neuro-

computing techniques has been in existence since around 1950s but has only be utilized 

for practical problem solving in the 1990s. They have been recognized as powerful tools 

for handling non linear problems especially when the relationships among variables are 

unknown. 

3.4.1 Neural network structure 

A neural network is made up of a number of interconnecting information processing 

elements called neurons. In figure 3.3, a typical multi layer neural network is given. 

Each of the input is connected to a neuron in the input layer and the input neurons are 

connected to the output neurons. Each connection link (known as synapses) has 

associated weights which determine the characteristics of the neural network. The 

prediction ability of the network is further enhanced by a hidden layers of neurons 
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between the input and output layers. The structure of a neural network is identified by 

its number of hidden layers and number of hidden neurons. Bias are added to the layers 

to improve the network’s approximation capability. In figure 3.3 is a feed forward 

structure of a neural network with two hidden layers. In feed forward neural network, 

information propagates from the input to the output in a forward direction. It is the most 

commonly used form of neural network due to its effectiveness and simplicity. In this 

thesis, a single hidden layer feed forward neural network is used. 

Bias

Output layer

Hidden layers
Input layer

 

Figure 3.3: A three layer feed forward neural network 

All neurons in the hidden layer are identical apart from the weight associated with their 

input and output.  Figure 3.4 shows a single neuron in the hidden layer. Weighted inputs 

to the neuron are summed together as given in equation 3.13 

𝑢 = 𝑤1𝑥1 + 𝑤2𝑥2 +…+𝑤𝑖𝑥𝑖       3.13 

A neuron activation function Φ is applied to the sum to get the neuron output in 

equation 3.14.  

𝜗 = 𝑓(𝑢)          3.14 
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Figure 3.4: An artificial neuron 

Some neuron activation function includes sigmoid function, linear functions, hyperbolic 

tangent and hard limiter. In this study the sigmoid activation function is used. The 

function models the non-linearity relationships in the input and scales the output 

between 0 and 1 as given in equation 3.15 and figure 3.5. If positive and negative 

outputs are required, the function can be rescaled into interval (+1, -1). The sigmoid 

activation function is commonly used in multilayer networks that are trained using the 

back propagation algorithm partly because they are differentiable (Martin, 2014).  

𝜗 =  
1

1+𝑒−𝑢
          3.15 

 

Figure 3.5: Sigmoid activation function 

The objective of a neural network is to predict the output given a set of valid inputs. In 

figure 3.6, is a network with an input layer of p neurons (𝑖 = 1 → 𝑝), a single hidden 

layer of h neurons (𝑘 = 1 → ℎ) and an output layer with a single neuron. The sum of 

the weighted inputs at the first neuron 𝑢1 is given in equation 3.16 



 

55 
 

𝑢1 = 𝑤101 + 𝑤111. 𝑥1 + 𝑤121. 𝑥2 + 𝑤131. 𝑥3 +…+𝑤1𝑝1. 𝑥𝑝   3.16 

𝑢1 = 𝑤101 + ∑ 𝑤1𝑖1. 𝑥𝑖
𝑝
𝑖=1         3.17 

For the kth neuron in the hidden layer 

𝑢𝑘 = 𝑤10𝑘 + ∑ 𝑤1𝑖𝑘. 𝑥𝑖
𝑝
𝑖=1          3.18 

Using the sigmoid activation function, the hidden layer output from the kth neuron is 

𝜗𝑘 = 
1

1+𝑒−𝑢𝑘
=

1

1+𝑒
−(𝑤10𝑘+∑ 𝑤1𝑖𝑘.𝑥𝑖

𝑝
𝑖=1

)
       3.19 

The final output from the output layer is the sum of the weighted outputs from the 

hidden layer and given in equation 3.20 

𝑦 =  𝑤001 + ∑ 𝑤0𝑘1. 𝜗𝑘
ℎ
𝑘=1         3.20 

It can be clearly seen that without the activation function, the output reduces to that of a 

multiple linear regression 
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Figure 3.6: Detailed description of inputs, neuron and synapses 
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3.4.2 Neural network training 

The objective of neural network training is to find appropriate network weights such 

that the relationship between model inputs and outputs presented in a data set can be 

well mimicked. The process of finding such sets of appropriate weight is termed neural 

network training. During training, the values of the weights and biases are tuned to 

optimize the network performance. The objective of the training is to minimize sum of 

squared differences between the targets output and the network outputs as represented in 

equation 3.21. 

𝐽 =
1

𝑛
∑ (𝑦(𝑖) − 𝑦 ′(𝑖))2𝑛
𝑖=1         3.21 

𝑦 ′ is the target output, 𝑦  is the neural network output and 𝑛 is the number of training 

data. There are a number of network training methods. Levenberg- Marquardt 

optimisation algorithm is used in this thesis. This is because it improves training speed 

by using approximate Hessian matrix to determine the weight adaptation step size. The 

steps required in building neural network models are pictorially given in figure 3.7. 

In the recent past a number of authors performed the steady state simulation of the 

distillation unit using some commercially available simulators such as Aspen Hysys and 

ProII (Mittal et al., 2011, Arjmand et al., 2011, Anitha, 2011, Haydary, 2009). 

In the design of process control and monitoring systems, considerations for energy and 

material costs in addition to process quality and throughput and demand for robust, 

fault-tolerant systems have introduced extra needs for effective process modelling 

techniques. In this regard, artificial neural network (ANN) has been recognised as a 

powerful tool that can facilitate the effective development of models for nonlinear, 

multivariable static and dynamic systems for both control and optimisation of process 

systems (Al Seyab and Cao, 2008, Cao et al., 2008). ANN can learn complex functional 

relations for a system from the input and output data of the system, hence serving as a 

black box model of the system (Liptak, 2006). 
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Figure 3.7: Building steps of neural network model 

In the recent past a number of authors performed the steady state simulation of the 

distillation unit using some commercially available simulators such as Aspen Hysys and 

ProII (Mittal et al., 2011, Arjmand et al., 2011, Anitha, 2011, Haydary, 2009). 

In the design of process control and monitoring systems, considerations for energy and 

material costs in addition to process quality and throughput and demand for robust, 

fault-tolerant systems have introduced extra needs for effective process modelling 

techniques. In this regard, artificial neural network (ANN) has been recognised as a 
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powerful tool that can facilitate the effective development of models for nonlinear, 

multivariable static and dynamic systems for both control and optimisation of process 

systems (Al Seyab and Cao, 2008, Cao et al., 2008). ANN can learn complex functional 

relations for a system from the input and output data of the system, hence serving as a 

black box model of the system (Liptak, 2006). 

Distillation unit poses a great challenge to control engineers because of its complexity. 

It comes in varieties of configurations with different operating objectives, significant 

interactions among the control loop and specialised constraints.  These result in distinct 

dynamic behaviours and different operational degree of freedom that will necessitate the 

need for specialised control configurations in order to optimize energy usage. Artificial 

neural network has found applications in distillation process from simple binary system 

to complex crude distillation system. This includes process control, process monitoring, 

system identification, process optimization and process sensors. Some of these are 

enumerated in the following subsections.  

3.4.3 ANN in Binary Systems 

Most neural networks for distillation process are based on feed forward neural network 

with back propagation learning algorithm. (Amit et al., 2013) used two neural network : 

a feed forward neural network (FFNN) and recurrent neural network (RNN) for a binary 

system of methanol-water.  The network is a two layer with a hyperbolic tangent 

sigmoid function as activation function in the first layer and pure linear function in the 

second layer. The data for the training, testing and validation were acquired 

experimentally. The input to the neural network are  reflux flow rate, feed flow rate, 

first tray temperature, reboiler duty, reflux drum  top pressure and reboiler bottom 

pressure. The output of the neural network is the distillate composition.  

In another previous work, the model of a methanol water system is considered. The 

network model a pilot plant distillation column which consist of 15 trays, a reboiler and 

a condenser.  The feed is on the 8th tray, and temperatures at trays 2, 6, 10 and 14 were 

measured under different reflux flow rates and reboiler heat inputs. The input to the 

network are reflux rate, reboiler heat input, reboiler temperature, condenser temperature 

and the 4 tray temperatures mentioned earlier and the outputs are  top and bottom 

compositions. The FFNN was trained by the Levenberg-Marquardt optimisation 

algorithm. Hidden neurons used the sigmoid activation function and the output layer 

neurons used the linear activation function. The number of hidden neurons were 
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determined through trial and error of the network with the least sum of square error 

(SSE)  (Abdullah et al., 2011). 

A pilot scale binary distillation system for the separation of acetone and isopropyl 

alcohol is considered in (Osman and Ramasamy, 2010).  Partial least square method 

(PLS) was used to determine the importance of the input variables. Two neural 

networks were trained and compared. One uses the feed forward network and the other 

is non-linear autoregressive with exogenous input (NARX).  Both networks have three 

layers, input, hidden and output layers.  Levenberg -Marquardt  back propagation with 

momentum technique was used as training method. Pureline and tan sigmoid activation 

function were used in the output and hidden layers respectively for the two networks. 

The input variables are reboiler steam flow rate, reflux flow rate, column top pressure, 

column bottom temperature and tray temperatures along the column. The output is the 

mole fraction of acetone at the top. The neural network can be used in inferential closed 

loop control of the pilot plant distillation column. 

An adaptive learning approach using a multi-layer feed forward neural network for 

composition control was the focus of another work. The neural network has two hidden 

layers. Activation function used was hyperbolic tangent function. The computer 

simulation shows the performance of the neural network controller as satisfactory (Yu, 

2003). 

In (González et al., 1999), LV control problem in binary column is addressed.  The 

control was for composition set points in the distillate and the bottom. Two on-line 

trained feedforward neural networks were used to estimate unknown parameters and the 

closed loop behaviour of the system was illustrated in numerical simulations. 

Model predictive control for a binary system of propylene and propane separation is 

presented in (Paraschiv et al., 2009). The column is simulated in HYSYS and the 

control structure is implemented in MATLAB. The top and bottom compositions, feed 

flow and feed compositions are sent from HYSYS to the control structure. LB control is 

implemented here and the control variables reflux flow and bottom product flow are 

computed and sent at each sampling time to the process. The dynamic behaviour of the 

system in terms of composition set points, disturbances and controllers tuning 

parameters were analysed. The paper presented model based predictive control 

technique having  the sampling time, prediction horizon, control variable horizon output 

and control variable weight as the tuning parameters.  
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3.4.4 Neural networks applied to multicomponent distillation  

Neural networks have been applied to the control of industrial distillation column either 

directly or used in model predictive control. In (Bahar et al., 2004), inferential control 

of product compositions through temperature measurements using ANN is presented.  A 

multi input multi output (MIMO) model predictive control (MPC) is used with the ANN 

estimator for the dual composition control of a multicomponent distillation column.  It 

was concluded that the controller using ANN estimator is as good as the controller 

using direct composition method. A multilayer back propagation training algorithms 

was used. The inputs to the system are the temperatures of the selected trays, top and 

bottom compositions.  

A soft sensor was developed for the monitoring of debutaniser column compositions 

(Fortuna et al., 2005). The neural network based sensor was developed from a set of 

historical data of a refinery. The sensors have been implemented and currently being 

used to monitor the production process.  

A dynamic model of non-ideal distillation column using differential equations, algebraic 

equations and Newton-type recursions equations to calculate tray temperatures was 

developed in (XiaoOu and Wen, 2011). The model was identified using neural network. 

Based on the neural network identifier, a local optima controller is then designed.  A 

numerical simulation of a 5 components distillation column with 15 trays was used to 

illustrate the effectiveness of the approach. 

3.4.5 Applications of neural network in crude distillation unit 

A steady state model from material and energy balance equations, phase equilibrium 

equations and summation equations was used to simulate a crude distillation unit. A 

multi-objective optimization problem was addressed. The decision variables which were 

varied within operability range were the four side strippers drawn flow rates, the four 

pump around flow rates, the reflux flow rate and the coil outlet temperature which 

determines the temperature of the feed to the CDU. The side stripper flow rate and 

reflux flow were varied by +_10% and the pump around flows by +-20%. The 

optimisation objectives were to maximise profit and minimise energy cost, maximise 

total distillate produced and minimise energy cost and maximise profit and minimise 

property deviation. The properties considered were specific gravities of products, flash 

point of product and % recovery of HGO at 366C.A new optimal operating conditions 
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was determined from the optimisation results. This was pegged to increase profit at the 

same energy costs.(Inamdar et al., 2004) 

Steady state optimisation of a crude distillation system was studied in (Basak et al., 

2002). Online optimisation was done using a tuned model and a back calculated TBP 

(true boiling point). The optimised control parameters include product draw rates, pump 

around flow rates, reflux flow rates and coil outlet temperature (COT). A code was 

developed in FORTRAN for the maximising of product properties and profit.  Care 

must be taken to ensure that the model is in tune with plant operation by back 

calculating the crude TBP and tuning the model parameter (stage efficiencies) online 

using measured temperatures and other column parameters before applying the online 

optimisation. The cases investigated show potentials for yearly profit. 

The maximisation objective used in  (Liau et al., 2004) is the oil production rates 

subject to the market needs. Hence kerosene flow ratio, diesel flow ration and AGO 

flow ratio were optimised independently. ANN model which can predict oil product 

qualities with respect to the system input variables was built from a practical CDU 

operating condition. The ANN is a feed forward network with hidden layers using error 

back propagation training. Design of experiment (DOE) method was used to evaluate 

effect of each input variable on the quality of the product.  The expert system was found 

to predict the optimal conditions for the various objective functions considered. 

 The approach taken in (Monedero et al., 2012) is to optimize the energy efficiency 

including the production rate with required product quality while minimising the 

reboiler energy usage. The data generated from a practical crude distillation unit was 

pre-processed and modelled with SPSS modeller.   

In the study (Ochoa-Estopier et al., 2013), a crude distillation system is simulated in 

HYSYS. ANN model is a feed forward back propagation network consisting of three 

layers. Hyperbolic tangent function was used for hidden layer and a linear transfer 

function for the output layer. The inputs to the system are the duty and temperature drop 

of the pump around and the flow rates of products. The outputs are variables that 

describe product quality (5 and 95% TBP) and minimum energy requirements variables 

such as enthalpy change, supply and target temperatures of process streams. The column 

was optimized to maximise profit and minimise energy requirements. Minimum energy 

requirements are calculated using the grand composite curve (GCC). Cost model were 

used to determine the product income and operating costs. Simulated annealing 
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optimization algorithm was used to solve the non-linear programming problem 

formulated. 

An ANN model of a crude distillation unit with inputs as operating variables such as 

feed flow rate and temperature and the output as the product qualities is reported in 

(Motlaghi et al., 2008).  The ANN model is a multilayer feed forward network trained 

with the  Levenberg-Marquardt training method. The product quality was optimised 

using Genetic Algorithm (GA). The optimisation result yielded optimal operating 

conditions for the unit.  

3.4.6 Bootstrap Aggregated Neural Network  

The objective in neural network modelling is to build a network that can generalise. 

That is, it can give excellent performance on the training data as well as unseen testing 

data. This however is not always the case in neural network training. When building 

neural network models from the same data set, there is possibility that different 

networks perform well in different regions of the input space. Hence, prediction 

accuracy on the entire input space could be improved when the multiple neural 

networks are combined instead of using a single neural network. In a bootstrap 

aggregated neural network model, several neural network models are developed to 

model the same relationship. Individual neural network models are developed from 

bootstrap re-sampling replications of the original training data. Instead of selecting a 

single neural network that is considered to be the “best”, several networks are combined 

together to improve model accuracy and robutsness. These models can be developed on 

different parts of the data set. 

The data for building neural network models are re-sampled using bootstrap techniques. 

Distribution of the data that is obtained through bootstrap resampling is similar to the 

original data distribution. The idea of bootstrap resampling is to suppose that a 

cumulative distribution function (CDF)  𝐹 calculated from an observed sample  𝑥1, … 𝑥𝑛 

is sufficiently like the unknown CDF 𝐹 such that a calculation performed based on 𝐹𝑛 

can be used as an estimate of the calculation to be performed based on 𝐹. In this thesis, 

for the BANN modeling in chapters 5 and 6, 30 data sets were obtained through 

bootstrap resampling of the original data. Each data are then divided to form several 

pairs of training, testing and validation data sets. A neural network model is then 

developed from each pair of training and testing data sets.  
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Predictions from the individual neural networks are combined to give the final model 

predictions. This overall output is a weighted combination of the individual neural 

network outputs. This is represented by equation  3.22 

𝑓(𝑥) =  ∑ 𝑤𝑖𝑓𝑖(𝑥)
𝑛
𝑖=1          3.22 

where 𝑓(𝑥) is the aggregated neural network predictor, 𝑓𝑖(𝑥) is the ith neural network, 

𝑤𝑖 is the aggregating weight for combining the ith predicted neural network, 𝑛 is the 

number of neural networks and 𝑥 is a vector of neural network inputs. 

The aggregating weight 𝑤𝑖  needs to be properly determined for enhanced model 

prediction and performance. Since the neural networks are highly correlated, 

appropriate aggregating weight can be obtained through PCR (Zhang, 1999). 

If  𝑦  is the expected model ouput for a neural network and 𝑦  be a vector of the 

predictions from the 𝑖𝑡ℎ neural network predictor: predictions from a set of n predictors 

can be put in a matrix form as given in equation 3.23 

𝑌 = [𝑦
1
  𝑦

2
…𝑦

𝑛
]           3.23 

Each column in equation 3.24 corresponds to an individual predictor. The vector of 

prediction from BANN model  𝑦
𝐵
 can then be represented as 

𝑦
𝐵
= 𝑌𝑤 = 𝑤1𝑦1 + 𝑤2𝑦2 +⋯𝑤𝑛𝑦𝑛       3.24 

The matrix 𝑌 can be decomposed through principal component decomposition into the 

sum of series of rank one matrices as 

𝑌 = 𝑡1𝑝1
𝑇 + 𝑡2𝑝2

𝑇+ …+ 𝑡𝑛𝑝𝑛
𝑇        3.25 

Where 𝑡1  is the 𝑖𝑡ℎ   score vector and 𝑝1  is the loading vector.  The loading vector 

defines the direction of the greatest variability and the score vector represents the 

projection of each column of  𝑌 onto  𝑝1. Through PCR, the BANN model output is 

obtained as a linear combination of the first few principal components of   𝑌. If the first 

few principal components used are denoted by 𝑇𝑘  and 𝑇𝑘 is expressed as 

𝑇𝑘 = 𝑌𝑃𝑘           3.26 

Where 𝑃𝑘 = [𝑝1  𝑝2 …𝑝𝑘 ] 

Then the BANN model can be represented as  
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𝑦
𝐵
= 𝑇𝑘𝜃 = 𝑌𝑃𝑘𝜃         3.27 

The least square estimation of 𝜃 is 

𝜃 = (𝑇𝑘
𝑇𝑇𝑘)

−1𝑇𝑘 
𝑇𝑦 = (𝑃𝑘

𝑇   𝑌
𝑇
𝑌𝑃𝑘)

−1

𝑃𝑘
𝑇 𝑌

𝑇
𝑦     3.28 

The aggregating weight calculated through PCR is  

𝑤 = 𝑃𝑘𝜃 = 𝑃𝑘 (𝑃𝑘
𝑇  𝑌

𝑇
𝑌𝑃𝑘)

−1

𝑃𝑘
𝑇 𝑌

𝑇
𝑦      3.29 

BANN has the advantage of model prediction confidence bounds. 

The prediction confidence bounds can be calculated as described below 

Having generated 𝑛  samples, each drawn with replacements from 𝑚  training 

observations as   

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚, 𝑦𝑚)}       3.30 

If the 𝑏𝑡ℎ sample is denoted by 

{(𝑥1
𝑏 , 𝑦1

𝑏), (𝑥2
𝑏 , 𝑦2

𝑏),… , (𝑥𝑚
𝑏 , 𝑦𝑚

𝑏 )}       3.31 

For each bootstrap sample 𝑏 = 1, 2, … , 𝑛 , a neural network model is trained. The 

weights of the resulting neural network model is denoted by 𝑊𝑏 

Then the standard error of the 𝑖th predicted value can be given by 

𝜎𝑒 = {
1

𝑛−1
 ∑ [𝑦(𝑥𝑖;𝑊

𝑏) − 𝑦(𝑥𝑖; )]
2𝑛

𝑏=1 }

1

2
        3.32

       

where 𝑦(𝑥𝑖) = ∑ 𝑦(𝑥𝑖;𝑊
𝑏)𝑛

𝑏=1 /𝑛 and  𝑛 is the number of neural networks.  

The 95% prediction confidence bounds can be calculated  as 𝑦(𝑥𝑖; ) ± 1.96𝜎𝑒. 

To demonstrate the procedure outlined, an example is given as follows. 

For example, Assuming data  sample were generated from the equation 

 𝑦 = cosine(𝑥)          3.33 

where 𝑥 was generated as random numbers between 1 and 10 with an increment of 0.2. 

46 data points were generated to build the neural network model. 24 of the data points 

were selected randomly for training, 14 for testing and 8 for validation. Figure 3.8 
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shows the training, testing and validation data sets. A number of network with different 

number of hidden  neurons were studied. Network were trained on the training data set 

and appropriate network structure is selected after testing with the testing data sets. 

During the training, the sum of square error (SSE) is continously checked on the testing 

data set and the  network that gives the least SSE is considerd as having the appropriate 

number of hidden neurons. In table the SSE for training, testing and validation for 

different number of hidden neuron is shown. The network structure with 3 hidden 

neuron has the least SSE.  

 

Figure 3.8: Training, testing and validation data sets. 

 

Table 3.1: SSE for a number of neural networks 

No of hidden neuron SSE training SSE testing SSE validation 

2 1.2671 1.5560 0.2921 

3 0.00094 0.3195 0.0054 

4 0.00099 0.3471 0.0066 

5 0.00097 0.3241 0.0054 

6 0.0017 0.3714 0.0075 

7 0.1331 0.3246 0.0230 

8 0.00099 0.3468 0.0064 
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A BANN model containing  30 networks was developed. Training data for each 

network was obtained from bootstrap resampling of the original training data. 

Levenberg Marquardt algorithm was used for the training and network aggregating 

weights were obtained through PCR. An example code for implementing this in  

MATLAB is given in Appendix B. The SSE for the training, testing and validation data 

sets for the BANN model are 0.0023, 0.0042 and 0.0012 respectively. The model 

accuracy can be seen to be significantly improved using BANN model. 

3.4.7 Neural network and optimsation 

Since ANN can learn complex relationships from the input and output data and hence 

can adequately predict unknown process variables then there is a scope of harnessing 

ANN for optimising the values of such variables. The optimised values can then be used 

as input to a real time optimiser. Figure 3.8 shows the structure of using a neural 

network for the optimisation. 

 Real time optimisation of distillation columns based on mechanistic models is often 

infeasible due to the effort in model development and the large computation effort 

associated with mechanistic model computation. This issue can be addressed by using 

neural network models which can be quickly developed from process operation data. 

The application of data driven process modelling in the optimisation of binary 

distillation column, multicomponent distillation column and crude distillation units are 

explored further in the chapters 5 and 6 of this thesis. 

Optimiser Controller Process

ANN based predictorFilter
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Figure 3.9: Structure of neural network for optimisation  

Source: (Love 2007) 
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3.4.8 Concluding remarks 

Data driven models like ANN and BANN have a wide range of application in the 

process industries. They are more robust, computationally less time consuming than 

rigorous models and are able to accommodate complexities in processes. However, the 

fact they are data driven suggests the need for the accuracy of the data on which they 

are trained. They might also be found unsuitable for processes that deviate significantly 

from the original data and thus limit their versatility. 

3.5 Summary 

Rigorous models and data driven models of distillation column has been extensively 

discussed in this chapter. Rigorous model gives accurate stage by stage information on 

distillation column and are essential for the design of the column. Rigorous models are 

however significantly limited for process optimisation.  This is because they are 

sensitive to initial guesses and hence are generally not robust to significant changes. 

Also convergence of the model can be very slow especially for complex distillation 

column like the crude distillation unit. Linear data driven models perform better in 

terms of robustness, convergence and time. They are however not able to adequately 

model the non-linearity nature of the column and hence are not appropriate for 

distillation column. Non-linear data driven models (ANN and BANN) are extremely 

robust with a very short computation time. This makes them ideal for real time 

optimisation and model predictive control of the column. However caution must be 

taken to ensure correct, quality and accurate data are used for the modelling. This is 

because the quality of the model depends on the quality of the data. Also it is not 

advisable to use the model on data beyond the range of the data used for regression. 

This is because the model is not based on physical principles and hence might not hold 

true for every columns that significantly deviate from the base column for the 

modelling.  
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CHAPTER 4: DISTILLATION CONTROL STRUCTURE 

SELECTION FOR ENERGY EFFICIENT OPERATIONS 

This chapter is based on the paper published in Chemical Engineering and Technology  

4.1 Introduction 

There have been several studies aimed at improving the energy efficiency of distillation 

processes which has led to evolving distillation schemes different from the conventional 

ones. These include but not limited to vapour recompression (Kim, 2012), heat 

integrated distillation columns (Kiss et al., 2012) and dividing wall columns (Chun and 

Kim, 2013). The operation of distillation systems irrespective of whether conventional 

or heat integrated columns can be better improved with appropriate control schemes. 

Distillation has in fact been identified as the unit operation that could be significantly 

improved with good control with an estimate of about 15% reduction of energy if 

proper column control were in use (Dartt, 1985). One of the three issues identified by 

Skogestad and Morari (Skogestad and Morari, 1987) in the control of distillation 

columns is the control structure selection. Take for example, the control of a typical 

binary distillation system is usually viewed as a 5×5 control problem with 5! = 120 

possible combinations of control loop pairings. Each of the configurations has different 

degrees of control loop interactions and disturbance sensitivities making the design of 

distillation control systems a difficult venture. Methods of selection of controlled 

variables for processes such as evaporator and exothermic reactor has been discussed 

extensively in the literatures (Umar et al., 2014). 

Relative gain array (RGA) is commonly used for the selection of the best control 

structure (Skogestad et al., 1990, Skogestad and Morari, 1987, Xiong et al., 2005, He et 

al., 2009). The steady state RGA however contains no information on the dynamic and 

disturbance on which distillation is hinged. This has led to the modifications of the 

RGA technique by different researchers to evolve techniques such as dynamic relative 

gain array (DRGA), effective relative gain array (ERGA) and relative normalized gain 

array (RNGA) (He et al., 2009, Xiong et al., 2005, Mc Avoy et al., 2003). 

However, despite all the modifications, control loop interaction analysis is no longer 

sufficient for the selection of the best control strategy in the context of sustainable 

chemical industry. This is because of the cost and environmental implications of energy 

and the need to incorporate minimum energy usage in the selection of the control 

structure (Munir et al., 2012d). In this wise a number of tools based on application of 
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thermodynamics in the process control regime have been developed. These include 

relative exergy array (REA), exergy ecoefficiency factor (EEF), and relative exergy 

destroyed array (REDA) (Munir et al., 2012a, Munir et al., 2013c, Munir et al., 2012c, 

Montelongo-Luna et al., 2011). These methods are all based on steady state and have 

not been validated in the dynamic state.  This chapter aims at using thermodynamics 

analysis in addressing the important issue of control structures selection for distillation 

columns. This is with a view of identifying the best energy efficient control strategies 

from a number of alternatives and validating the methods in the dynamic states. This 

will then lead to an optimum control structure that will serve the dual purpose of 

achieving good product quality and minimum energy usage. A full detailed 

thermodynamic analysis of the control structures in the steady state with the aim of 

gaining insights into the exergy efficiency and exergy loss of each control structure is 

also given. The viability of the selected control scheme in the steady state is further 

validated by the dynamic simulation in responses to various process disturbances and 

operating condition changes. This is to show the performance of the control structure in 

terms of composition control and energy efficiency. 

This chapter is organised as follows. Section 4.2 describes the distillation systems and 

their modelling. The systems are modelled from the fundamental equations and HYSYS 

simulation. Section 4.3 gives an overview of the control structure selection in terms of 

RGA and REA. In Section 4.4, application to methanol-water system is described while 

Section 4.5 presents the application to benzene-toluene system. Section 4.6 gives the 

conclusion of the chapter. 

4.2  Binary distillation systems and modelling  

4.2.1 Binary distillation columns 

A simple binary distillation system is shown in figure 4.1 and it consists of a reboiler, a 

condenser, a single feed stream, a distillate product stream and a bottom product stream. 

Methanol-water separation and benzene-toluene separation were considered in this 

study. The methanol-water system contains 50% methanol to be continuously rectified 

at 1 atm and at a rate of 4320kg/h to provide a distillate containing 99% methanol and a 

residue containing 1% methanol (by weight). The number of stages in the column is 16, 

and the feed is on the 4th tray with bottom up numbering.  

For the benzene–toluene mixture, a continuous fractionating column is used to separate 

30,000 kg/hr of a mixture with 44% benzene and 56% toluene at 95°C into an overhead 

product containing 95% benzene and a bottom product containing 5% benzene at a 
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pressure of 1 atmosphere and actual reflux ratio of 3.5. The relative volatility of the 

mixture is given as 2.5. The number of stages is 11 with the feed on the 5th stage 

numbering from bottom up. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Schematic diagram of a binary distillation system 

4.2.2 Modelling of distillation columns 

The mathematical model of a distillation column is an aggregation of individual 

theoretical stages. Figure 4.2 shows a generic stage. 

Component continuity equation: 

𝑑(𝑀𝑗𝜒𝑗,𝑖)

𝑑𝑡
= 𝐿𝑗+1𝜒𝑗+1,𝑖 + 𝑉𝑗−1𝑦𝑗−1,𝑖 + 𝐹𝑗

𝑙𝜒𝑗,𝑖 + 𝐹𝑗
𝑣𝑦𝑗,𝑖 − 𝐿𝑗𝜒𝑗,𝑖 − 𝑉𝑗𝑦𝑗,𝑖  4.1 

where Mj is the liquid hold up in the jth stage, 𝜒 j,i is the composition of ith component 

in the liquid at the jth stage, yj,i is the composition of ith component in the vapour at the 

jth stage, Lj is the liquid flow rate leaving from the jth stage, Vj is the vapour flow rate 
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leaving from the jth stage, Fj
l is the liquid feed rate, Fj

v is the vapour feed rate, and t is 

time. 

 

 

 

 

 

 

Figure 4.2: Diagrammatic representation of an equilibrium stage 

The dynamic state equations for a general stage are given below. 

Total continuity equation: 

𝑑(𝑀𝑗)

𝑑𝑡
= 𝐿𝑗+1 + 𝑉𝑗−1 + 𝐹𝑗

𝑙 + 𝐹𝑗
𝑣 − 𝐿𝑗 − 𝑉𝑗      4.2 

Energy equation: 

𝑑(𝑀𝑗ℎ𝑗)

𝑑𝑡
= 𝐿𝑗+1ℎ𝑗+1 + 𝑉𝑗−1𝐻𝑗−1 + 𝐹𝑗

𝑙ℎ𝑗 + 𝐹𝑗
𝑣𝐻𝑗 − 𝐿𝑗ℎ𝑗 − 𝑉𝑗𝐻𝑗   4.3  

where hj is the liquid enthalpy from the jth stage and Hj is the vapour enthalpy from the 

jth stage. 

Equilibrium equations: 

𝑦𝑗,𝑖 = 𝐾𝑗𝑖𝜒𝑗,𝑖              4.4 

𝜒𝑗,𝑖 =
𝑙𝑗𝑖

𝐿𝑗
           4.5 

𝑦𝑗,𝑖 =
𝑣𝑗𝑖

𝑉𝑗
           4.6 

where Kji is the equilibrium constant for the ith component on the jth stage, 𝑙𝑗𝑖 is the 

liquid flow rate of the ith component from the jth stage, and 𝑣𝑗𝑖 is the vapour flow rate 

of the ith component from the jth stage. 

𝑉𝑗 

𝑉𝑗−1 

𝐿𝑗+1 

𝐹𝑗  

𝐿𝑗  

Stage j 
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Liquid summation equation: 

𝐿𝑗 = ∑ 𝐿𝑗𝑖  
𝐶
𝑖=1           4.7 

where C is the total number of components and C=2 for the case of binary distillation. 

Vapour summation equation: 

𝑉𝑗 = ∑ 𝑉𝑗𝑖    
𝐶
𝑖=1           4.8 

Usually dynamic simulations of distillation systems are made with some assumptions to 

simplify the model (Skogestad, 1997). The assumptions made for the dynamic 

modelling and simulation of the two distillation columns considered here are: 

 Equilibrium between the liquid and vapour on each stage 

 Neglecting hold up in the gas phase 

 The liquid stream was modelled using linearised tray hydraulics incorporating 

activity coefficient equations (Wittgens and Skogestad, 2000). 

 Antoine’s equation was used for the vapour pressure model 

If the specific liquid enthalpy is assumed to be a function of the specific heat capacity 

Cp, then 

ℎ𝐿,𝑗 = 𝐶𝑝(∆𝑇)          4.9 

The specific vapour is assumed to be  

ℎ𝑉,𝑗 = ℎ𝐿,𝑗 + 𝐻𝑣𝑎𝑝         4.10 

where 𝐻𝑣𝑎𝑝 is the heat of vaporisation. 

4.3 Distillation control structure selection 

Generally, variables that are needed to be controlled for a binary distillation column are 

composition of the distillate 𝜒𝐷, composition of the bottom product 𝜒𝐵, liquid level in 

the reflux drum, liquid level in the base drum and pressure in the column. Usually, the 

manipulated variables are reflux flow, L, reboiler vapour flow, V, distillate flow, D, 

bottom product flow, B, and condenser duty. Column pressure is usually controlled by 

the condenser duty and various distillation column control configurations refer to the 
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pairing of other controlled and manipulated variables. Some typical distillation column 

control schemes include LV, DV, and LB control configurations.  

In the LV control configuration, the top product composition is regulated by adjusting 

the reflux flow L and the bottom product composition is controlled by adjusting the 

reboiler’s energy which is equivalent to reboiler vapour flow V. Distillate rate is used to 

control the condenser level and bottom product rate B is used to control the reboiler 

level. Similarly for the DV control configuration, L is used to control the condensor 

level and D is used to control the top composition while the reboiler level is controlled 

by B and the bottom product composition is controlled by V.  

4.3.1 RGA analysis 

A multi-input multi-output (MIMO) system usually has interactions among the control 

loops. For better control of a process, control loop interactions should be minimised as a 

high degree of loop interaction makes the control difficult. Relative gain array (RGA)  

proposed by Bristol (Bristol, 1966) is  a tool that can be used to quantify control loop 

interactions. Relative gain is the ratio of the steady state gain when the loops are open to 

the steady state gain with all other loops closed. 

The relative gain between the ith controlled variable and the jth manipulated variable is 

represented mathematically as  

𝛼𝑖𝑗 = 

(
∆𝑦𝑖
∆𝑢𝑗

)
𝑎𝑙𝑙 𝑙𝑜𝑜𝑝𝑠 𝑜𝑝𝑒𝑛

(
∆𝑦𝑖
∆𝑢𝑗

)
𝑎𝑙𝑙 𝑙𝑜𝑜𝑝𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑒𝑥𝑐𝑒𝑝𝑡 𝑡ℎ𝑒 𝑢𝑗 𝑙𝑜𝑜𝑝 

       4.11 

= 
𝑜𝑝𝑒𝑛 𝑙𝑜𝑜𝑝 𝑔𝑎𝑖𝑛

𝑐𝑙𝑜𝑠𝑒𝑑 𝑙𝑜𝑜𝑝 𝑔𝑎𝑖𝑛
 

RGA is then obtained when the relative gains for all the pairing combinations in a 

multi-loop control system are calculated and put in an array. 

𝑅𝐺𝐴 = [

𝛼11 𝛼12 … 𝛼1𝑛
𝛼21 𝛼22 … 𝛼2𝑛
⋮ ⋮ ⋱ ⋮
𝛼𝑛1 𝛼𝑛2 … 𝛼𝑛𝑛

]        4.12 

A relative gain of 1 on the diagonal of RGA indicates that there are no control loop 

interactions. The strategy is then to match the controlled and manipulated variables 

when 𝛼𝑖𝑗 is nearest to 1 and to avoid the pairings with close to zero or negative relative 

gains. 
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4.3.2 Thermodynamic analysis 

Exergy is from a combination of the 1st and 2nd laws of thermodynamics. It is a key 

aspect of providing better understanding of the process and quantifying sources of 

inefficiency and distinguishing quality of energy used (Jin et al., 1997, Rosen and 

Dincer, 1997, Doldersum, 1998). Exergy analysis is a measure of the quality of energy 

and is the maximum work produced or the minimum required depending on whether the 

system produces or requires work in bringing the system through reversible process 

with the environment. It is a tool for determining how efficient a process is (Dhole and 

Linnhoff, 1993, Demirel, 2004). 

Exergy represents the part of energy, which can be converted into maximum useful 

work. It is used to establish criteria for the performance of engineering devices (Asada 

and Boelman, 2004). Unlike energy, exergy is not conserved and gets depleted due to 

irreversibilities in the processes (Sengupta et al., 2007). The greater the extent of 

irreversibilities is, the greater the entropy production is. Therefore, entropy can be used 

as a quantitative measure of irreversibilities associated with a process. Minimization of 

irreversibility in processes implies increase in energy efficiency of such process. Exergy 

analysis of processes gives insights into the overall energy usage evaluation of the 

process, potentials for efficient energy usage of such processes can then be identified 

and measures for improving energy usage of the processes can be suggested.  

The total exergy of a stream is calculated as  

 𝐸𝑥𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑥𝑝ℎ𝑦 + 𝐸𝑥𝑐ℎ𝑒𝑚 + 𝐸𝑥𝑚𝑖𝑥𝑖𝑛𝑔      4.13 

  𝐸𝑥𝑝ℎ𝑦 = 𝐻 − 𝐻0 − 𝑇0(𝑆 − 𝑆0)       4.14 

 𝐸𝑥𝑝ℎ𝑦 = ∆𝐻 − 𝑇0∆𝑆         4.15 

 ∆𝐸𝑥𝑐ℎ𝑒𝑚=∑𝑛𝑖𝑏𝑐ℎ𝑖 + 𝑅𝑇0∑𝑛𝑖𝑙𝑛𝛾𝑖                4.16 

In the above equations, 𝑏𝑐ℎ𝑖  is the chemical exergy for component i, 𝛾𝑖   is the activity 

coefficient of component i, 𝐻  is the total enthalpy, 𝑆  is the total entropy, 𝑇0  is the 

reference temperature, 𝐻0  and 𝑆0  are enthalpy and entropy respectively measured at 

reference conditions. 

For a heat source such as the reboiler, if zQ  is a heat source at an absolute temperature, 

zT , and if 0T  is the ambient temperature, then the work equivalent of heat is given by 

(Dincer and Rosen, 2012) 
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𝑊𝑍 = ∫ (1 −
𝑇0

𝑇𝑍
) 𝜕𝑄𝑍

𝑓𝑖𝑛𝑎𝑙

𝑖𝑛𝑡𝑖𝑎𝑙
          4.17 

where 𝜕𝑄𝑍 is an incremental heat transfer at absolute temperature 𝑇𝑍 and the integral is 

from initial state to final state. 

If the temperature of the heat source is constant, the work equivalent of heat is given by 

(Dincer and Rosen, 2012) 

 

z

zz

T

QTT
W 0

max


           4.18                                                                      

This is the absolute theoretical maximum work recoverable. Equation 4.18 is used in 

calculating the exergy of the reboiler and the condenser. 

Exergy efficiency of a system is calculated as 

 𝜑 =
∑  𝐸𝑥𝑜𝑢𝑡

∑  𝐸𝑥𝑖𝑛
          4.19 

While the exergy loss of a system is given as  

 𝐼 = ∑  𝐸𝑥𝑖𝑛 − ∑  𝐸𝑥𝑜𝑢𝑡        4.20 

It takes a good engineering judgement to determine the streams that are qualified as in 

and those that are qualified as out. 

For a binary distillation system the total exergy in and total exergy out are given as  

 𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑖𝑛=𝐸𝑥𝑓𝑒𝑒𝑑 + 𝐸𝑥𝑅𝑒𝑏𝑜𝑖𝑙𝑒𝑟       4.21 

   𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑜𝑢𝑡 = 𝐸𝑥𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑒 +  𝐸𝑥𝐵𝑜𝑡𝑡𝑜𝑚𝑠      4.22 

In the above equations, Exfeed, ExReboiler, ExReflux, ExBoilup, ExDistillate, and ExBottom are, 

respectively, the exergy in the feed stream, reboiler, reflux stream, boil up stream, 

distillate product stream, and bottom product stream. 

4.3.3 Relative exergy array 

Relative exergy gain is defined as “the ratio of the gain change in the steady state 

exergy of the controlled stream with respect to that of the manipulated stream when all 

loops are open to the gain change in the steady state exergy of the controlled stream 

with respect to that of the manipulated stream when all other loops are closed and in 

perfect control” (Montelongo-Luna et al., 2011). This is given in equation 4.23. 
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𝛽𝑖𝑗 = 

(
∆𝐸𝑥(𝑦𝑖)

∆𝐸𝑥(𝑢𝑗)
)
𝑎𝑙𝑙 𝑙𝑜𝑜𝑝𝑠 𝑜𝑝𝑒𝑛

(
∆𝐸𝑥(𝑦𝑖)

∆𝐸𝑥(𝑢𝑗)
)
𝑎𝑙𝑙 𝑙𝑜𝑜𝑝𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑒𝑥𝑐𝑒𝑝𝑡 𝑡ℎ𝑒 𝑢𝑗 𝑙𝑜𝑜𝑝 

       4.23 

REA is based on the RGA concept by replacing relative gain with relative exergy gain. 

The exergy gain ratio is usually calculated after a step input change in the manipulated 

variable. It gives the amount of exergy change in the controlled variable resulting from 

the exergy change in the manipulated variable and hence provides information on the 

thermodynamic efficiency of the pairing.  This permits a good insight to the energy 

efficiency of a process right from the design stage and allows for the choice of optimum 

combination of loops. 

Putting all the relative exergy gains in an array gives the relative exergy array: 

𝑅𝐸𝐴 = [

𝛽11 𝛽12 … 𝛽1𝑛
𝛽21 𝛽22 … 𝛽2𝑛
⋮ ⋮ ⋱ ⋮
𝛽𝑛1 𝛽𝑛2 … 𝛽𝑛𝑛

]        4.24 

REA indicates the exergy efficiency effects of pairing each of the manipulated variables 

to each of the controlled variables. It is defined analogous to the relative gain array.  If 

the value of a relative exergy gain on the diagonal of REA is equal to 1, then it indicates 

the thermodynamic efficiency of the control loop under consideration is not affected by 

the other control loops (Montelongo-Luna et al., 2011, Munir et al., 2013c, Munir et al., 

2012b). This control loop pairing will be good in terms of thermodynamic efficiency. 

The value of a relative exergy gain greater than 1 implies that the exergy change from 

the open loop is much more pronounced. In this case, interaction from the variables in 

the process will decrease the process exergy change. The value of a relative exergy gain 

less than 1 indicates the exergy change due to open loop is less and hence an increase in 

exergy changes when the loops are closed. If the sign is negative, closing the control 

loop will improve the thermodynamic efficiency of the process but if on the other hand 

the sign is positive, this shows that the thermodynamic efficiency of the process will be 

decreased by the control loop. In control structure selection, a control loop paring with 

relative exergy gain close to one is preferred.  

4.4  Application to methanol-water separation column 

The methanol-water system was simulated from the fundamental first principle model in 

MATLAB. Three control configurations, LV, DV and LB, are considered for the 
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system. The open loop responses of the controlled variables (distillate and bottom 

compositions) to step changes in their corresponding manipulated variables for each of 

the configurations are shown in Figure 4.3 to Figure 4.5 for the methanol-water system  

The transfer function of a first order system is given by  

𝐺(𝑠) =
𝑌(𝑠)

𝑋(𝑠)
=

𝐾𝑐

1+𝜏𝑠
                4.25 

𝐾𝑐 = 
∆𝑦

∆𝑈
             4.26 

Where 𝐾𝑐 is the process gain 

 𝜏 is process time constant 

𝑌(𝑠) is the response of the process 

 𝑋(𝑠) is the process input 

 ∆𝑦  is the change in the controlled variable 

 ∆𝑈 is the change in the manipulated variable. 

Transfer function models are identified from the open loop step response data and are 

shown as follows. 

Transfer function matrix of the LV configuration for methanol-water separation: 

 𝐺(𝑠) = (

0.259

1+5.21𝑠
−

1.109

1+5.14𝑠
0.114

1+5.31𝑠
−

2.196

1+4.42𝑠

)       4.27 

Transfer function matrix of the DV configuration for methanol-water separation: 

 𝐺(𝑠) = (

−2.42

1+3.61𝑠
+

1.36

1+3.96𝑠
−1.19

1+4.04𝑠
−

1

1+3.03𝑠

)       4.28 

Transfer function matrix of the LB configuration for methanol-water separation: 

𝐺(𝑠) = (

1.45

1+3.88𝑠
+

1.08

1+6.01𝑠
−1.1

1+4.65𝑠
+

2.19

1+3.63𝑠

)        4.29 
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Figure 4.3: Open loop step responses for the LV configuration in the methanol-water 

separation column, (a) and (b): change in reflux rate, (c) and (d): change in reboiler 

energy 

 

Figure 4.4: Open loop step responses for the DV configuration in the methanol-water 

separation column, (a) and (b): change in distillate flow rate, (c) and (d) : change in 

reboiler energy  

 

Figure 4.5: Open loop step responses for the LB configuration in the methanol-water 

separation column, (a) and (b): change in reflux rate, (c) and (d): change in reboiler 

energy  
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The RGA and REA results from the steady state analysis are shown in table 4.1. Table 

4.2 shows the open loop simulation results under the three control configurations for the 

methanol-water system. 

 The RGA values obtained for the methanol-water system, for all the considered control 

configurations are quite good. In terms of good control, any of the structures will be 

usable judging from RGA. If RGA value is greater than 0.5 but less than 1, this will be 

the preferred loop as it will minimise interaction (Ogunnaike and Ray, 1994).  Hence 

LB and DV will be good choices. For RGA greater than 1 as found in LV, higher 

controller gain will be required. This was confirmed in the closed loop dynamic 

simulation. The controller gain for LV is much higher than for the other structures. This 

however is not ruling LV structure out as regards to good control. In terms of REA 

however, when the relative exergy gain is equal to 1, it is the preferred choice as the 

exergy efficiency is not affected by the control loop interactions (Montelongo-Luna et 

al., 2011). For the three control structures considered, the relative exergy gain for the 

LB control structure is closer to 1 than the other two control structures. The LB control 

structure will be the preferred choice with respect to thermodynamic efficiency. The 

steady state analysis of the control structures shows LB as the preferred control 

structure in terms of controllability and thermodynamic efficiency.  

Table 4.1: Results for RGA and REA analysis (methanol-water) 

Control structures RGA REA 

LV 














2858.12858.0

2858.02858.1
 













3056.13056.0

3056.03056.1
 

DV 










5992.04008.0

4008.05992.0
 









6088.03912.0

3912.06088.0
 

LB 










7277.02723.0

2723.07277.0
 









7331.02669.0

2669.07331.0
 

 

The open loop simulation results for the methanol water system show some 

inconsistencies. For example, the exergy efficiency of LB structure for methanol-water 

system is not always the highest as predicted from the REA and RGA analysis. The 

overall decisions regarding a controller design should not be based on the steady state 
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analysis alone (Skogestad et al., 1990). There is a strong need for a detailed dynamic 

simulation analysis. 

In order to validate the steady state analysis results in the dynamic state, the closed loop 

response of each of the control structures to disturbances in the feed flow rate and 

changes in the setpoints of the distillate and bottom compositions were studied. Multi-

loop PI controllers were used on each of the control configuration. The controllers were 

tuned using Ziegler-Nichols tuning combined with the BLT tuning method (Luyben, 

1992). The controllers were first tuned using the Ziegler-Nichols tuning as if they are 

for single input and single output systems without control loop interactions and then 

detuned using the BLT tuning method to account for control loop interactions. An 

example for this calculation is given in Appendix A. 

Figure 4.6 to Figure 4.8 show the responses of the various control configurations to 

changes in distillate and bottom product setpoints for methanol-water system. The 

corresponding exergy analysis and reboiler energy usage are shown in Table 4.3. 

Table 4.2: Open loop results for the methanol-water system 

Control 

configuration 

and operating 

conditions 

Exergy 

efficiency 

(%) 

Exergy loss 

(kJ/hr) 

Reboiler 

exergy  

(kJ/hr) 

Reboiler 

energy 

(kJ/hr) 

𝜒𝐷 𝜒𝐵 

LV 

Steady state 74.6 1.27×107 1.26×104 2.92×104 0.9266 0.167 

Step change in 

reflux rate 

72.2 1.43×107 1.26×104 2.92×104 0.9436 0.175 

Step change in 

reboil energy 

77 1.16×107 1.36×104 3.13×104 0.9023 0.119 

DV 

Steady state 74.04 1.31×107 1.26×104 2.92×104 0.9303 0.169 

Step change in 

distillate rate 

79 9.87×106 1.27×104 2.92×104 0.8962 0.152 

Step change in 

reboil energy 

68.8 1.68×107 1.35×104 3.14×104 0.960 0.146 

LB 

Steady state 74.6 1.28×107 1.26×104 2.90×104 0.9282 0.171 
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Control 

configuration 

and operating 

conditions 

Exergy 

efficiency 

(%) 

Exergy loss 

(kJ/hr) 

Reboiler 

exergy  

(kJ/hr) 

Reboiler 

energy 

(kJ/hr) 

𝜒𝐷 𝜒𝐵 

Step change in 

reflux rate 

72.8 1.39×107 1.29×104 2.97×104 0.9377 0.163 

Step change in 

bottom rate 

72.7 1.36×107 1.17×104 2.71×104 0.9479 0.211 

 

 

   (a)       (b) 

Figure 4.6: Responses to setpoint changes in top composition (a) and bottom 

composition (b) for the LV structure in the methanol-water system 

 

(a) (b) 

Figure 4.7: Responses to setpoint changes in top composition (a) and bottom 

composition (b) for the DV structure in the methanol-water system 
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   (a)       (b) 

Figure 4.8: Responses to setpoint changes in top composition (a) and bottom 

composition (b) for the LB structure in the methanol-water system 

Table 4.3:  Closed loop simulation results for the methanol-water column 

Control 

configurations and 

operating conditions 

Exergy eff 

(%) 

Exergy loss 

(kJ/hr) 

Reboiler 

exergy (kJ/hr) 

Reboiler energy 

(kJ/hr) 

LV  

Nominal steady state 

(XD= 0.99; XB = 0.01) 

37.83 6.84×107 2.60×104 6.04×104 

-0.5% change in feed 37.97 6.54×107 2.46×104 5.72×104 

+0.5% change in feed 38.36 7.01×107 2.73×104 6.33×104 

XD at 0.95 and XB at 

0.01 

45.16 4.90×107 2.42×104 5.60×104 

XD at 0.90 and XB at 

0.005  

32.81 8.98×107 3.24×104 7.48×104 

XD at 0.95 and XB at 

0.005 

30.38 1.01×108 3.31×104 7.66×104 

DV  

Nominal steady state 

(XD= 0.99; XB = 0.01) 

37.99 6.87×107 2.59×104 6.03×104 

-0.5% change in feed 37.41 6.71×107 2.47×104 5.72×104 

+0.5% change in feed 38.52 7.04×107 2.72×104 6.33×104 

XD at 0.95 and XB at 

0.01 

44.39 5.04×107 2.43×104 5.62×104 
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Control 

configurations and 

operating conditions 

Exergy eff 

(%) 

Exergy loss 

(kJ/hr) 

Reboiler 

exergy (kJ/hr) 

Reboiler energy 

(kJ/hr) 

XD at 0.90 and XB at 

0.005  

32.26 9.35×107 3.25×104 7.50×104 

XD at 0.95 and XB at 

0.005 

30.06 1.04×108 3.30×104 7.64×104 

LB  

Nominal steady state 

(XD= 0.99; XB = 0.01) 

41 5.58×107 2.53×104 5.94×104 

-0.5% change in feed 42.42 4.97×107 2.29×104 5.33×104 

+0.5% change in feed 37.31 6.93×107 2.91×104 6.76×104 

XD at 0.95 and XB at 

0.01 

46.12 4.58×107 2.37×104 5.47×104 

XD at 0.90 and XB at 

0.005  

34.76 7.65×107 3.19×104 7.36×104 

XD at 0.95 and XB at 

0.005 

34.99 7.45×107 3.01×104 6.97×104 

 

Close loop dynamic simulations were used to confirm the preferred choice from RGA 

and REA analysis. For the methanol-water system closed loop simulation results in 

Table 4.3 , the exergy efficiency for the LB control structure is higher than those for the 

other two control structures except for increase in feed rate.  And as expected, the 

exergy loss is lower under the LB control structure than under the other two control 

structures. This shows that the LB control structure is thermodynamically more efficient 

than the LV and DV control for the methanol-water system. The responses of all the 

control structures to setpoint changes further confirm the controllability of the structures 

and show that any of the structure could be used to bring about desired separation 

specification. To achieve it with the minimum usage of energy however, the LB control 

configuration will be the optimum choice.  

A dual composition control is used here because it yields less variation in downstream 

units and a more uniform quality of the final products. The large disparity in the exergy 

efficiency of the control structures in the open loop steady state to that in the closed 

loop as revealed in table 4.2 and table 4.3 for methanol-water system is a result of the 

composition specifications for the two cases due to the setpoint changes in the closed 
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loop response. This shows that high purity distillation is at a cost of energy. A cut in 

purity specification for example from 0.99 and 0.01 to 0.94 and 0.17 for top and bottom 

compositions respectively could result in as much as 30% more of exergy efficiency and 

a reduction in exergy loss. Also, the results in Table 4.3 for different setpoint changes 

show the LB control configuration as more energy efficient for distillate setpoint 

changes and bottom product setpoint change. In addition, the LB control configuration 

favours an increase in feed rate disturbance in terms of exergy efficiency as compared to 

other control configurations. These observations reveal the need to incorporate 

thermodynamic analysis to aid the decision of energy efficient control configuration 

selection for distillation column operations. This will be a valuable tool in choosing 

control configuration for design and operation of distillation systems. Overall, the LB 

control configuration has a lower exergy loss and improved exergy efficiency than other 

control configurations. This information is quite revealing and shows the potential for 

bringing about energy efficient control operation of distillation processes. The reboiler 

exergy for each of the configuration at different variations considered also reveals the 

LB configuration as the structure with the least consumption of exergy. 

4.5 Application to benzene-toluene separation column 

The benzene-toluene system was simulated using HYSYS. The parameters for the 

simulation are given in Table 4.4. These parameters were used for the steady state 

simulation of the systems. For the dynamic simulation, the trays for each column were 

sized and parameters such as weir height, tray space, tray diameter and tray height were 

determined. 

Table 4.4: Parameters for simulation of Benzene-toluene system in HYSYS 

Parameters value 

Feed Temperature(0C)  95  

Feed pressure (KPa)  101.3 

Feed rate(kmol/hr)  350  

Reflux ratio  3.5  

No of trays  11  

Feed tray  7  

Distillate rate (kmol/hr)  153.4  
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The condenser and reboiler were sized using equation 4.30 and assuming the residence 

time to be 10min and liquid level volume to be 50% at residence time.  

𝑉𝑒𝑠𝑠𝑒𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑞𝑢𝑖𝑑 𝑒𝑥𝑖𝑡 𝑓𝑙𝑜𝑤 ×𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒

𝐿𝑖𝑞𝑢𝑖𝑑 𝑙𝑒𝑣𝑒𝑙
        4.30 

Three control configurations LV, LB and DB are considered. The open loop responses 

of the controlled variables (distillate and bottom compositions) to step changes in their 

corresponding manipulated variables for each of the configurations are shown in figure 

4.9 to figure 4.11 for the benzene-toluene system. Transfer function identified for the 

system from the open loop response are given in equations 4.31-4.33 

Transfer function matrix of the LV configuration for benzene-toluene system: 

 𝐺(𝑠) = (

1.608

1+1.1𝑠
−

9.9

1+0.34𝑠
2.372

1+3.3𝑠
−

2.5

1+0.9𝑠

)       4.31 

Transfer function matrix of the DV configuration for benzene-toluene system: 

 𝐺(𝑠) = (

−4.35

1+1.42𝑠
+

8.49

1+2.13𝑠
−1.03

1+1.7𝑠
−

7.6

1+1.67𝑠

)       4.32 

Transfer function matrix of the LB configuration for benzene-toluene system: 

 𝐺(𝑠) = (

1.34

1+1𝑠
+

2.16

1+3.35𝑠
1.07

1+4.23𝑠
+

2.83

1+5.6𝑠

)       4.33 

 

Figure 4.9:  Open loop step responses for the LV configuration in the benzene-toluene 

separation column, (a) and (b): change in reflux rate, (c) and (d): change in reboiler 

energy 
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Figure 4.10: Open loop step responses for the DV configuration in the benzene-toluene 

separation column, (a) and (b): change in distillate flow rate, (c) and (d): change in 

reboiler energy  

Figure 4.11:  Open loop step responses for the LB configuration in the benzene-toluene 

separation column, (a) and (b): change in reflux rate, (c) and (d): change in bottom 

product flow rate  

The RGA and REA results from the steady state analysis are shown in table 4.5 for 

benzene-toluene systems. Table 4.6 shows the open loop simulation results under the 

three control configurations for the methanol-water system and benzene toluene system 

respectively. 

In table 4.5 the control structures for the benzene-toluene system show marked 

variations in terms of RGA and REA. The diagonal RGA values for LV control 

structure are less than zero and those for the LB control structure are much higher than 

1. Negative diagonal elements in RGA indicate that closing the loop will change the 

sign of the effective gain. These structures may not be considered. RGA value for the 

DV control structure is greater than 0.5 but less than 1. The DV control structure 

therefore will be the preferred control structure. Considering the REA values, the LB 
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and DV control structures could be chosen. However, though the LB control structure 

looks good for energy efficiency, it is eliminated by its RGA if both controllability and 

energy efficiency are considered. The tool could aid in decision making and gives 

opportunity for consideration of design options. The steady state analysis of the 

benzene-toluene system shows DV as the control structure of choice. 

Table 4.5: Results for RGA and REA analysis (benzene-toluene) 

Control structures RGA REA 

LV 














2065.02065.1

2065.12065.0
 









0007.09993.0

9993.00007.0
 

DV 










7908.02092.0

2092.07908.0
 









8290.01710.0

1710.08290.0
 

LB 














5606.25606.1

5606.15606.2
 













0349.10349.0

0349.00349.1
 

 

The open loop simulation results for benzene-toluene separation column behaved 

unpredictably. The exergy efficiency of DV structure is not always the highest as 

predicted from the REA and RGA analysis. This further confirms just like methanol-

water system that the overall decisions regarding a controller design should not be based 

on the steady state analysis alone (Skogestad et al., 1990). There is a strong need for a 

detailed dynamic simulation analysis. 

Table 4.6: Open loop results for the benzene-toluene system 

Control 

configuration 

and operating 

conditions 

Exergy 

efficiency 

(%) 

Exergy loss 

(kJ/hr) 

Reboiler 

exergy  

(kJ/hr) 

Reboiler 

energy 

(kJ/hr) 

𝜒𝐷 𝜒𝐵 

LV 

Steady state 47.75 1.57×107 9.72×106 1.28×107 0.950 0.050 

Step change in 

reflux rate 

48.12 1.55×107 9.73×106 1.282×107 0.9894 0.011 

Step change in 46.29 1.75×107 1.07×107 1.39×107 0.855 0.145
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Control 

configuration 

and operating 

conditions 

Exergy 

efficiency 

(%) 

Exergy loss 

(kJ/hr) 

Reboiler 

exergy  

(kJ/hr) 

Reboiler 

energy 

(kJ/hr) 

𝜒𝐷 𝜒𝐵 

reboil energy 2 

DV 

Steady state 47.75 1.57×107 9.72×106 1.28×107 0.950 0.050 

Step change in 

distillate rate 

47.79 1.57×107 9.723×106 1.28×107 0.9501 0.049 

Step change in 

reboil energy 

46.63 1.73×107 1.05×107 1.39×107 0.959 0.041 

LB 

Steady state 47.75 1.57×107 9.72×106 1.28×107 0.950 0.050 

Step change in 

reflux rate 

47.69 1.60×107 9.96×106 1.31×107 0.982 0.018 

Step change in 

bottom rate 

48.81 1.46×107 9.29×106 1.23×107 0.982 0.017

9 

 

For the benzene-toluene system, response to setpoint change in distillate and bottom 

compositions are shown in Figure 4.12 to Figure 4.14. The exergy efficiencies of the 

responses setpoint changes and changes in feed rate are shown in Table 4.7. For all the 

4 cases of deviations from the nominal steady state considered, exergy efficiencies for 

the DV control structure are greater than those for the LV control structure and greater 

than those for two cases in the LB control structure. This trend follows that predicted 

from steady state REA analysis. Reboiler exergy differs from the reboiler energy 

because exergy analysis is a tool for assessing quality of energy and quantifying sources 

of inefficiency and recoverable energy in a system. Exergy analysis also takes into 

account entropy generation in a system and hence indicates “useful energy” of a system. 

The change in reboiler exergy per time at the closed loop simulation is shown in figures 

4.15 to 4.18 for each of the control structures. It can be seen that the DV control 

structure overall has less reboiler exergy than the other control structures. A full detailed 

analysis of the performance of the control structure should be supplemented with a 

detailed dynamic analysis as presented. This will give a measure of confidence on a 

preferred control structure and as well quantifies its exergy consumption. 
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   (a)       (b) 

Figure 4.12:  Responses to setpoint changes in top composition (a) and bottom 

composition (b) for the LV structure in the benzene-toluene system 

  (a)       (b) 

Figure 4.13:Responses to setpoint changes in top composition (a) and bottom 

composition (b) for the DV structure in the benzene-toluene system 

 

   (a)       (b) 

Figure 4.14: Responses to setpoint changes in top composition (a) and bottom 

composition (b) for the LB structure in the benzene-toluene system 
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Control 

configuration 

Exergy eff. 

(%) 

Exergy loss 

(kJ/hr) 

Reboiler 

exergy (kJ/hr) 

Reboiler 

energy 

(kJ/hr) 

LV  

Nominal steady state 

(XD= 0.95; XB = 0.05) 

47.75 1.57×107 9.72×106 1.28×107 

-7.5% change in feed 47.18 1.48×107 9.11×106 1.18×107 

+7.5% change in feed 47.89 1.68×107 1.06×107 1.38×107 

XD at 0.988and XB at 

0.05 

44.7 2.07×107 1.24×107 1.60×107 

XD at 0.95 and XB at 

0.01  

40.58 3.24×107 1.81×107 2.33×107 

DV  

Nominal steady state 

(XD= 0.95; XB = 0.05) 

47.75 1.57×107 9.72×106 1.28×107 

-7.5% change in feed 47.58 1.45×107 8.88×106 1.17×107 

+7.5% change in feed 48.16 1.66×107 1.04×107 1.37×107 

XD at 0.988and XB at 

0.05 

44.74 2.09×107 1.22×107 1.60×107 

XD at 0.95 and XB at 

0.01  

42.08 3.01×107 1.77×107 2.33×107 

LB  

Nominal steady state 

(XD= 0.95; XB = 0.05) 

47.75 1.57×107 9.72×106 1.28×107 

-7.5% change in feed 47.44 1.47×107 8.96×106 1.18×107 

+7.5% change in feed 48.15 1.66×107 1.05×107 1.37×107 

XD at 0.988 and XB at 

0.05 

44.93 2.05×107 1.22×107 1.60×107 

XD at 0.95 and XB at 

0.01  

40.82 3.22×107 1.78×107 2.33×107 
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Figure 4.15:  Reboiler exergy per time for change in distillate composition 

 

Figure 4.16: Reboiler exergy per time for change in bottom composition 
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Figure 4.17: Reboiler exergy per time for increase in feed rate 

Figure 4.18:  Reboiler exergy per time for decrease in feed rate 
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design stage. It could equally be effective tool in selecting optimum operations of 

distillation system. The tool as presented here is limited to the distillation unit. An 

overall energy analysis of the whole plant might be made to determine the effectiveness 

of the method on the plant as a whole. 
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CHAPTER 5: OPTIMISATION OF ENERGY EFFICIENCY: 

APPLICATION TO BINARY AND MULTICOMPONENT 

SYSTEMS  

This chapter is based on PRES conference paper published in Chemical Engineering 

Transactions and the paper under review in Energy journal 

5.1 Introduction 

Distillation units pose a great challenge to control engineers because of its complexity. 

It comes in varieties of configurations with different operating objectives, significant 

interactions among the control loops, and specialised constraints. These result in distinct 

dynamic behaviours and different operational degree of freedom that necessitate the 

need for specialised control configurations in order to optimize energy usage. Usually 

the order of economic importance in the control of distillation columns is product 

quality, process throughput, and utility reductions. Often trade off between them has to 

be made. Optimisation of distillation column operations is essential in order to achieve 

energy efficiency while meeting product quality constraints.  

Optimisation of distillation columns requires accurate process models. A number of 

distillation process models are available in the published literatures but the complexity 

of distillation processes has led to a number of assumptions that might limit the 

universality of the models (Ochoa-Estopier et al., 2014). Most of the mechanistic 

models of distillation systems have assumed equilibrium cases for the stages. Such 

models deviate from the reality and will not give a true representation. To overcome this, 

non-equilibrium stages are assumed (Liang et al., 2006). Non-equilibrium models 

however involve large number of variables, leading to distillation models with 

differential equations that may exhibit high differential index that could generate stiff 

dynamics. Furthermore, such mechanistic models are computationally demanding 

making them not suitable for real-time optimisation. To overcome these problems, data 

driven models such as artificial neural network (ANN) models can be utilised (Uzlu et 

al., 2014). ANN has been recognised as a powerful tool that can facilitate the effective 

development of data-driven models for highly nonlinear and multivariable systems 

(Osuolale and Zhang, 2014). ANN can learn complex functional relations for a system 

from the input and output data of the system. Furthermore, their evaluation is much less 

computationally demanding making them suitable for real-time optimisation.  
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Most neural network applications to distillation systems target at modelling the product 

specification as the model output (Ochoa-Estopier et al., 2013). Often the economic 

objective in terms of profitability is the focus in the optimization of such distillation 

processes (Amit et al., 2013). However, with the issues of global warming, green house 

gas (GHG) effects, and depleting fossil energy resources, the issue of energy efficiency 

of processes has been brought to the limelight. The need therefore arise to focus on 

energy efficiency of the column especially focusing on second law of thermodynamics 

(exergy analysis) in lieu of first law of thermodynamics.  Application of 

thermodynamics for process energy improvement especially in terms of pinch analysis 

has been widely reported (Ochoa-Estopier and Jobson, 2015). However, pinch analysis 

is restricted to analysing for minimum utility consumption and or minimum number of 

heating units for heat exchange equipment. Exergy analysis overcomes this restriction 

and encompasses the total energy systems in processes. This chapter attempts to model 

the exergy efficiency of distillation column using ANN. Previously ANN has been used 

to model distillation column, but there is a need for robust and accurate model to 

represent the column within an optimisation frame work irrespective of the complexities 

of the column. Bootstrap aggregated neural network is introduced in this study to 

improve the prediction accuracy and reliability of the model. The model is then used for 

the optimisation of exergy efficiency of the distillation column to reduce the energy 

consumption while satisfying product quality specifications. Past studies on the exergy 

analysis of distillation column has been limited to pinpointing and quantifying sources 

of inefficiencies in the column (Oni and Waheed, 2015). A further step away from the 

usual is to use exergy analysis as a retrofit tool to present several practical options for 

process energy improvement rather than as an analytical tool. This chapter develops an 

optimisation based methodology incorporating exergy analysis for improving the energy 

efficiency of the column. 

Most often, distillation columns are optimised in terms of energy usage without paying 

particular attention to the reduction of entropy generation within the column (Kamela et 

al., 2013). There is therefore a strong need to focus on reducing column’s irreversibility 

by applying the second law of thermodynamics in column efficiency improvement. 

In this chapter, an attempt is made at improving the energy efficiency of distillation 

columns using the tool of applied thermodynamics to determine the optimum operating 

conditions of the column with consideration to energy efficiency and product quality. 

The energy efficiency is however on the basis of reduction in the irreversibility of the 
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column. Exergy analysis and optimisation are the major qualitative and quantitative 

tools that are used in the decision making.  

This chapter is organised as follows. Section 5.2 gives the description and exergy 

analysis of a typical binary column. Data driven models such ANN, BANN and linear 

models are presented in Section 5.3. Application of the models to two binary systems 

and their subsequent optimisation are presented in Section 5.4. Section 5.5 presents the 

special case of a multicomponent system, its modelling, modification and optimisation 

and Section 5.6 concludes the chapter. 

5.2 Thermodynamic Analysis 

The total exergy of the material stream is calculated from equations 4.13 -4.16. The 

exergy of the energy stream is calculated from equation 4.18. For a typical binary 

distillation system as shown in figure 5.1  

∑𝐸𝑥𝑖𝑛 = 𝐸𝑥𝑓𝑒𝑒𝑑 + 𝐸𝑥𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟         5.1  

∑𝐸𝑥𝑜𝑢𝑡 = 𝐸𝑥𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑒 + 𝐸𝑥𝑏𝑜𝑡𝑡𝑜𝑚𝑠 + 𝐸𝑥𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟      5.2 

The irreversibility of the system is calculated as: 

𝜑 =
∑𝐸𝑥𝑜𝑢𝑡

∑𝐸𝑥𝑖𝑛
          5.3 

Efficiency of the system is then given as 

  𝐼 = ∑𝐸𝑥𝑖𝑛 − ∑𝐸𝑥𝑜𝑢𝑡               5.4 
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Figure 5.1: A typical binary distillation column with the in and out streams 

5.3 Modelling of Exergy Efficiency 

5.3.1 Artificial neural network modelling 

Mechanistic models have been traditionally used in the past for control and optimisation 

studies. However developing mechanistic models for complex processes especially to 

incorporate the second law energy efficiency could be very difficult and time 

consuming. These difficulties can be readily circumvented by developing neural 

network models (Morris et al., 1994). Neural networks have been proved to be capable 

of approximating any continuous non-linear functions. Here neural networks are used to 

model exergy efficiency and product composition. The neural networks models are then 

used for exergy efficiency optimization subject to product quality constraints. Data for 
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neural network modelling are generated from simulation. The neural network model for 

exergy efficiency is of the following form: 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3…𝑥𝑛)          5.5 

where y is exergy efficiency, x1 and x2 are feed rate and feed temperature respectively, 

while x3 …xn are the most volatile composition in each of the outlet stream. Neural 

network models for the product compositions use the same model inputs. Single hidden 

layer feed forward neural networks are used to model exergy efficiency and product 

compositions. The quality of the neural network is dependent on the training data and 

the training method (Zhang, 1999). The data were divided  into training data (50%), 

testing data (30%), and unseen validation data (20%). The training data is used for 

network training and the testing data is used for network structure selection (number of 

hidden neurons) and “early stopping” in network training. With the “early stopping” 

mechanism, neural network prediction errors on the testing data are continuously 

monitored during training and training is terminated when the prediction errors on the 

testing data do not futher reduce. The number of hidden neurons was determined by 

building a number of neural networks with different numbers of hidden neurons and 

testing them on the testing data. The network giving the lowest sum of squared errors 

(SSE) on the testing data is considered as having the appropriate number of hidden 

neurons. The final developed neural network model is then evaluated on the unseen 

validation data. The data for the network training, validation and testing were scaled to 

the range [-1 1] because of the different magnitudes of the model inputs and outputs. 

Levenberg-Marquardt training algorithm was used to train the networks. For the pupose 

of comparison, linear models are also built using partial least square (PLS) regression. 

However, conventional neural networks can lack generalisation capability when applied  

to unseen data  due to over-fitting noise in the data (Zhang, 2004). The objective in 

neural network modelling is to build a network which can generalise and not to build a 

network which simply memorise the training data. Several techniques have been 

reported for the enhancement of neural network model generalisation capability such as 

Bayesian learning, regularisation, training with dynamic and static process data, early 

stopping and combining multiple networks, and bootstrap aggregated neural networks 

(Mukherjee and Zhang, 2008).  
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5.3.2 Bootstrap aggregated neural network 

When building neural network models from the same data set, there is possibility that 

different networks perform well in different regions of the input space. Hence, 

prediction accuracy on the entire input space could be improved when the multiple 

neural networks are combined. In a bootstrap aggregated neural network model, several 

neural network models are developed to model the same relationship. Individual neural 

network models are developed from bootstrap re-sampling replications of the original 

training data. Instead of selecting a single neural network that is considered to be the 

“best”, several networks are combined together to improve model accuracy and 

robutsness. These models can be developed on different parts of the data set. A diagram 

of a bootstrap aggregated neural network is shown in figure 5.2. A bootstrap aggregated 

neural  network can be  represented  mathematically as 

𝑓(𝑥) =  ∑ 𝑤𝑖𝑓𝑖(𝑥)
𝑛
𝑖=1           5.6 

where 𝑓(𝑥) is the aggregated neural network predictor, 𝑓𝑖(𝑥) is the ith neural network, 

𝑤𝑖 is the aggregating weight for combining the ith predicted neural network, 𝑛 is the 

number of neural networks and 𝑥  is a vector of neural network inputs. The overall 

output of bootstrap aggregated network is a combination of the weighted individual 

neural network output. 

∑ X Y

 

Figure 5.2: A bootstrap aggregated neural network 

The boostrap aggregated neural network can also be used to calculate model prediction 

confidence bounds from individual network predictions. The standard error of the ith 

predicted value is calculated as 
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𝜎𝑒 = {
1

𝑛−1
 ∑ [𝑦(𝑥𝑖;𝑊

𝑏) − 𝑦(𝑥𝑖; )]
2𝑛

𝑏=1 }

1

2
        5.7 

where 𝑦(𝑥𝑖) = ∑ 𝑦(𝑥𝑖;𝑊
𝑏)𝑛

𝑏=1 /𝑛 and  𝑛 is the number of neural networks. The 95% 

prediction confidence bounds can be calculated as 𝑦(𝑥𝑖; ) ± 1.96𝜎𝑒 . A narrower 

confidence bounds indicates the reliability of the associated model prediction. 

5.4 Application to Binary Distillation Systems 

5.4.1 Modelling of the distillation systems 

Two binary distillation systems of methanol-water and benzene-toluene separations 

were considered. The methanol-water system was to be rectified into a distillate 

containing 90% methanol and a residue containing 5% methanol. The Benzene-toluene 

system is to be separated to 95% benzene in the distillate and 5% benzene in the 

residue. The nominal parameters for simulation are as given in table 5.1 (McCabe and 

Smith, 2005, Treybal, 1980). At the steady state, based on the data generated in 

HYSYS, exergy analyses of the streams were performed using equations 4.13, 4.14 and 

4.16. Exergies of the reboiler and condenser were calculated using equation 4.18. This 

is because the data in HYSYS were obtained at the steady state and the temperature can 

safely be assumed to be constant at the prevailing operating conditions. The 

temperature, pressure, enthalpy and entropy of each stream were generated in HYSYS. 

Careful considerations were made to compute the exergy of each stream both at the 

prevailing operating conditions and at reference states. The total exergy in and out of 

the system were calculated using equations 5. 1 and 5.2 respectively. Exergy efficiency 

was calculated from equation 5.3 and irreversibility was calculated from equation 5.4. 

Tables 5.2 and 5.3 give the data for the streams in and out of the methanol-water system 

and benzene-toluene system respectively. The exergy efficiency and the irreversibility 

of the system were calculated using equations 5.3 and 5.4. The exergy efficiencies are 

83.9% and 82.3% for methanol-water system and benzene-toluene system respectively 

while the exergy loss / irreversibility are 7.216105 and 3.691×106 respectively for 

methanol-water system and benzene toluene system. This is revealing that there is room 

for improvement of the separation processes.  

Table 5.1: Nominal parameters for simulation  

 Methanol water Benzene toluene Unit 

Feed temperature  53 105 oC 
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 Methanol water Benzene toluene Unit 

Feed pressure  1 1 atm 

Feed rate  216.8 350 kmol/h 

Reflux ratio 1.03 3.5  

Number of trays 8 11  

Feed tray 5 7  

Distillate rate 88.9 151.8 kmol/h 

 

Table 5.2:  Simulated data for exergy analysis of methanol-water system 

 h0(kJ/ 

kmol) 

s0(kJ/ 

kmoloC) 

h(kJ/kmol) s(kJ/ 

kmoloC) 

m(kmol 

/h) 

Ex(kJ/h) 

Feed -2.66×105 26.57 -2.64×105 46.21 216 4.53×105 

Distillate 

out 
-2.42×105 11.16 -2.39×105 42.83 88.93 1.39×105 

Bottom out -2.83×105 29.89 -2.77×105 71.86 127.06 5.54×105 

Reflux -2.42×105 11.16 -2.39×105 42.82 49.67 7.78×104 

Boilup -2.73×105 28.58 -2.28×105 175.73 138.44 5.63×106 

Reboiler      4.03×106 

Condenser      3.07×106 

 

Table 5.3: Simulated data for exergy analysis of benzene-toluene system 

 h0(kJ/ 

kmol) 

s0(kJ/ 

kmoloC) 

h(kJ/kmol) s(kJ/ 

kmoloC) 

m(kmol 

/h) 

Ex(kJ/h) 

Feed 29022.4 -103.73 73150.8 40.76 350 14181516 

Distillate 

out 
47908.7 -122.42 55163.2 -83.96 151.75 954911.8 

Bottoms 

out 
14566.9 -96.59 28547.7 -29.08 198.24 2437092 

Reflux 47908.7 -122.42 55163.2 -83.96 497.9 3133213 

Boil up 16856.3 -97.11 63541.8 55.11 261.2 11201230 

Reboiler      6722074 

Condenser      13820882 
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The emphasis here is to increase exergy efficiency and increase profitability of existing 

plants rather than plant expansion.   Parametric analysis of the column was conducted to 

investigate the impacts of a number of variables on the exergy efficiency of the column. 

To each variable ±15% of its initial value was added. The initial exergy efficiencies are 

83.9% for methanol water and 82.3% for benzene toluene as given for the base cases of 

the systems. The desired purity specification of the distillate was maintained for all the 

variations. The exergy of the material streams and energy streams were calculated at 

each variation, the corresponding exergy efficiency and reboiler exergy were also 

calculated. Tables 5.4 and 5.5 show the sensitivity analysis of the two systems under 

consideration. For most cases considered, improve exergy efficiency translates to 

reduction in reboiler energy. However, exception is noticed for condenser pressure and 

the feed rate in tables 5.4 and 5.5. This is possibly because there is a significant change 

in the reboiler energy at these variations without corresponding significant change in the 

exergy of the streams. 

Table 5.4: Sensitivity analysis of the Methanol-water system 

 -15% of initial values +15% of initial values 

 
Exergy 

eff (%) 

Reboiler 

duty 

(kJ/h) 

Reboiler 

exergy 

(kJ/h) 

Exergy 

eff (%) 

Reboiler 

duty (kJ/h) 

Reboiler 

exergy 

(kJ/h) 

Reflux rate 82.15 5.320×106 3.905×106 85.20 5.700×106 4.183×106 

Feed rate 83.93 4.675×106 3.432×106 83.93 6.325×106 4.643×106 

Feed 

temperature 

84.14 5.632×106 4.135×106 83.66 5.367×106 3.940×106 

Reboiler 

duty 

97.5 4.675×106 3.430×106 77.32 6.325×106 4.640×106 

Condenser 

pressure 

80.92 5.459×106 4.008×106 86.37 5.536×106 4.064×106 

Reboiler 

pressure 

85 5.417×106 3.905×106 83.12 5.574×106 4.152×106 

Condenser 

temperature 

Not 

feasible 

  Not 

feasible 

  

Reboiler 99.9 2.970 2.042×106 Not   
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 -15% of initial values +15% of initial values 

temperature ×106 Feasible 

Distillate 

rate 

97 4.684×106 3.335×106 Not 

feasible 

  

Bottoms 

rate 

Not 

feasible 

  98 4.366×106 3.081×106 

 

From the tables, it can be seen that feed temperature and distillate and bottom 

compositions greatly affect the exergy efficiency of the systems. Some of the variables 

fail to give a converged solution at the steady state when changed from their initial 

values. They however gave converged solutions in the dynamic state when the distillate 

and bottom compositions are controlled to be at their reference values. These variables 

are considered not feasible because the data to be generated for ANN training are to be 

taken from the steady state. For most of the variables of the methanol-water system, the 

change in variable values alters the composition of the bottoms from the initial 

reference value. This was not seriously considered as the main focus of the sensitivity 

analysis is to check out the variables that have noticeable impact on the overall exergy 

efficiency of the column. Reflux rate and reboiler energy even though have effect on the 

exergy efficiency were not considered. This is because of the impact they have in the 

composition control of the column (Skogestad, 2007). The feed rate has no effect on the 

exergy efficiency of the column but influences the reboiler energy. It has been 

previously considered as input in the simulation of distillation column (Amit et al., 

2013). 

The variables that were then considered are the controlled variables (distillate and 

bottom compositions) and external input variables which can be regulated (feed rates 

and feed temperatures). Subsequently, data for neural network training were generated 

by varying these independent variables within their upper and lower bounds. 

Corresponding values of the exergy efficiency and irreversibility were calculated based 

on equations 5.3 and equation 5.4. 

Table 5.5: Sensitivity analysis of the benzene-toluene system 

 -15% of initial values +15% of initial values 

 
Exergy 

eff (%) 

Reboiler 

duty 

Reboiler 

exergy 

Exergy 

eff (%) 

Reboiler 

duty (kJ/h) 

Reboiler 

exergy 
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 -15% of initial values +15% of initial values 

(kJ/h) (kJ/h) (kJ/h) 

Reflux rate 83.95 5.959×106 4.568×106 82.10 1.121×107 8.676×106 

Feed rate 82.34 7.393×106 5.704×106 82.34 1.01×107 7.721×106 

Feed temp. 91.53 1.435×107 1.107×107 82.01 8.491×106 6.551×106 

Reboiler duty 82.86 7.4×106 5.694×106 74.47 1.00×107 7.7296×106 

Condenser 

pressure 

80.07 8.596×106 6.632×106 84.14 8.823×106 6.807×106 

Reboiler 

pressure 

82.48 8.224×106 6.22×106 82.24 9.11×106 7.124×106 

Condenser 

temp. 

Not 

feasible 

  Not 

feasible 

  

Reboiler temp. 
Not 

feasible 

  Not 

feasible 

  

Distillate rate 
85.66 4.477×106 3.414×106 Not 

feasible 

  

Bottoms rate 
Not 

feasible 

  86.9 3.640×106 2.768×106 

 

5.4.2 Linear  models 

Partial least square (PLS), principal component regression (PCR) and multiple linear 

regression (MLR) were used to build the linear models in this study. In PLS models, it 

was found that 4 latent variables give the smallest SSE on the testing data and, hence, 4 

latent variables should be used in the PLS models. Plots of model prediction error (top 

left), model prediction error versus fitted values (top right), histogram of prediction 

error (bottom left), and normal probability plots (bottom right) from the two PLS 

models are given in figures 5.3 and 5.4. These plots indicate the linear model prediction 

errors of the two systems are not normally distributed indicating that the models are not 

adequate. Table 5.6 gives the SSE, Mean square error (MSE), and the coefficient of 

determination (R2) for PLS models. The very large SSE and MSE values of the linear 

models and their low R2 values indicate that there could be strong non-linearity in the 

relationship between exergy efficiency and process operating conditions. This justifies 

the need to build nonlinear models using ANN.  
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Figures 5.5 and 5.6 show the PCR models errors for the systems. The figures show the 

model error for different principal components. Keeping 4 principal components 

reduces the model for the two systems as compared to using less than 4. This follows 

the same trend as the PLS models where four latent variables give the smallest SSE. 

Since there are 4 input for the model, it follows that the PLS, PCR and MLR model will 

have the same performance. The MLR model performance for the training, testing and 

validation data sets for the systems are given in figures 5.7 and 5.8. The predicted and 

actual values for the model deviate significantly showing the  models are not true 

representation of the actual and hence can not be deemed fit for use. 

 

Figure 5.3: PLS model validation for the methanol-water system 
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Figure 5.4: PLS model validation for the benzene-toluene system 

  

Figure 5.5: PCR Model error for methanol water 
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Figure 5.6: PCR model error for benzene toluene system 

 

Figure 5.7: MLR model for methanol water 

1 2 3 4
0

0.5

1

M
S

E
(t

ra
in

in
g
)

1 2 3 4
0

0.5

1

M
S

E
(t

e
s
ti
n
g
)

1 2 3 4
0

0.5

1

M
S

E
(V

a
lid

a
ti
o
n
)

Network No

0 100 200 300 400 500 600 700 800

0.35

0.4

0.45

a

Predicted and actual values for training

E
x
e
rg

y
 e

ff
ic

e
n
c
y

0 50 100 150 200 250 300 350 400 450

0.35

0.4

0.45

b

Predicted and actual values for testing

E
x
e
rg

y
 e

ff
ic

e
n
c
y

0 50 100 150 200 250 300 350

0.35

0.4

0.45

b

Predicted and validated data

E
x
e
rg

y
 e

ff
ic

e
n
c
y



 

108 
 

 

Figure 5.8: MLR model for benzene toluene 

Table 5.6: Model performance indicators for PLS models 

 Methanol-water Benzene-toluene 

 Training Testing Validation Training Testing Validation 

SSE 186.68 63.86 50.41 109.82 43.42 37.11 

MSE 0.4050 0.3414 0.3680 0.1489 0.1336 0.1405 

R2 0.4701 0.3934 0.4871 0.6880 0.6215 0.6908 

 

5.4.3 ANN models 

The performance of ANN is dependent on the data, the network structure and the 

training method. The trained network is as described in Section 5.3.1. Figures 5.9 and 

5.10 show the actual exergy efficiencies (solid curves, blue) and neural network 

predictions (dashed curves, red) on the training, testing, and unseen validation data sets 

for the methanol-water column and the benzene-toluene column respectively. The SSEs 

on the training, testing and unseen validation data sets are given in table 5.7. The 

numbers of hidden neurons that gave the least SSE on the testing data are 17 for 

methanol-water and 18 for benzene-toluene. The results in figures 5.9 and 5.10 and 

table 5.7 show that the ANN models give excellent prediction performance. The models 
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can be conveniently used to determine the exergy efficiencies of the distillation 

processes at different operating conditions. Usually in the calculation of exergy 

efficiency, the enthalpies and entropies of all streams involved must be determined. The 

ANN models can be used to predict the exergy efficiencies without the rigours of 

calculating the enthalpies and entropies of the streams. This will be a valuable tool in 

the hand of process design engineers and operators in determining the effects of 

different operating conditions on the exergy efficiency of the distillation process. 

 

Figure 5.9: Actual and ANN model predicted exergy efficiency for the methanol-water 

column 
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Figure 5.10: Actual and ANN model predicted exergy efficiency for the benzene-

toluene column 

Table 5.7: Model performance indicators for single ANN models 

 Methanol-water Benzene-toluene 

 Training Testing Validation Training Testing Validation 

SSE 0.0089 0.0039 0.0026 0.0011 0.0010 0.0007 

MSE 8×10-6 7×10-6 1.35×10-6 2.95×10-6 4.15×10-6 4.66×10-5 

R2 0.9990 0.9988 0.9987 0.9976 0.9913 0.9913 

 

5.4.4 Bootstrap Aggregated Neural Network  

A bootstrap aggregated neural network (BANN) containing 30 neural networks was 

developed to predict the exergy efficiency of each system. Each individual network has 

one hidden layer.  The Levenberg-Marquardt training algorithm was used to train the 

networks. Training data for the individual networks differs. This is due to bootstrap re-

sampling to ensure that different individual networks are obtained and their combination 

lead to that the entire input space being well predicted.  A problem in neural network is 

over-fitting which means a trained neural network can give excellent performance on 

the training data but performs poorly when applied to unseen validation data. A 

combination of multiple non-perfect models improves the prediction accuracy on the 
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entire input space. Figures 5.11 and 5.12 show the MSE of individual network on 

training, testing and validation data sets. It can be seen that the performances of 

individual networks on different data sets are inconsistent. A network with low MSE on 

the training data could have a large MSE on the validation data. This shows the non-

robust nature of a single neural network. The MSE values for the aggregated neural 

networks with different numbers of consistent networks are shown in figures 5.13 and 

5.14 for the methanol-water column and the benzene-toluene column respectively. The 

MSE for BANN models on training and validation data sets are 1.38×10-6 and 1.59×10-6 

respectively for the methanol-water system and 8.78×10-6 and 1.0×10-5 respectively for 

the benzene-toluene system. This is an improvement on the minimum MSE for the 

single neural networks given in table 5.7. The model accuracy is seen to be improved by 

using bootstrap aggregated neural network model. 

 

Figure 5.11: Model errors of individual networks for methanol-water system 
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Figure 5.12: Model errors of individual networks for benzene-toluene system 

 

Figure 5.13: Model errors of aggregated networks for methanol-water system 
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Figure 5.14: Model errors of aggregated networks for benzene-toluene system 

5.4.5 Optimization of exergy efficiency 

The optimization problem can be stated as 
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where J is the objective function, x=[x1,x2,x3,x4] is a vector of neural network model 

inputs which are feed rate, feed temperature, distillate composition and bottom 

composition respectively; and   is the exergy efficiency. As changing feed temperature 

would require pre-heating of the feed which can have impact on the overall energy 

efficiency, in this study the feed temperature is kept constant, i.e. removed from 

decision variable list. 

The sequential quadratic programming (SQP) method was used for the optimization. 
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constraints. Tables 5.8 and 5.9 give the results of the optimisation procedure for the two 

systems. The optimum conditions and the base case conditions are shown. The optimum 

exergy efficiency at different distillate and bottom compositions for the two systems are 

also shown.  

In Tables 5.8 and 5.9, case 1 refers to the solution of equation 5.8. It can be seen that 

exergy efficiency is improved with the bottom composition at its upper bound. When 

the bounds on the product composition are altered (cases 2 and 3), the optimal exergy 

efficiencies increases when the bounds are narrowed and it reduces when the bounds are 

widen. However, there is a limit for the purity specification of the products beyond 

which increasing the exergy efficiency has the added clause of increase in energy of the 

reboiler. This is shown in case 4 and gives a caution on placing consideration on the 

exergy efficiency while specifying the product purity. 

Table 5.8: Summary of optimization results for methanol-water system 

 Base case Optimum 

case 1 

Optimum 

case 2 

Optimum 

case 3 

Optimum 

case 4 

Feed rate (kmol/h) 216.8 216.8 216.79 180.7 216.79 

Feed temp.(oC) 53 53 53 53 53 

Distillate composition 0.90 0.90 0.90 0.90 0.92 

Bottom composition 0.05 0.1 0.08 0.01 0.05 

ANN predicted 

efficiency (%) 

83.95 93.28 89.77 74.98 85.59 

HYSYS validated 

efficiency (%) 

83.93 93.31 89.29 77.9 85.59 

Reboiler energy 

(kJ/hr) 

5.5×106 5.02×106 5.23×106 6.74×106 5.77×106 

Reboiler exergy(kJ/hr) 4.04×106 3.61×106 3.78×106 5.05×106 4.24×106 

Utility  cost ($/yr) 1.70×104 1.56×104 1.62×104 2.09×104 1.79×104 

 

 

Table 5.9: Summary of optimization results for benzene-toluene system 

 Base case Optimum 

case 1 

Optimum 

case 2 

Optimum 

case 3 

Optimum 

case 4 

Feed rate (kmol/h) 350 350 350 350 350 

Feed temp.(oC) 105 105 105 105 105 
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 Base case Optimum 

case 1 

Optimum 

case 2 

Optimum 

case 3 

Optimum 

case 4 

Distillate composition 0.95 0.95 0.90 0.90 0.97 

Bottom composition 0.05 0.1 0.08 0.01 0.05 

ANN predicted 

efficiency (%) 

82.34 83.82 83.22 80.86 82.88 

HYSYS validated 

efficiency (%) 

82.34 83.86 83.15 81.78 83.25 

Reboiler energy 

(kJ/hr) 

8.712×106 6.05×106 6.92×106 1.87×107 2.07×107 

Reboiler exergy(kJ/hr) 6.72×106 4.64×106 5.31×106 1.44×107 1.71×107 

Utility cost ($/yr) 2.94×104 2.11×104 2.38×104 3.04×104 3.68×104 

 

The optimum efficiency as given in each case is showing that there is a reduction of 

entropy generation within the systems at these operating conditions and that is why 

there are corresponding increases in the exergy efficiencies of the systems. The distillate 

and bottom compositions were not compromised for the first case showing that the 

desired purity can be maintained with a corresponding increase in the exergy efficiency 

of the system. This increment translates to an increase in the energy efficiency of the 

systems considering the fact that there is a decrease in the reboiler energy even though 

the feed rate is maintained. Other varying compositions specifications were shown with 

their corresponding exergy efficiencies. 

Taking the optimum case 1 as an example, the improvement in the exergy efficiency of 

the system is 11.16% for methanol water and 1.79% for benzene toluene when 

compared to the base case. The utility cost of the cases based on the assumption of 

8600h per year are calculated and shown in tables 5.8 and 5.9. For the optimum case 1, 

the increase in exergy efficiency translates to 8.9% reduction in utility cost for methanol 

water and 28.2% reduction in utility cost for benzene toluene over a year period. The 

cumulative effect of this could be of great economic value.  

The optimum operating conditions given by the optimisation procedures were simulated 

in HYSYS. It can be seen from tables 5.8 and 5.9 that actual (HYSYS simulated) 

exergy efficiencies are very close to the BANN model predicted values. This shows that 

the optimal predicted conditions of the BANN model can give the optimum of the 

actual process.  This further demonstrates the suitability of the Bootstrap aggregated 

models at the modelling and optimisation of the exergy efficiency of the distillation 

columns. The method as applied on the binary system might seem non trivial but the 
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accuracy of the predictability of BANN model of the exergy efficiency cannot be over 

emphasised. For a more complex system, the relevance of the method will be much 

more pronounced. 

As seen in tables 5.8 and 5.9, BANN model is able to predict what the exergy efficiency 

of the system will be at different quality specifications. In a processing plant, the 

relevance of this cannot be over emphasised especially in the area of decision making 

for the most energy efficient operating conditions of the system. This could serve as 

guide for process operators and process engineers. It could also find relevance in the 

design of a new system.  The cautions in the application are firstly that the system to be 

investigated should be fully trained. A BANN model for a particular system, might not 

work for another. Also cost of increasing the temperature of the feed should be weighed 

against the use of reboiler energy. It will be much profitable if the temperature of the 

feed is raised with dissipated heat from the system which could have been discarded to 

the environment.  

In order to compliment the results from the data driven models, HYSYS optimizer was 

used to show the optimum conditions that will improve exergy efficiency for the two 

systems. Table 5.10 shows the result for the methanol-water system and table 5.11gives 

the results for the benzene-toluene system. The predicted optimum operating conditions 

for the methanol –water system for all cases considered are close to the global optimum 

from HYSYS optimizer. This gives a measure of confidence on the optimum conditions 

found from the proffered method.  Benzene-toluene system also follows the same trend 

except for case 2 that has a deviation of about 1.5% for the feed rate and 1.7% for the 

exergy efficiency. The deviation notwithstanding, the optimum conditions from the 

model can be found reliable. Hence the method can still be deemed appropriate for the 

design and operation of energy efficient distillation columns. 

Table 5.10: Summary of optimization results for methanol-water system using HYSYS 

optimizer 

 Base case Optimum 

case 1 

Optimum 

case 2 

Optimum 

case 3 

Optimum 

case 4 

Feed rate (kmol/h) 216.8 217.9 216 216 216 

Feed temp.(oC) 53 53 53 53 53 

Distillate composition 0.90 0.90 0.90 0.90 0.92 

Bottom composition 0.05 0.1 0.08 0.01 0.05 

HYSYS optimizer 

efficiency (%) 

 93.31 89.28 77.9 85.59 
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Table 5.11: Summary of optimization results for benzene-toluene system using HYSYS 

optimizer 

 Base case Optimum 

case 1 

Optimum 

case 2 

Optimum 

case 3 

Optimum 

case 4 

Feed rate (kmol/h) 350 344.8 344.8 350 350 

Feed temp.(oC) 105 105 105 105 105 

Distillate composition 0.95 0.95 0.90 0.90 0.97 

Bottom composition 0.05 0.1 0.08 0.01 0.05 

HYSYS optimizer 

efficiency (%) 

 83.86 81.75 81.76 82.89 

 

5.5 Application to multicomponent system 

5.5.1 The system 

A multicomponent system as depicted in figure 5.15 (Green and Perry, 2006) is 

simulated in HYSYS. The 3 products from the fractionation process are a vapor 

distillate rich in C2 and C3, vapor side stream rich in nC4 and bottoms rich in nC5 and 

nC6. SRK equation of state was used for the K values and enthalpy departure. The 

system was simulated in HYSYS. The enthalpy and entropy at the stream conditions 

and at reference conditions are shown in table 5.10. The system being a multi-

component system with 5 components necessitates the calculation of the chemical 

exergy of each stream to determine the contribution of the chemical exergy to the total 

exergy the stream. Equation 5.9 was used in calculation of the chemical exergy. Exergy 

of the component at reference states of 298K and 101.325kPa are taken from the 

literature for each of the component (Szargut et al., 1988).  

𝐸𝑥𝑐ℎ𝑒𝑚 = 𝑚(ℎ0 − ∑𝑧𝑖ℎ̅0𝑖 − 𝑇0(𝑠0 − ∑𝑧𝑖𝑠̅0𝑖))      5.9 

where 𝑧𝑖 is the mole fraction of the ith component,  ℎ̅0𝑖 and 𝑠̅0𝑖 are the partial specific 

enthalpy and entropy of the component at reference conditions respectively, h is the 

specific enthalpy, s is the specific entropy, 0T  is the reference temperature, 0h and 0s are 

specific enthalpy and entropy measured at reference conditions and m is the flow rate of 

the stream under consideration. 

The physical exergy of the inlet and outlet streams as calculated using equation 4.13-

4.18 are shown in table 5.12. 
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Total 
condenser

E-1

Feed:saturated liquid 
at 260 psia; 

45.36kmol/hr

Distillate:
10.43kmol/hr

Sidestream:
16.79kmol/hr

Bottom:
18.14kmol/hr

7

9

13

1

17

Ethane: 0.1299
Propane: 0.8080
nButane: 0.0621

nPentane: 0.0000
nHexane: 0.0000

Ethane: 0.0300
Propane: 0.2000
nButane: 0.3700

nPentane: 0.3500
nHexane: 0.0500

Ethane: 0.0000
Propane: 0.0378
nButane: 0.7393

nPentane: 0.2135
nHexane: 0.0094

Ethane: 0.0000
Propane: 0.0000
nButane: 0.2057

nPentane: 0.6778
nHexane: 0.1165

 

Figure 5.15: The multicomponent separation system 

Consider the multicomponent system  

∑𝐸𝑥𝑖𝑛 = 𝐸𝑥𝑓𝑒𝑒𝑑 + 𝐸𝑥𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟         5.10 

∑𝐸𝑥𝑜𝑢𝑡 = 𝐸𝑥𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑒 + 𝐸𝑥𝑏𝑜𝑡𝑡𝑜𝑚𝑠 + 𝐸𝑥𝑠𝑖𝑑𝑒𝑠𝑡𝑟𝑒𝑎𝑚 + 𝐸𝑥𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟   5.11 

Each stream exergy is a sum of the physical and chemical exergy. The exergy efficiency 

and the irreversibility of the unit is calculated using equations 5.3 and 5.4. 

In table 5.11, the exergy efficiency, exergy loss and the reboiler energy of the unit is 

shown. Two measures of efficiency are presented. Efficiency 1 is based on the physical 

exergy of the stream and efficiency 2 is a combination of the physical and chemical 

exergy of the stream. As can be seen in table 5.13,  the reboiler energy, reboiler exergy 

and exergy loss for the two measured efficiencies are the same.  The contribution of the 

chemical exergy to the total exergy of the unit is 0.5%. This is attributed to the fact that 
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the distillation process as described here is a physical process. A reactive distillation 

column might possibly have a significant contribution from the exergy efficiency. The 

contribution of chemical exergy to this process can be reasonably assumed to be 

negligible (Anozie et al., 2009) 

Table 5.12: Simulated data for exergy analysis of multicomponent system 

 h0(kJ/hr) s0(kJ/hr0C) h(kJ/hr) s(kJ/hr0C) m(kmol/hr) Ex(kJ/hr) 

Feed -129865 160.51 -150891 84.11 45.36 81814.24 

Distillate  -102864 168.96 -115493 104.36 10.44 59638.84 

Side stream -130216 141.88 -121966 139.39 16.78 122795.73 

Bottom  -171395 74.98 -147889 143.99 18.14 82326.64 

Reflux -102864 168.96 -115493 104.36 68.27 377275.10 

Boilup -160416 96.11 -129710 177.29 117.26 1019346.26 

Reboiler duty 

     

1.865×106 

Condenser 

duty 

     

9.932×105 

 

Table 5.13: Exergy analysis of the multicomponent system 

 Efficiency 1(%) Efficiency 2(%) 

 64.3 64.6 

Reboiler energy (kJ/hr) 1.983×106 1.983×106 

Reboiler Exergy (kJ/hr) 1.865×106 1.865×106 

Exergy loss (kJ/hr) 6.940×106 6.885×106 

 

As discussed in Section 5.4.1, the input variables for the ANN training are the feed 

temperature, the feed rate and the key component in each of the product stream which 

are propane in the distillate, npentane in the bottom and nbutane in the side stream. 

These variables were varied in their upper and lower bounds and the corresponding 

exergy analysis of the inlet and outlet streams were calculated both at the prevailing 



 

120 
 

operating conditions and at reference conditions. Subsequently data generated in 

HYSYS are used in the ANN modeling of the column. The software generated data can 

be easily replaced with plant operating data over a period of time for an industrial 

column. The methodology as developed here is generic. 

5.5.2 Bootstrap aggregated neural network modelling of the multicomponent 

 A bootstrap aggregated neural network is developed from process operational data 

based on the simulated data in HYSYS. The neural network contained 30 neural 

networks for predicting the exergy efficiency of the system. Each individual network 

has a single layer with 30 hidden neurons. Hidden neurons use sigmoid activation 

function and the output neuron uses the linear activation function. Levenberg-Marquardt 

training algorithm was used to train the individual networks. Figure 5.16 gives the 

predicted exergy efficiency for the training, testing and validation data sets. The results 

clearly show the ability of BANN to accurately model the exergy efficiency. The 

prediction error within -4×10-3 and 6×10-3  as shown in figure 5.17. Figure 5.18 shows 

the predicted and actual values of the exergy efficiency as well as the confidence 

bounds. Another advantage of BANN model is that it can offer model prediction 

confidence bound. With increasing decision variables, the complexities of the method 

increases. BANN has additional advantage of inclusion of confidence bounds in the 

optimisation criteria. A narrower confidence bounds indicates the reliability of the 

associated model prediction.  

 

Figure 5.16: BANN model of the multi-component system 
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Figure 5.17: Error of prediction of muticomponent BANN model  

 

Figure 5.18:  Predictions, and confidence bounds of multicomponent BANN model 
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5.5.3  BANN model of the modified multicomponent system  

A further modification of the system was made based on the given specification in 

Figure 5.19. The number of stages was increased to 25, the feed stage at stage 7 and the 

sidestream was drawn from stage 17. The modifications were intended for a change in 

the design of the column to investigate the contribution it will have on the exergy 

efficiency.  

Total 
condenser

E-1

Feed:saturated liquid 
at 260 psia; 

45.36kmol/hr

Distillate:
10.43kmol/hr

Sidestream:
16.79kmol/hr

Bottom:
18.14kmol/hr

5

7

17

1

25

Ethane: 0.1303
Propane: 0.8560
nButane: 0.0137

nPentane: 0.0000
nHexane: 0.0000

Ethane: 0.0300
Propane: 0.2000
nButane: 0.3700

nPentane: 0.3500
nHexane: 0.0500

Ethane: 0.0000
Propane: 0.0080
nButane: 0.8280

nPentane: 0.1559
nHexane: 0.0081

Ethane: 0.0000
Propane: 0.0000
nButane: 0.1515

nPentane: 0.7310
nHexane: 0.1175

 

Figure 5.19: Modified multicomponent system 

The subsequent thermodynamic analysis of the modified system was made as described 

in Section 5.5.1. Table 5.14 shows the simulated data and the exergy calculation of the 

streams in and out of the modified system. Exergy efficiency, exergy loss and reboiler 

exergy of the system are shown in table 5.15. As was the case for the previous 

multicomponent system, the reboiler exergy and exergy loss for the two measured 
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efficiencies are the same. The contribution of the chemical exergy to the total exergy of 

the system is 0.4% and hence can be considered negligible here as well. There is an 

increment in the exergy efficiency of the modified system by 2% corresponding to an 

improvement of 5.3% as compared to the initial system. There is a corresponding 

decrease in the reboiler energy and the exergy loss of the system. This signifies a 

reduction in entropy generation within the column resulting from increasing the stage 

number.  It should however be noted that the improvement in efficiency comes with the 

added expenses of capital cost. 

Table 5.14: Simulated and thermodynamic data of the modified system 

 h0(kJ/hr) s0(kJ/hr0C) h(kJ/hr) s(kJ/hr0C) m(kmol/hr) Ex(kJ/hr) 

Feed -129865 160.51 -150891 84.12 45.36 81814.25 

Distillate  -102864 168.96 -115491 104.36 10.44 71209.26 

Side stream -130216 141.88 -121965 139.38 16.78 153814.2 

Bottom  -171395 74.98 -147889 143.99 18.14 56800.36 

Reflux -102864 168.96 -115491 104.36 68.36 454774.8 

Boilup -160416 96.11 -129710 177.30 117.33 767273.4 

Reboiler duty 

     

1957834 

Condenser 

duty 

     

1048452 

 

Table 5.15:  Exergy analysis of the modified multicomponent system 

 Efficiency 1(%) Efficiency 2(%) 

 66.5 66.8 

Reboiler energy (kJ/hr) 2.072×106 2.072×106 

Reboiler Exergy (kJ/hr) 1.949×106 1.949×106 

Exergy loss (kJ/hr) 6.788×105 6.733×105 
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BANN model of exergy efficiency as a function of the products composition, feed 

temperature and feed rate was developed. The structure of the BANN is as discussed in 

Section 5.3.2.  Figure 5.20 shows the BANN model of the modified multicomponent 

system. The system can be seen to be perfectly represented by the model. The actual 

and the predicted exergy efficiency are more or less superimposed showing a quite good 

correlation. The model prediction of the system showing the 95% confidence bounds is 

shown in Figure 5.21. Figure 5.22 shows the plot of the training, testing and validation 

data for the predicted and actual exergy efficiency of the system.   

 

Figure 5.20: BANN model of the modified multicomponent system 
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Figure 5.21: Model prediction confidence bounds of the modified multicomponent 

system 

 

Figure 5.22: Predicted and actual exergy efficiency 
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5.5.4 Optimization using neural network models 

The optimisation objective is to maximise the exergy efficiency of the column subject to 

product composition constraints. The products are the most volatile in the distillate, side 

stream and bottom composition.  

yJ
X

min           5.12 

s.t.  

),,,,( 54321 xxxxxf  

95.075.0 3  x  

9.06.0 4  x  

95.07.0 3  x  

In addition to the process operation objective, minimizing the model prediction 

confidence bounds can be incorporated as an addition optimization objective. To 

improve the reliability of the optimization strategy, a modified objective function is 

proposed. The optimization problem can be stated as 

J
X

min = −( − 𝛽𝜎)
  

 

s.t.  

),,,,( 54321 xxxxxf                                                                                                 5.13 

ubxlb prod   

where J is the objective function, x=[x1,x2,x3,x4,x5] is a vector of decision variables, i.e. 

neural network model inputs,   is the exergy efficiency,  σ is standard prediction error, 

and β is weighting factor of σ. 

The optimisation problems were solved using the SQP method implemented by the 

function “fmincon” in MATLAB Optimisation Toolbox. The optimisation framework 

presented in this work is illustrated in figure 5.23. The optimised operating conditions 

are further validated on the distillation process and their corresponding exergy analysis 

are performed. 

Table 5.16 shows the optimum results without confidence bounds for the initial system 

and the modified system. The prediction errors of the optimum results and the HYSYS 

validated exergy efficiency are 0.00165 and 0.0058 for the initial and modified cases 
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respectively. The results further confirm the predictability accuracy of BANN. Also 

without modifying the design, optimum operating conditions that led to 31.4% increase 

in exergy efficiency of the system were found using the proposed methods. This is 

without sacrificing the purity of the product specifications. This further justifies the 

suitability of the method in determining energy efficient operating conditions for the 

distillation column.  However, with the modification, the exergy efficiency has 

increased from 64.3% to 66.5% this is just about 2% increment in the exergy efficiency 

as compared to 31.4% from the method presented. This increment for the modified case 

is at an additional capital cost (increasing number of trays and change in location of 

feed and side stream). The tools described here can aid in decision making of what trade 

off should be made in the design and operation of energy efficient column. The 

modified system is further improved as shown in table 5.16 and there is an increase in 

its exergy efficiency to 31% of its initial value.  

In table 5.17, the results of the optimisation of the base case with model prediction 

confidence bounds are shown. The effects of some values of the weighting factor of the 

standard prediction error on exergy efficiency are also investigated. Narrowing the 

confidence bound to a weighting factor of 0.01 improves the prediction accuracy and 

reliability of the model. Incorporating confidence bound in the optimisation ensures the 

reliability and the generalisation of the associated model. Reducing the confidence 

bound to 0.001 increased the prediction error but not beyond what was obtained for the 

optimum case. This shows the need for a careful consideration of the weighting factor in 

order to have a reliable result. 
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Figure 5.23 : Description of the optimisation procedure. 
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Table 5.16: Summary of optimization results for multicomponent systems 

 Multicomponent System Modified System 

 Base case Optimum 

case 

Base case Optimum 

case 

Feed rate (kmol/h) 45.36 45.36 45.36 45.36 

Feed temperature(oK) 308.1 308.1 308.1 308.1 

Propane in distillate 0.8080 0.85 0.8562 0.85 

n Pentane in Bottom  0.6778 0.71 0.7310 0.82 

n Butane in sidestream 0.7393 0.85 0.8280 0.92 

Exergy efficiency (%) 64.3 96.7 66.8 97.6 

ANN predicted exergy 

efficiency (%) 

     66 96.5 63.2 97.0 

 

Table 5.17: Summary of optimization results with confidence bounds 

 Confidence bounds Base case 0 1 0.1 0.01 

Feed rate (kmol/h) 45.36 45.36 45.36 45.36 45.36 

Feed temp (K) 308 308 308 308 308 

Propane comp 0.808 0.85 0.85 0.85 0.85 

n Pentane comp 0.6778 0.71 0.71 0.71 0.71 

n Butane comp  0.7393 0.85 0.85 0.85 0.85 

HYSYS validated 64.29 96.67 96.68 96.66 96.66 

Optimum 

efficiency from 

ANN(%) 

66 96.51 95.78 96.44 96.60 
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 Confidence bounds Base case 0 1 0.1 0.01 

Error of prediction 0.0265 0.00165 0.009 0.0022 0.0006 

 

5.6 Conclusions 

This chapter shows that ANN can accurately model exergy efficiency in distillation 

columns. The ANN models are then used in obtaining optimal distillation operation 

conditions that can maximise the energy performance of distillation systems while 

maintaining the product quality and throughput. A reliable strategy based on BANN for 

improved generalisation of the predicted model is also presented. BANN enhances 

model prediction accuracy and also provides model prediction confidence bounds. 

Exergy analysis is an effective way of determining the energy efficiency of processes 

and hence the importance of this study to process and design engineers. Applications to 

two binary systems and a multicomponent system demonstrate the proposed methods 

can significantly increase the exergy efficiency of distillation columns. The optimisation 

resulted in 22.67% increment of the exergy efficiency of methanol water and 33.49% 

for benzene toluene. This brings about a reduction in the consumption of utility of the 

systems to 29.4% for methanol water and 66.56% for benzene toluene. The 

improvement is based on changing the operating conditions of the system and has no 

additional capital costs. The multi-component system has an improvement in the exergy 

efficiency to be 31.25%. This is without incurring any additional capital costs as well. 

The modified multi-component system has an exergy improvement of 47.33%, but the 

column structure has to be redesigned creating an additional capital costs. The 

advantage of incurring these further costs can be weighed and informed decisions can 

then be made. The ANN and BANN model based modelling and optimisation can aid 

the decision making of energy efficient operations and control of distillation columns.  
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CHAPTER 6: OPTIMISATION OF ENERGY EFFICIENCY: 

APPLICATION TO CRUDE DISTILLATION SYSTEM 

This chapter is based on the published papers presented at PSE2015/ESCAPE25, 31st 

May-June 4, 2015; IEEES7, April 27-30, 2015 and two manuscripts in preparation for 

journal publication 

6.1 Introduction 

Distillation process has always attracted the interest of researchers and quite a number 

of work in the literatures are focused on improving its energy consumption either for 

binary system (Osuolale and Zhang, 2014) or multi-component system (Al-Mutairi and 

Babaqi, 2014). In recent years optimization of crude distillation system has received 

considerable research interest. This is because major cost of operation second only to 

the cost of crude in the refinery is energy and 35% of these is consumed in the crude 

distillation unit. Optimization is a major quantitative tool in decision making for the 

process industries. Rather than large scale expansion, most industries will maximize 

available resources for maximum profitability. Optimization objectives of most 

chemical engineering processes have complex inter-relationships. This is where multi-

objective optimization is useful to find the optimal tradeoffs among two or more 

conflicting objectives such as economic, energy efficiency, product throughput and 

carbon emission. And for a crude distillation unit, the combination of the objectives 

varies (Motlaghi et al., 2008). Optimization is a well-developed field in chemical 

engineering and has been applied on a number of processes (Li et al., 2012). It has also 

find application in improving the energy efficiency of the crude distillation unit albeit in 

terms of the utility consumption alone (Ochoa-Estopier et al., 2013).   

Thermodynamic analysis of the crude distillation unit gives insight into its second law 

efficiency. Past work on the second law analysis reveals low efficiency of the system. 

Cornelissen (1997) performed analysis on a crude distillation unit with an efficiency of 

0.27 for the ADU, while Al-Muslim and Dincer (2005) came out with a result of 0.43 

for the ADU. This could imply that improvement of the efficiency of the column will be 

better off when it is based on the second law. The challenge therefore is to develop 

optimization procedures based on second law analysis aimed at minimizing the 

inefficiencies without compromising the qualities of the products. The crude distillation 

unit comprises the pre-flash drum, heat exchanger network, atmospheric distillation unit 

with side strippers and pump arounds and a vacuum distillation unit. In this chapter, a 
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method of optimizing the atmospheric distillation unit operations on its own and the 

crude distillation unit as a whole is presented. 

The chapter is organized as follows: section 6.2 gives a description of the atmospheric 

distillation unit, and methods of analysis of the system such as exergy analysis, 

sensitivity analysis and economic analysis. Section 6.3 deals with BANN modeling of 

the ADU, single and multi-objective optimization of the ADU with and without product 

quality constraints. Section 6.4 gives a description of the crude distillation unit, its 

HYSYS simulation, and exergy analysis. In Section 6.5, simulation of the pre-flash 

units is considered. Section 6.6 gives the BANN modeling of the CDU with and without 

the pre-flash units. Section 6.7 presents the optimization of the CDU with and without 

the pre-flash units and concludes with a multi-objective optimization of the CDU. Some 

concluding remarks of this chapter are given in Section 6.8. 

6.2 Atmospheric distillation unit 

6.2.1 Description of Systems 

The atmospheric distillation system considered in this study is presented in Figure 6.1. 

The crude to be processed was Venezuela Tia Juana light crude (Watkins 1973). The 

crude was characterized using experimental assay that include the bulk crude properties, 

light end volume percent, ASTM distillation, API gravity and TBP distillation. The 

assay data was fed into the data bank of the simulator software (HYSYS). The result of 

the characterization is a set of pseudo-components and a detailed chemical composition 

of the identified light ends components. The goal is to determine optimal operating 

conditions to give the maximum exergy efficiency of the process. The column processes 

100,000 barrel/day of crude at 25psia and 690 0F into 6 products: Off gas, Naphtha, 

Kerosene, Diesel, Atmospheric gas oil (AGO) and Residue.  

6.2.2 HYSYS simulation 

Process simulators are mathematical tools that model processes with continuous flows 

of material and energy from one unit operation to another. They are often used to design 

or select a process from alternatives, in modelling real processes and calculating steady 

state mass and energy flow, and in evaluating process operations and performance. 

Crude distillation unit consists of complex mixtures whose compositions and 

thermodynamic properties vary significantly depending on prevailing conditions. Tables 

of such properties cannot be easily assessed manually or practically. The process is 

quite dynamic and it is costly and often impracticable to perform experimental runs. 
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Hence a simulator software HYSYS is used for its modelling and simulation. The 

procedure is further highlighted as follows. 
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Figure 6.1: Schematic diagram of the atmospheric distillation unit 

Component selection 

HYSYS contains a number of components in its data bank. The components are well 

defined with its thermodynamic and physical properties, temperature dependent 

properties such as enthalpy and critical properties. The light end components of the 

refineries were inputted here. It should be noted that the given components are from the 

laboratory analysis of the raw crude. Other unknown components of the crude are 

determined from the crude characterization in HYSYS. 

Thermodynamic property package 

The property package in HYSYS includes Equation of states (EOSs), activity models, 

Chao Seadre models and vapour pressure models. One of the property package in EOS 

is Peng-Robinson. It was chosen as it properly suited crude oil analysis. The Peng-

Robinson method utilises EOS in its enthalpy calculations. 

Oil characterisation 

Crude oil is a mixture of many identified chemical components and pseudo-components 

whose chemical identity might be difficult and sometimes impractical to determine. 
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Hence, there is a need for the characterizations of the crude.  The crude was 

characterized using experimental assay that include the bulk crude properties, light end 

volume percent, ASTM distillation, API gravity and TBP distillation.   

The result of the characterization is detailed chemical compositions of the identified 

components and the pseudo-components.  The complete and definitive analysis of a 

crude oil is called crude assay. This is more detailed than a crude TBP curve. 

 Building the flow sheet  

 The modelling of the crude distillation units were done in the HYSYS environment 

using their operating and design parameters. The simulation was done to be a prototype 

of the actual process as much as possible in terms of these parameters-the number of 

trays, feed tray, feed temperature, feed flow rates, heat exchangers supply and target 

temperatures, product specifications, steam flow rates, pump around flow rates. Data 

such as entropy, enthalpy, temperatures, pressures, compositions and stream flow rates 

were extracted from the simulation for exergy analysis. 

6.2.3 Exergy analysis 

The total exergy of a stream is given as 

𝐸𝑥𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑥𝑝ℎ𝑦 + 𝐸𝑥𝑐ℎ𝑒𝑚         6.1  

The physical exergy is calculated from equation 4.13-4.18.  

For the crude stream considered, standard molar chemical exergy 𝐸𝑥𝑐ℎ𝑒𝑚 is calculated 

from the standard molar chemical exergies of all identified components and pseudo-

components as 

 

𝐸𝑥𝑐ℎ𝑒𝑚 =  𝑚[∑𝑏𝑞𝑖 + ∑𝑏𝑐ℎ𝑖 + 𝑅𝑇0∑ 𝑙𝑛𝑎𝑖]       6.2 

Where 𝑏𝑐ℎ𝑖  is the chemical exergy for component i, 𝑏𝑞𝑖  is the chemical exergy for 

pseudo component and 𝑎𝑖  is the activity coefficient of component 𝑖 . The standard 

chemical exergy for pseudo-components can be determined for heuristic empirical 

expression as a function of the elementary composition and their heating values 

(Szargut et al., 1988, Rivero et al., 1999)  

𝑏𝑞𝑖 = 𝜗𝑖𝐶𝑖            6.3 
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Where 𝜗𝑖  is the regression equation to express the ratio H/C, N/C, O/C and S/C for 

pseudo-component 𝑖, 𝐶𝑖  is the net calorific heating value of the pseudo-component 𝑖.  

From figure 6.1, the inlet and outlet streams are given as 

∑𝐸𝑥𝑜𝑢𝑡 = 𝐸𝑥𝑜𝑓𝑓𝑔𝑎𝑠 + 𝐸𝑥𝑛𝑎𝑝ℎ𝑡ℎ𝑎 + 𝐸𝑥𝑘𝑒𝑟𝑜 + 𝐸𝑥𝑑𝑖𝑒𝑠𝑒𝑙 + 𝐸𝑥𝐴𝐺𝑂 + 𝐸𝑥𝑟𝑒𝑠𝑖𝑑𝑢𝑒   6.4 

∑𝐸𝑥𝑖𝑛 = 𝐸𝑥𝑐𝑟𝑢𝑑𝑒 + 𝐸𝑥𝑠𝑡𝑒𝑎𝑚 + 𝐸𝑥𝑓𝑢𝑟𝑛𝑎𝑐𝑒 + 𝐸𝑥𝑘𝑒𝑟𝑜 𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟 + 𝐸𝑥𝑑𝑖𝑒𝑠𝑒𝑙 𝑟𝑒𝑏𝑜𝑖𝑙𝑒𝑟 +

                       𝐸𝑥𝐴𝐺𝑂 𝑠𝑡𝑒𝑎𝑚         6.5 

The exergy efficiency and the irreversibility are then calculated as: 

 = 
∑𝐸𝑥𝑜𝑢𝑡

∑𝐸𝑥𝑖𝑛
           6.6 

𝐼 =  ∑𝐸𝑥𝑖𝑛 − ∑𝐸𝑥𝑜𝑢𝑡        6.7 

Table 6.1 gives the result of the physical exergy of the ADU.  

Table 6.1: Simulated data for exergy analysis 

Stream 

Name 

h(kJ/ 

kmol) 

h0(kJ/hr) s(kJ/hr

K) 

s0(kJ/hr

K) 

m(kmol/hr) Ex 

Inlet streams 

Crude inlet -345265 -624086 1084.64 485.72 1910.94 1.92×108 

Crude Steam -233887 -286232 181.06 53.66 1200 17256656 

Kero Reboil      10386235 

Diesel Reb      22617319 

AGO steam -233887 -286232 181.06 53.66 250 3595137 

Furnace duty      87342512 

TOTAL IN      3.33×108 

Outlet streams 

Residue -896119 -1.590087 3157.92 1680.61 259.58 65865065 

Naphtha -342702 -368239 197.57 121.48 374.48 1071996 

Off gas -234440 -282113 182.75 49.93 2022.68 16365119 

Kerosene -384811 -521349 646.14 316.74 266.18 10214893 

AGO -704638 -1110258 2036.66 1130.98 69.59 9445569 

Diesel -467454 -769659 1334.31 672.88 347.89 36562748 

TOTAL 

OUT      
1.4×108 
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6.2.4 Economic Analysis 

The total operating cost of the column is given as  

𝑇𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 =  𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡 + 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡     6.8 

In the above equation,   

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡 = ∑𝑄𝑥 𝐶𝑥         6.9 

where Qx  is the duty of utility x  and  Cx is the unit cost of utility x. 

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝐻𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟 𝑐𝑜𝑠𝑡 = 𝐴 + 𝐵(𝑎𝑟𝑒𝑎)𝑐      6.10 

where A is the fixed cost of installation and 𝐵 is exchanger cost per unit area. 

For a stainless steel shell and tube heat exchanger,  

𝐻𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟 𝑐𝑜𝑠𝑡 = 33422 + 1874(𝑎𝑟𝑒𝑎)0.81      6.11 

Details of the calculation of the operating costs of a crude distillation system can be 

found in (Al-Mutairi and Babaqi, 2014).  

The method of improvement being proposed here does not include a change in any of 

the equipment and hence the capital cost remains the same. Basically the economic 

analysis is based on the operating profit of the column and expressed mathematically as 

𝑃𝑟𝑜𝑓𝑖𝑡 = ∑ 𝑀𝑗𝐶𝑗 − [𝑀𝑐𝑟𝑢𝑑𝑒𝐶𝑐𝑟𝑢𝑑𝑒 +𝑀𝑠𝑡𝑒𝑎𝑚𝐶𝑠𝑡𝑒𝑎𝑚 + ∑ 𝑄𝑥𝐶𝑥
𝑛
𝑥=1

𝑛
𝑗=1  ]  6.12 

Where 𝑀𝑗 and 𝐶𝑗 are the flow rates and costs of products j, 𝑀𝑠𝑡𝑒𝑎𝑚 and  𝐶𝑠𝑡𝑒𝑎𝑚 are the 

flow rate and cost of steam respectively, 𝑄𝑥 and 𝐶𝑥 are the heat requirement of utility 

and the cost of utility respectively. The calculation is based on the assumption of 8600 h 

per year. In table 6.2, the feed, products and utility prices are shown (Energy 

information administration, 2014).  

Table 6.2: Feed, products and utility prices 

Item Cost Unit 

Crude oil 80 $/bbl 

Off gas 44.3 $/bbl 

Naphtha 136 $/bbl 

Kerosene 122.7 $/bbl 
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Item Cost Unit 

Diesel 121.7 $/bbl 

Atmospheric gas oil 95.29 $/bbl 

Residue 89.71 $/bbl 

Fired heating 150 $/kJ 

Cooling water 5.25 $/kJ 

Stripping steam 0.14 $/kmol 

 

6.2.5 Sensitivity analysis of manipulated variables  

In order to evaluate the decision variables, each of the decision variables was changed 

individually in a range equivalent to 85 % and 115 % of the original value and for some 

cases, 95 % and 105 %. The variables that significantly affect the objective function 

were used for the ANN modeling and then optimization. The exergy efficiency 

(equation. 6.6), energy cost (equation 6.9) and profitability (equation 6.12) of each 

variables were evaluated. Table 6.3 shows the results of the evaluation. It could be 

noted that reduction in energy costs translates to improved exergy efficiency. And in all 

cases, increasing exergy efficiency implies an increase in the profitability of the process.  

Table 6.3: Sensitivity analysis of manipulated variables 

 

Exergy 

Eff. 

(%) 

Energy 

cost($/yr) 

Profitability 

($/yr) 

Exergy 

Eff. 

(%) 

Energy 

cost($/yr) 

Profitability 

($/yr) 

 % Decrease in initial value % Increase in initial value 

Kerosene 35.8 8.048×106 2.279×109 52.23 5.076×106 2.442×109 

AGO 35.14 7.74×106 2.326×109 50.61 6.088×106 2.393×109 

Naphtha 40.16 7.185×106 2.269×109 46.44 5.915×106 2.450×109 

Residue 28.68 8.109×106 2.309×109 63.79 4.489×106 2.411×109 

Diesel 35.75 7.788×106 2.359×109 52.44 5.171×106 2.361×109 

PA1 flow 

rate 
42.36 6.939×106 2.360×109 41.67 7.261×106 2.359×109 

PA1 ∆T 42.46 6.889×106 2.360×109 41.7 7.224×106 2.359×109 

PA2 flow 

rate 
42.68 6.790×106 2.360×109 41.53 7.319×106 2.359×109 

PA2 ∆T 42.66 6.8×106 2.360×109 41.56 7.307×106 2.359×109 

PA3 flow 

rate 
42.63 6.820×106 2.360×109 41.58 7.289×106 2.359×109 
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PA3 ∆T 42.65 6.811×106 2.360×109 41.66 7.256×106 2.359×109 

Diesel 

duty 
42.14 7.051×106 2.360×109 42.06 7.036×106 2.360×109 

Kerosene 

duty 
42.07 7.095×106 2 360×109 42.11 7.023×106 2.360×109 

AGO 

steam 
42.13 7.055×106 2.360×109 41.84 7.175×106 2.359×109 

CDU 

steam 
43.71 6.376×106 2.360×109 40.94 7.549×106 2.359×109 

 

6.3 Modelling of the Atmospheric distillation unit 

In this study, simulated process operational data were generated from HYSYS. 

Variables selected from sensitivity analysis were varied within their lower and upper 

bounds in a nested loop. From the simulated data, a bootstrap aggregated neural 

network (BANN) containing 30 neural networks was developed to model exergy 

efficiency and products quality. Figure 6.2 shows the BANN model of the crude 

distillation unit. A single layer network with 30 hidden neurons was used. The number 

of hidden neurons was determined by building a number of neural networks with 

different numbers of hidden neurons and testing them on the testing data. The network 

giving the lowest sum of squared errors (SSE) on the testing data is considered as 

having the appropriate number of hidden neurons.The Levenberg-Marquardt trainning 

algorithm was used to train the network. For training each network, bootsrap resampling 

with replacement was used to generate a replication of the data. 50% of the simulated 

data was for training, 30% for testing and 20% for unseen validation. Figure 6.3 shows 

the BANN model performance on the unseen validation data. 

Figure 6.4 shows the MSE of the individual networks and BANN containing different 

number of networks on the training and unseen validation data sets. A network with 

small training SSE may have quite large SSE on the validation data. This indicate 

inconsistency and non robust nature of the individual networks. The minimum SSE of 

individual network on the training and validation data sets are 6×10-6 and 1.9×10-5   

respectively. The SSE for the aggregated network on the training and validation data are 

4×10-6  and 1.6×10-5   respectively. This shows the model accuracy is improved by 

combining the imperfect models.   

It can be seen that individual networks give inconsistent performance on the training 

and unseen validation data indicating the non-robust nature of single networks. BANNs 

give consistent and more accurate prediction performance on the training and unseen 

validation data sets.   
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Figure 6.2: BANN model of the ADU 

 

Figure 6.3: BANN predicted vs. actual exergy efficiency (left) and prediction errors 

(right)  
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Figure 6.4: Model error of individual networks for the crude distillation unit 

6.3.1 ANN model optimization 

The objective of the optimization here is to maximize the exergy efficiency of the 

atmospheric distillation unit. There are a number of decision variables in the ADU 

where finding their optimal value can significantly improve the exergy efficiency of the 

ADU. The prediction confidence bound is incorporated in the optimization problem. 

The optimization formulation is given as  

J
X

max = 𝜑 − 𝛽𝜎
           6.13 

s.t.  

)(xU  

where J  is the objective function, y is the exergy efficiency, U  is the knowledge data 

base model of the ADU, 𝑥1,𝑥2,…𝑥𝑛 is a vector of decision variables which are the flow 

rates of heavy naphtha, kerosene, diesel, AGO, residue, PA1, PA2 and PA3, σ  is 

standard prediction error and β is the weighting factor of σ. The optimisation problem 

was solved using the sequential quadratic programing (SQP) implemented by the 

function “fmincon” in MATLAB optimisation toolbox. Table 6.4 shows the optimum 
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and HYSYS validated results with varying weighting factors of the confidence bounds. 

The approach in this work is to improve model prediction reliability using BANN and 

to provide a model prediction confidence bounds which is then used in the optimization 

objective function. The effect of penalization of the wide model prediction confidence 

bounds during the optimization can be clearly seen in table 6.4. The result of the 

optimization without including the confidence bounds is included for the purpose of 

comparison. The relative error is calculated as the difference between BANN and 

HYSYS validated model divided by the HYSYS validated model. The method results in 

much less relative error between the BANN model and HYSYS simulated model. This 

indicates the reliability of the proposed model because the performance of the actual 

model (HYSYS validated model) is close to that predicted by the neural network model. 

The accuracy of the predicted model to the simulated model in HYSYS is a function of 

weightings of the standard prediction error. Hence it can be said that the weighting of 

0.001 should be used as it gives the least prediction error. 

Table 6.4: Summary of optimization results with confidence bounds 

 Items Base 0 1 0.5 0.01 0.001 LB UB Unit 

 Naphtha 517 439 439 439 439 439 439 594 barrel/hr 

Kerosene 508 507 557 530 505 508 431 584 barrel/hr 

Diesel 952 1000 1000 1000 1000 1000 904 1000 barrel/hr 

AGO  267 308 227 266 308 308 226 308 barrel/hr 

Residue 1296 1350 1350 1350 1350 1350 1231 1360 barrel/hr 

PA1  943 948 947 928 947 885 801 1085 barrel/hr 

PA2  1132 1139 945 938 1136 946 800 1085 barrel/hr 

PA3 943 958 948 952 957 954 800 1085 barrel/hr 

Optimum 

efficiency 

 79.8 63.7 72.6 78.9 79.7   % 

HYSYS 

validated 

42.1 77.1 64.9 73.2 78 79.1   % 

Error   0.0347 0.0183 0.0081 0.011 0.007    

6.3.2 ANN optimisation with product qualities constraints 

Crude distillation operations are often bounded by product quality specifications. An 

optimal efficiency procedure without consideration to the quality specification might 

not be feasible in practice. For petrochemical system where it is not possible to give a 
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discrete component specifications as a measure of the product quality, the 95% vol and 

5% vol of the ASTM distillation is often use as a guide (Jones, 1999). There are six 

products from the distillation process as depicted in figure 6.1. BANN models of the 

95%vol and 5%  vol of the ASTM distillation for each of the product was created. The 

optimum value and hence the upper and lower bounds were obtained from the models. 

The exergy efficiency of the ADU is then optimised subject to the product quality 

specifications constraints as follows. 

J
X

max = φ− βσ
    

s.t.          6.14 

       𝑈(𝑥) = [
𝜑
𝑚
] 

       𝑚𝑙𝑏,𝑘 ≪ 𝑚𝑘 ≪ 𝑚𝑢𝑏,𝑘       k = 1, 2, …, 6 

 

where 𝑚  represents the product oil quality (95% vol ASTM distillation for each 

product),  and 𝑈 is the BANN model of the ADU comprising the flow rates of the 

products and the pump arounds. 

The model error of the individual network and the aggregate network for the 5% vol and 

95% vol of each of the products are shown in figures 6.5 to 6.16. The ANN model and 

BANN models for the training and validation data sets are presented in each figure. 

Figures 6.5 and 6.6 show the models for 5% vol ASTM distillation and 95% vol ASTM 

distillation for AGO.  As is expected, BANN model errors are much more consistent 

than the ANN models. In figure 6.6 Model error for 95% vol ASTM distillation seems a 

bit higher than expected. Figures 6.7 and 6.8 show the model errors for 5% and 95% vol 

ASTM distillation for diesel product. In Figure 6.7, the model error is between 2 × 10-4 

and 6 × 10-4 for ANN training data and between 1.8 × 10-4 and 2.2 × 10-4 for BANN 

training data respectively. The model error for the 95% vol is slightly higher than for 

the 5% vol. It ranges from 4.8 × 10-4 to 1 × 10-3 for both ANN and BANN models. 

Model errors for kerosene product are given in figures 6.9 and 6.10. ANN model error 

for training data set is from 4 × 10-5 to 2.2 × 10-4 while the BANN model error is from 

2 × 10-5 to 1.8 × 10-4. The BANN training error for 5% Naphtha is between 1.8× 10-4 

and 2.9× 10-4 as compared to 95% Naphtha which is between 4.2× 10-4 and 5× 10-4 as 

shown in figure 6.11 and 6.12. The model error for most 95% ASTM distillation for 

most of the product is much higher than for the 5% ASTM distillation. Figures 6.13 and 

6.14 give the ANN and BANN model error for off gas. The BANN model error for 5%  

has a maximum value of 5 × 10-6while that of 95% is 5.6× 10-5. Off gas has the least 
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model error of all the products. Figures 6.15 and 6.16 are for the residue product. the 

model error for the 5% behaves similarly to the 95% for AGO. This is quite possible 

because of the overlap of the two cuts. 

The SQP method is very effective for constrained optimization problem. The optimum 

exergy efficiency obtained here are subject to the constraints imposed by the products 

quality specifications. In table 6.5, the optimum results obtained with the constraints in 

effect are given. Without incorporating confidence bounds, the optimum exergy is 74 % 

in table 6.5. This is about 7.8% decreases in the efficiency as compared to when the 

quality constraints were not considered in the analysis in table 6.4. 

 Quite often, optimisation of distillation process is performed subject to one or two 

distillate qualities (Gadalla et al., 2013). The method presented here allows for inclusion 

of as many product qualities as desired. A number of methods exist in literature for 

online monitoring of crude distillation process qualities (Shahnovsky et al., 2012, Shang 

et al., 2014). The method as proposed here could predict the product qualities and as 

well predict the optimum operating exergy efficiency of the column. Stringent 

requirement of petroleum quality demands the need to monitor and control the quality at 

all times. One approach is to use offline laboratory analysis at periodical intervals. This 

could result in large time delays and requires additional resources. The other approach 

of online analyser could be expensive and difficult to predict accurately. These side 

effects necessitate the need for data driven models for monitoring the product quality. 

There is a possibility of developing this method further to monitor the product quality 

with the added advantage of predicting the efficiency of the system. It could have 

applications in process monitoring, advanced control and fault diagnosis. 

Figure 6.17 shows the comparison of the HYSYS validated optimum values obtained 

for differing weightings with and without the product quality constraints. For all cases, 

the values obtained without the product quality constraints are higher when compared 

with quality limitation. Even though there is a reduction in the optimum value, 

optimisation of the column subject to product quality constraints is preferred as it gives 

a true indications of what obtains in reality. Distillation operations are not universal for 

every distillation column. There are many different configurations and different 

operating objectives that can result in different operational degree of freedom and 

distinct dynamic behaviours. The methods as described in this thesis can be used to 

understand and analyse these complexities. 
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  Figure 6.5: Model error for 5%AGO 

 

Figure 6.6: Model error for 95%AGO 

 

Figure 6.7: Model error for 5% Diesel 
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 Figure 6.8: Model error for 95% Diesel 

 

Figure 6.9: Model error for 5% Kero 

 

Figure 6.10: Model error for 95% Kero 
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Figure 6.11: Model error for 5% Naphtha 

 

Figure 6.12: Model error for 95% Naphtha 
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Figure 6.13: Model error for 5% Offgas 

 

Figure 6.14: Model error for 95% Offgas 
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Figure 6.15: Model error for 5% Residue 

 

Figure 6.16: Model error for 95% Residue 

Table 6.5: Summary of optimization results with confidence bounds and product quality.  
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  Βase 

case 

0 1 0.05 0.001 unit 

Diesel  952 1000 1000 1000 1000 barrel/hr 

AGO  267 275 261 275 275 barrel/hr 

Residue  1296 1350 1350 1350 1350 barrel/hr 

PA1  943 943 944.6 943.5 943.5 barrel/hr 

PA2  1132 1130 1133 1130 1130 barrel/hr 

PA3 943 940 941 940 940 barrel/hr 

Optimum 

Efficiency 

 74 29.43 69.3 73.91 % 

HYSYS 

validated 

42.1 69.37 64.73 70.19 69.37 % 

Relative Error   0.067 0.506 0.013 0.062  

 

6.3.3 Multi-objective optimisation  

Optimisation of chemical process operations is often a multi-criteria optimization 

problem with conflicting objectives. Optimization objectives of most chemical 

engineering processes have complex inter-relationships and improvements in a 

particular objective in most cases lead to a decline in the other (Bortz et al., 2014). This 

is especially true for crude distillation column where diverse objectives such as 

economic and product quality (Yu et al., 2008), energy efficiency and production rate 

(Zhu et al., 2014) and economic and environment (Alcántara-Avila et al., 2012) and 

some other combinations have been considered. 

In this section, an additional objective of minimising the standard error of individual 

network predictions was introduced and formulated using the goal attainment multi-

objective optimization procedure. This is to improve the reliability of the optimum 

solution found. Equation (6.14) is then modified as 

J = [
−φ
σ
]           6.15 

   min
x,δ

δ 

s.t.   𝐽(𝜑) −𝑊𝑖𝛿 ≤ 𝐹  

       𝑈(𝑥) = [
𝜑
𝑚
] 
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       𝑚𝑙𝑏,𝑘 ≪ 𝑚𝑘 ≪ 𝑚𝑢𝑏,𝑘       k = 1, 2, …, 12 

where J is the objective function, 𝜑 is the exergy efficiency, U is the BANN model of 

the ADU, 𝑥 = [𝑥1,𝑥2,…𝑥8] is a vector of decision variables containing 5 product flow 

rates and 3 pump around flow rates, m  is a vector of the product oil quality, σ is a 

vector of standard prediction errors, F is a vector of the desired goals, and W is a vector 

of weighting parameters which controls the degree of goal achievement and introduces a 

measure of flexibility that allows for trade off the conflicts among objectives. 

If the quality constraints are not considered, equation (6.15) becomes 

 J = [
−φ
σ
]          6.16 

   min
x,δ

δ 

s.t.   𝐽(𝜑) −𝑊𝑖𝛿 ≤ 𝐹  

       𝜑 = 𝑈(𝑥) 

 Table 6.6 shows the results of the multi-objective optimisation without including the 

quality constraints. The effect of incorporating the confidence bounds in the multi-

objective optimization can be revealed in that the exergy efficiency of the HYSYS 

validated process is close to that predicted by the model.   

Table 6.6:  Multi objective optimisation results without product quality constraints 

Hysys 

validated 

Optimum 

1 (Eff) 

Optimum 

2 (cb) 

Goal 1 

(Eff) 

Goal 

2 (cb) 

Weight 

1 (Eff) 

Weight 

2 (cb) 

Relative 

error 

73.86 79.62 0.3883 0.8 0.01 0.01 1 0.07798 

71.90 78.12 0.1982 0.8 0.01 0.1 1 0.08650 

71.68 75.34 0.0566 0.8 0.01 1 1 0.05106 

61.62 65.56 0.0244 0.8 0.01 1 0.1 0.06394 

50.84 53.18 0.0127 0.8 0.01 1 0.01 0.0458 

 

Table 6.7 shows the base case and the optimum results of the decision variables with no 

consideration for the product qualities.  

The multi-objective optimization method as described here allows for trade off between 

minimizing the prediction error and the exergy efficiency of the column. The decision 

influences the weighting factor of choice. If the decision is to minimize the prediction 
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error, weighting factor of [1, 0.01] might be appropriate for the system if however the 

optimum efficiency is preferred, the weighting factor might be [0.01, 1].  

Table 6.7: Optimisation results (decision variables) 

 HN 
Kero

sene  
Diesel  AGO  Residue  PA1  PA2  PA3 Unit 

Base case 517 508 952 267 1296 943 1132 943 
Barrel 

/ hr 

Optimum 511 511 1000 267 1348 946 1127 940 
Barrel 

/ hr 

 

Table 6.8: Optimisation results (efficiency and profit) 

 Exergy (%) 
Irreversibility 

(kJ/hr) 

Energy cost 

($/yr) 
Profit ($/yr) 

Base case 42.10 1.913×108 7.655×106 2.360×109 

Optimum  71.68 6.085×107 4.095×106 2.398×109 

 

Taking the case of using an equal weighting for the two objective functions, in table 6.8, 

the optimization resulted in 29.5 % increment of the exergy efficiency. This translates to 

68 % decrease in irreversibility loss in the column and 46.5 % reduction in energy costs 

of the column with reference to their initial values. Every real process has an element of 

irreversibility and often the performance of engineering system is degraded by their 

presence. With the methodology presented from this study ways of considerably 

decreasing the irreversibility of the system as well as determining the efficiency of the 

process is made easy. This will be a good tool in the hand of process and design 

engineers for the operation of energy efficient column. It could equally find relevance in 

the control of the column for improve efficiency. 

The total profit is increased by $38×106/year. The increment is majorly due to the 

optimum operating conditions from the exergy based analysis of the column. The 

reduction in the cost of energy contributed to about 10% in the total profit. The results 

show that considerable economic benefit of the column can be achieved at no additional 

cost of equipments.  
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In Table 6.9, multi-objective optimization with the quality constraints results is shown. 

With the added constraints of product quality to the optimization problem, the 

complexities of the system increases. This explains why the relative errors are 

considerably higher for some of the cases considered. Considering the case of the 

weighting factor [1,1], the relative error of the predicted and validated exergy efficiency 

of the system is 0.156 as compared to 0.05 when the product quality constraint was not 

included in the optimization problem. 

Table 6.9: Multi-objective optimisation results with product quality constraints 

Hysys 

validated 

Optimum 

1 (Eff) 

Optimum 

2 (cb) 

Goal 1 

(Eff) 

Goal 

2 (cb) 

Weight 

1 (Eff) 

Weight 

2 (cb) 

Relative 

error 

75.24 74.67 0.9557 0.8 0.01 0.01 1 0.007575 

75.24 73.05 0.7947 0.8 0.1 0.1 1 0.029239 

75.24 65.31 0.3938 0.8 0.1 0.5 1 0.1319 

71.95 60.7 0.2930 0.8 0.1 1 1 0.15636 

52.37 54.11 0.2294 0.8 0.1 1 0.5 0.03322 

45.44 33.48 0.1465 0.8 0.1 1 0.1 0.2632 

6.3.4 Summary 

The BANN models were found to predict optimum operating conditions of the ADU. 

The proposed technique can significantly improve the second law efficiency of the 

system with an additional economic advantage. The method can aid in the operation and 

design of an energy efficient column. Product quality constraints introduce a measure of 

penalization on the optimization result to give as close as possible to what obtains in 

reality. Multi-objective optimization gives a degree of freedom in the design and 

optimization of the unit. 

6.4 Application to crude distillation unit 

Generally, the crude distillation unit (CDU) contains a pre-flash column, an atmospheric 

distillation unit (ADU) and a vacuum distillation unit (VDU). With the demand for a 

reduction in chemical process energy consumption due to high energy costs and 

regulations on strict greenhouse gas emission, CDU has always been the target for 

improved energy usage. Energy analysis and optimisation of CDU has been widely 

investigated, especially the atmospheric distillation unit (Arjmand et al., 2011) and the 

vacuum distillation unit. (Gu et al., 2014). Recently, the research focus has been on the 



 

152 
 

pre-flash unit and its effect on the energy efficiency of the CDU (Al-Mayyahi et al., 

2014). Past studies on the second law analysis of the crude distillation unit gave some 

considerable insight. It  has been observed that the crude distillation unit  has as low as 

20% reduction in exergy efficiency compared to the atmospheric distillation unit and 

vacuum distillation unit (Al-Muslim and Dincer, 2005). This informs the need for the 

search light on improving the efficiency of the unit to be focused on the CDU as a 

whole. 

6.4.1 Description of the system  

Crude at its raw state is a relatively low value material but when refined could yield 

products whose value is many times that of the original crude. Refining of crude is in 

two stages of distillation: the atmospheric distillation unit and the vacuum distillation 

unit. The crude distillation unit under consideration is diagrammatically represented in 

figure 6.17 (García-Herreros and Gómez, 2013, Kaes, 2000). A pre-flash unit is later 

incorporated into the system. Preheated crude at 343oC and 344kPa is introduced at its 

flash point to the ADU. Superheated steam is injected at the bottom to enhance 

vaporisation and separation of the crude. Light Naphtha, Heavy Naphtha, Kerosene, 

Diesel and AGO are drawn from the column. Three side stream products are taken from 

the side strippers. The ADU is equipped with three pump arounds that recover heat for 

the preheat trains. The bottom product (residue) is the residual liquid material which 

could not be vaporised under the existing operating conditions of temperature and 

pressure in the tower. It is further fed to another tower which operates at 

subatmospheric pressure; the vacuum tower. The side products of the VDU are Light 

vacuum gas oil (LVGO), Heavy vacuum gas oil (HVGO). The overhead product and the 

bottom product could serve as inlets to other processing units such as stabilisation and 

catalytic cracking unit respectively. 
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Figure 6.17: A diagrammatic representation of the crude distillation unit (with ADU and 

VDU) 

6.4.2 HYSYS Simulation 

Atmospheric distillation (ADU) 

The crude distillation system described in figure 6.17 was simulated in HYSYS. The 

simulation of the ADU is as described in Section 6.2.2. The crude is described by the 

TBP distillation curve given in table 6.10 and the light ends properties in table 6.11. The 

light ends basis in the assay is 16.8%.  The specifications of the products are added to 

the streams as given in table 6.12. The crude is fed to the main column at tray 3 and 

steam is fed at tray 1 with bottom up numbering. The main objective is to improve the 

overall efficiency of the crude distillation unit by seeking out the optimum operating 

conditions. The large number of variables involved in the operation of the crude 
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distillation unit allows a great variety of operating conditions which can lead to different 

amount and quality of products. Hence in the HYSYS simulation, the quality of the 

ADU product is maintained by ensuring the temperature difference between the 95% 

vol. and the 5% vol. of the ASTM D86 of two consecutive products is within the 

acceptable limit (Jones et al., 1999). The ASTM curve for the product of ADU is shown 

in figure 6. 18 

Table 6.10: TBP distillation curve  

Assay Percent Temperature(K) 

2.68 309 

7.2 366.5 

15 422 

24.5 477.6 

33.31 533.1 

44.70 588.7 

49.60 616.5 

59.14 672 

75.22 783 

84.46 866.5 

95.81 1023 

 

Table 6.11: Light ends assay 

Light ends Composition (mass%) 

Propane 0.7595 

i-Butane 0.5622 

n-Butane 0.1567 

i-Pentane 1.173 

n-Hexane 4.203 

n-Heptane 1.308 

n-Octane 5.475 

n-Nonane 2.939 

n-Pentane 0.2167 
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Table 6.12: ADU products specifications 

Product Specifications(K) 

Light Naphtha ASTM D86 95% =384 

Heavy Naphtha ASTM D86 95% =458 

Kerosene ASTM D86 95% =544 

Diesel ASTM D86 95% =608 

AGO ASTM D86 95% =730 

 

  

Figure 6.18: ASTM D86 of end products of the ADU 

Vacuum distillation unit 

After converging the simulation of the ADU, the residue is used as feed to the vacuum 

distillation unit. The VDU is simulated with 8 theoretical trays. The feed is introduced 

on the 2nd tray. There are three pump arounds between trays 7 and 8, 4 and 5, 1 and the 

bottom. The product specifications are LVGO D1160 95% (volume %) = 556K and 

HVGO D1160 95% (volume %) = 634K.  
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6.4.3 Exergy analysis of the CDU 

Exergy analysis of the ADU, VDU and the overall system was performed as described 

in Section 6.2.3. The chemical exergy at reference conditions for the known 

components are as given in Table 6.13 (Szargut et al., 1988). 

The exergy efficiency and irreversibility is calculated from the total exergy inlets and 

exergy outlets of the ADU as 

∑𝐸𝑥𝑜𝑢𝑡 = 𝐸𝑥𝐿 𝑁𝑎𝑝𝑡ℎ𝑎 + 𝐸𝑥𝐻 𝑁𝑎𝑝𝑡ℎ𝑎 + 𝐸𝑥𝑘𝑒𝑟𝑜𝑠𝑒𝑛𝑒 + 𝐸𝑥𝑑𝑖𝑒𝑠𝑒𝑙 + 𝐸𝑥𝐴𝐺𝑂 + 𝐸𝑥𝑟𝑒𝑠𝑖𝑑𝑢𝑒   

6.17 

∑𝐸𝑥𝑖𝑛 = 𝐸𝑥𝑐𝑟𝑢𝑑𝑒 + 𝐸𝑥𝑠𝑡𝑒𝑎𝑚 + 𝐸𝑥𝑓𝑢𝑟𝑛𝑎𝑐𝑒 + 𝐸𝑥𝑘𝑒𝑟𝑜 𝑠𝑡𝑒𝑎𝑚 + 𝐸𝑥𝑑𝑖𝑒𝑠𝑒𝑙 𝑠𝑡𝑒𝑎𝑚 +

𝐸𝑥𝐴𝐺𝑂 𝑠𝑡𝑒𝑎𝑚           6.18 

 The total exergy inlets and outlets for the VDU is given as 

∑𝐸𝑥𝑜𝑢𝑡 = 𝐸𝑥𝑣𝑎𝑐𝑢𝑢𝑚 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 + 𝐸𝑥𝐿𝑉𝐺𝑂 + 𝐸𝑥𝐻𝐺𝑉𝑂 + 𝐸𝑥𝑣𝑎𝑐𝑢𝑢𝑚 𝑟𝑒𝑠𝑖𝑑𝑢𝑒    6.19 

∑𝐸𝑥𝑖𝑛 = 𝐸𝑥𝑟𝑒𝑠𝑖𝑑𝑢𝑒 + 𝐸𝑥𝑣𝑎𝑐𝑢𝑢𝑚 𝑠𝑡𝑒𝑎𝑚       6.20 

The overall exergy efficiency and irreversibility of the CDU is calculated from 

∑𝐸𝑥𝑖𝑛 = 𝐸𝑥𝑐𝑟𝑢𝑑𝑒 + 𝐸𝑥𝑠𝑡𝑒𝑎𝑚 + 𝐸𝑥𝑓𝑢𝑟𝑛𝑎𝑐𝑒 + 𝐸𝑥𝑘𝑒𝑟𝑜 𝑠𝑡𝑒𝑎𝑚 + 𝐸𝑥𝑑𝑖𝑒𝑠𝑒𝑙 𝑠𝑡𝑒𝑎𝑚 +

  𝐸𝑥𝐴𝐺𝑂 𝑠𝑡𝑒𝑎𝑚 + 𝐸𝑥𝑣𝑎𝑐𝑢𝑢𝑚 𝑠𝑡𝑒𝑎𝑚       6.21 

  ∑ 𝐸𝑥𝑜𝑢𝑡 = 𝐸𝑥𝐿 𝑁𝑎𝑝𝑡ℎ𝑎 + 𝐸𝑥𝐻 𝑁𝑎𝑝𝑡ℎ𝑎 + 𝐸𝑥𝑘𝑒𝑟𝑜𝑠𝑒𝑛𝑒 + 𝐸𝑥𝑑𝑖𝑒𝑠𝑒𝑙 + 𝐸𝑥𝐴𝐺𝑂 +

𝐸𝑥𝑣𝑎𝑐𝑢𝑢𝑚 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 + 𝐸𝑥𝐿𝑉𝐺𝑂 + 𝐸𝑥𝐻𝐺𝑉𝑂 + 𝐸𝑥𝑣𝑎𝑐𝑢𝑢𝑚 𝑟𝑒𝑠𝑖𝑑𝑢𝑒   6.22 

Table 6.13: Reference chemical exergy of known components 

Light ends Enthalpy (kJ/kmol) Standard chemical exergy(kJ/kmol) 

Propane 2045.4 2154 

*i-Butane 2658.4 2805.8 

n-Butane 2658.4 2805.8 

*i-Pentane 3274.3 3463.3 

n-Hexane 3889.3 4118.5 

n-Heptane 4464.7 4761.7 

n-Octane 5074.4 5413.1 

n-Nonane 5684.2 6064.9 
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Light ends Enthalpy (kJ/kmol) Standard chemical exergy(kJ/kmol) 

n-Pentane 3274.3 3463.3 

 

In table 6.14, the simulated exergy of the streams in and out of the CDU is shown. The 

calculated exergy efficiency and irreversibility of the ADU, VDU and CDU is also 

given. The overall efficiency and irreversibility are calculated from equations 6.6 and 

6.7.  The results show the overall efficiency to be 23.9% and the irreversibility to be 

2.43×108kJ/hr. This clearly shows the need to improve the overall efficiency of the 

CDU.  

Table 6.14 Exergy data of the CDU 

Stream h(kJ/ 

kmol) 

ho(kJ/ 

kmol) 

s(kJ/kmolK) so(kJ/ 

kmol/K) 

m(kmol/hr) Ex(kJ/hr) 

Inlet streams 

Crude 

Steam -230833 -286232 186.45 53.66 125.89 1992669 

Kero 

Steam -230833 -286232 186.45 53.66 88.12 1394869 

Diesel 

Steam -230833 -286232 186.45 53.66 62.95 996334.7 

AGO 

steam -230833 -286232 186.45 53.66 18.88 298900.4 

VDU 

steam -230832 -286232 186.45 53.66 41.96 664242.9 

Preheat 

crude -353010 -463267 583.04 309.37 2227.05 63925386 

Furnace      2.5×108 

TOTAL 

IN      3.2×108 

Outlet streams 

H 

Naphtha -219225 -261920 218.22 103.10 504.00 4228307 

L 

Naphtha -162826 -194813 187.17 96.83 594.99 3013674 
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Stream h(kJ/ 

kmol) 

ho(kJ/ 

kmol) 

s(kJ/kmolK) so(kJ/ 

kmol/K) 

m(kmol/hr) Ex(kJ/hr) 

Kerosene -286630 -356746 338.36 158.68 423.00 7009952 

AGO -386922 -599476 871.94 396.66 184.00 13049405 

Diesel -346030 -476299 578.42 267.78 177.00 6673343 

Vacuum 

ovhd -347679 -477346 604.73 264.38 150.00 4236643 

LVGO -618226 -790376 1014.91 581.94 120.00 5175037 

HVGO -683722 -954754 1392.17 749.98 70.003 5576618 

Vacuum 

Residue -931454 -1402873 2296.19 1227.59 181.22 27723741 

TOTAL 

OUT      76686720 

 

6.4.4 Selection of decision variables 

Several operating variables such as flow, temperature and pressure of the streams in 

ADU and VDU were varied within their upper and lower bounds. The variables that 

have independent influence on the objective function were then used as the decisions 

variables. These were used to generate the data for the training of the neural network.  

The variables are the flow rates of H Naphtha, AGO, Diesel, PA1, PA2, PA3, LVGO, 

HVGO and vacuum residue.  

6.5 Pre-flash units 

Two main approaches of the effect of pre-flash implementation that has been considered 

in the literatures are the impact on the heat exchanger network and on the column (Ji 

and Bagajewicz, 2002). In this section, the addition of pre-flash unit to the column is 

being considered on the assumption that it will give a further reduction on the energy 

consumption of the column. Crude oil is made up of light and heavy components which 

are continuously being vaporised. The installation of pre-flash unit ensures separation of 

the vaporised portion and avoids unnecessary heating. This should offer a considerable 

potential in reducing the energy consumption in the furnace. In this work, the focus is to 

study the influence of the pre-flash device (column or drum) on the overall exergy 

efficiency of the column. In doing this, the temperature profile of the column, the 

furnace duty and the product quality are kept identical to the reference (Benali et al., 
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2012). This is to prevent as much deviation as possible of the modified cases from the 

reference. It is also to allow a fair base level for the comparison of the exergy efficiency 

of the modified cases and the reference. The ADU products flow rates are however 

adjusted (see table 6.17 and figure 6.19 ).   

 

Figure 6.19: Temperature profile of the base case and modified cases  

6.5.1  CDU with pre-flash column 

The pre-flash column considered here is an 11 stage column with a pre-flash furnace 

that operates at 200oF and 44.7 psia. The crude is heated to 450oF and introduced to the 

column at the base. Stripping steam is also added at the base. A study on the optimised 

design of such a column has been carried out (Luyben; 2011). A diagrammatic 

representation of the pre-flash column is as shown in figure 6.20. The main design 

optimization variables in the pre-flash column are reflux drum pressure, reflux drum 

temperature, pre-flash furnace inlet temperature and the number of trays. The number of 

trays is not considered here because reducing the tray number further might not be 

practically possible. The reflux rate is fixed and hence the reflux temperature is not 

considered as a design variable. The furnace outlet temperature and the reflux drum 

pressure were considered.  
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Figure 6.20: Diagrammatic representation of the CDU with pre-flash column 

The total exergy streams in and out of the CDU with a pre-flash column is given as  

∑𝐸𝑥𝑖𝑛 = 𝐸𝑥𝑐𝑟𝑢𝑑𝑒 + 𝐸𝑥𝑠𝑡𝑒𝑎𝑚 + 𝐸𝑥𝑓𝑢𝑟𝑛𝑎𝑐𝑒 + 𝐸𝑥𝑘𝑒𝑟𝑜 𝑠𝑡𝑒𝑎𝑚 + 𝐸𝑥𝑑𝑖𝑒𝑠𝑒𝑙 𝑠𝑡𝑒𝑎𝑚 +

𝐸𝑥𝐴𝐺𝑂 𝑠𝑡𝑒𝑎𝑚 + 𝐸𝑥𝑣𝑎𝑐𝑢𝑢𝑚 𝑠𝑡𝑒𝑎𝑚 + 𝐸𝑥𝑝𝑟𝑒𝑓𝑙𝑎𝑠ℎ 𝑠𝑡𝑒𝑎𝑚     6.23 

∑𝐸𝑥𝑜𝑢𝑡 = 𝐸𝑥𝐿 𝑁𝑎𝑝𝑡ℎ𝑎 + 𝐸𝑥𝐻 𝑁𝑎𝑝𝑡ℎ𝑎 + 𝐸𝑥𝑘𝑒𝑟𝑜𝑠𝑒𝑛𝑒 + 𝐸𝑥𝑑𝑖𝑒𝑠𝑒𝑙 + 𝐸𝑥𝐴𝐺𝑂 +

𝐸𝑥𝑣𝑎𝑐𝑢𝑢𝑚 𝑜𝑣ℎ𝑑 + 𝐸𝑥𝐿𝑉𝐺𝑂 + 𝐸𝑥𝐻𝐺𝑉𝑂 + 𝐸𝑥𝑣𝑎𝑐𝑢𝑢𝑚 𝑟𝑒𝑠𝑖𝑑𝑢𝑒  + 𝐸𝑥𝑝𝑟𝑒𝑓𝑙𝑎𝑠ℎ 𝑣𝑎𝑝𝑜𝑢𝑟 +

𝐸𝑥𝑝𝑟𝑒𝑓𝑙𝑎𝑠ℎ 𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑒         6.24 

The exergy of the streams in and out of the CDU with pre-flash column is given in 

Table 6.15. The efficiency and irreversibility of the system is calculated from equations 

6.6 and 6.7. The system has an overall efficiency of 16.6% and exergy loss of 

3.9165×108kJ/hr. 
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Table 6.15: Thermodynamic properties of streams in and out of the ADU with pre-flash 

column 

Stream 

 

h(kJ/ 

kmol) 

h0(kJ/ 

kmol) 

s(kJ/ 

kmolK) 

s0(kJ/ 

kmolK) 

m(kmol/ 

hr) 

Ex(kJ/hr) 

Inlet streams 

Crude inlet -365195 -604915 949.00 425.39 1412.01 1.18E+08 

Crude Steam -230833 -286232 186.45 53.66 125.89 1992669 

Kero Steam -230833 -286232 186.45 53.66 88.12 1394869 

Diesel Steam -230833 -286232 186.45 53.66 62.94 996334.7 

AGO steam -230833 -286232 186.45 53.66 18.88 298900.4 

Preflash steam -235870 -286232 177.82 53.66 277.54 3708808 

VDU steam -230832 -286232 186.45 53.66 41.96 664242.9 

Furnace 1      1.55×108 

Furnace 2      1.84×108 

TOTAL IN      4.7×108 

Outlet streams 

Naphtha -222232 -265885 225.68 108.09 156.43 1347188 

Off gas -175083 -216382 191.64 74.96 66.47 434180.4 

Kerosene -287217 -360428 347.10 160.47 371.32 6533229 

AGO -372176 -603173 905.78 399.75 191.99 15397792 

Diesel -338154 -474843 588.04 265.83 187.14 7611091 

Vacuum ovhd -357481 -495941 640.51 282.35 150.00 4759110 

LVGO -628738 -815398 1070.24 606.78 120.00 5825977 

HVGO -687561 -976865 1451.37 774.19 70.01 6126277 

Vacuum 

Residue -922889 

-

1437124 2407.57 1262.51 166.67 28835946 

Preflash 

vapour -139657 -151707 178.22 147.97 100.95 306477 

Preflash  

distillate -216657 -227484 132.09 98.54 734.52 609178.5 

TOTAL OUT      77857486 

 

6.5.2 CDU with pre-flash drum 

The pre-flash drum is located just before the furnace (see figure 6.21) and the 

temperature is at the temperature of the heat exchanger network. The feed to the pre-
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flash drum is at the tray where the end points of the flashed vapour and internal liquid 

are equal. The total exergy of the inlet streams to the pre-flash drum is given in equation 

6.25. The inlet streams for this system is similar to that of the CDU without pre-flash. 

However the outlet streams differs and that may account for the increase in efficiency of 

the CDU with pre-flash drum when compared. The presence of pre-flash drum allows 

the vaporisation of the volatile components from the drum and thus reduces the quantity 

of crude to be heated up for the ADU separation. This will be a viable option for crude 

stream with a sizable quantity of low boiling components.    

∑𝐸𝑥𝑖𝑛 = 𝐸𝑥𝑐𝑟𝑢𝑑𝑒 + 𝐸𝑥𝑠𝑡𝑒𝑎𝑚 + 𝐸𝑥𝑓𝑢𝑟𝑛𝑎𝑐𝑒 + 𝐸𝑥𝑘𝑒𝑟𝑜 𝑠𝑡𝑒𝑎𝑚 + 𝐸𝑥𝑑𝑖𝑒𝑠𝑒𝑙 𝑠𝑡𝑒𝑎𝑚 +

  𝐸𝑥𝐴𝐺𝑂 𝑠𝑡𝑒𝑎𝑚 + 𝐸𝑥𝑣𝑎𝑐𝑢𝑢𝑚 𝑠𝑡𝑒𝑎𝑚       6.25 

The total outlet streams is given as 

∑𝐸𝑥𝑜𝑢𝑡 = 𝐸𝑥𝐿 𝑁𝑎𝑝𝑡ℎ𝑎 + 𝐸𝑥𝐻 𝑁𝑎𝑝𝑡ℎ𝑎 + 𝐸𝑥𝑘𝑒𝑟𝑜𝑠𝑒𝑛𝑒 + 𝐸𝑥𝑑𝑖𝑒𝑠𝑒𝑙 + 𝐸𝑥𝐴𝐺𝑂 + 𝐸𝑥𝐿𝑉𝐺𝑂 +

𝐸𝑥𝑣𝑎𝑐𝑢𝑢𝑚 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 + 𝐸𝑥𝑣𝑎𝑐𝑢𝑢𝑚 𝑟𝑒𝑠𝑖𝑑𝑢𝑒  + 𝐸𝑥𝑝𝑟𝑒𝑓𝑙𝑎𝑠ℎ 𝑣𝑎𝑝𝑜𝑢𝑟    6.26

    

The exergy efficiency and irreversibility of the system is calculated from equations 6.6 

and 6.7. The thermodynamic properties of the inlet and outlet streams are given in table 

6.16. The efficiency and irreversibility of the systems are 26.7% and 2.369×108 

Table 6.16: Thermodynamic properties of streams in and out of the ADU with pre-flash 

drum 

Stream h(kJ/km

ol) 

h0(kJ/km

ol) 

s(kJ/km

olK) 

s0(kJ/km

olK) 

m(kmol/ 

hr) 

Ex(kJ/km

ol) 

Inlet streams 

Preheat 

crude -353010 -463267 583.04 309.37 2227.05 63925386 

Crude Steam -230833 -286232 186.45 53.66 125.89 1992669 

Kero Steam -230833 -286232 186.45 53.66 88.12 1394869 

Diesel Steam -230833 -286232 186.45 53.66 62.94 996334.7 

AGO steam -230833 -286232 186.45 53.66 18.88 298900.4 

VDU steam -230832 -286232 186.45 53.66 41.96 664242.9 

Furnace      2.54×108 

TOTAL IN      3.23×108 

Outlet Streams 

Naphtha -221324 -264544 222.48 105.96 255.74 2173286 
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Off gas -173617 -214030 191.03 76.63 138.64 876680.2 

Kerosene -286090 -355784 337.24 158.22 370.82 6062014 

AGO -376487 -598858 886.67 395.47 170.17 12931957 

Diesel -341339 -474296 581.07 265.67 178.21 6944848 

Vacuum 

ovhd -350618 -481068 609.25 267.52 150.00 4292175 

LVGO -610355 -778286 991.87 569.63 119.99 5052397 

HVGO -673674 -938164 1357.06 730.64 69.99 5446686 

Vacuum 

Residue -916394 -1389778 2282.20 1214.13 188.95 29306389 

Preflash 

vapour -146318 -220483 290.60 108.12 675.98 13374267 

TOTAL 

OUT      8.65×107 
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Figure 6.21: Diagrammatic representation of the CDU with preflash drum 

In Table 6.17, the exergy efficiency of the ADU, VDU and overall unit before and after 

the addition of the pre-flash unit is shown. It can be seen that pre-flash drum improves 

the exergy efficiency of the ADU. This is in line with what is obtained in the literature 

(Errico et al., 2009) and significantly improves the overall efficiency of the CDU. Pre-

flash column also improves the efficiency of the ADU but has a significant reduction on 

the overall exergy. 

Table 6.17: Exergy analysis and flow rates of ADU for the base case and improved 

cases 

 Base case 
With preflash 

drum 

With preflash 

column 
Unit 

Light Naphtha 595 139 156 kgmol/hr 
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 Base case 
With preflash 

drum 

With preflash 

column 
Unit 

Heavy Naphtha  504 256 66.5 kgmol/hr 

Kerosene  423 371 371 kgmol/hr 

AGO  184 170 192 kgmol/hr 

Diesel  177  178 187  kgmol/hr 

Residue  479 487 465 kgmol/hr 

ADU Efficiency 46.98 47.62 47.38 % 

VDU Efficiency  62.42 57.42 57.59 % 

Overall Efficiency  23.99 26.73 16.58 % 

Furnace duty  2.5×108 2.54×108 3.39×108 kJ/hr 

 

6.6 Modelling of the crude distillation unit  

The BANN model developed here is an aggregation of 30 individual neural networks. 

Each network has a single hidden layer with 30 hidden neurons and is used to model 

exergy efficiency. The data for model building were divided into training data (50%), 

testing data (30%), and unseen validation data (20%). Levenberg-Marquardt training 

algorithm was used to train the networks. The number of hidden neurons was 

determined by building a number of neural networks with different numbers of hidden 

neurons and testing them on the testing data. The network giving the lowest sum of 

squared errors (SSE) on the testing data is considered as having the appropriate number 

of hidden neurons. 

Figure 6.22 shows the BANN model performance in predicting the overall exergy 

efficiency of the crude distillation unit on the training, testing, and unseen validation 

data. It can be seen that the model accurately depicts the crude distillation unit with the 

error of prediction as shown in figure 6.23 between -0.01 and 0.01.  In Figure 6.24, the 

predicted and actual value of the exergy efficiency for the training, testing and 

validation data is shown. It can be seen that the prediction and actual values are well 

correlated. This shows the accuracy of the model. BANN model allows assigning 

measure of reliability to sample estimates in terms of confidence intervals and 

prediction errors. Confidence intervals are used to bound the mean and standard 

deviation of the sample. It indicates 95% confidence that the mean for the entire 

population falls within the given range. 
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Figure 6.22: BANN model of the CDU 

   

Figure 6.23: Error of prediction of the CDU model 
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Figure 6.24: Predicted and actual efficiency of the CDU model 

Bootstrap resampling ensures that different individual networks are obtained by using 

different training data for the network. This enhances the model accuracy because that 

combination of several imperfect models can improve model reliability and accuracy. If 

only a single network is used, the model accuracy will be significantly impaired. Figure 

6.25 shows the mean square error of the individual networks on training, testing and 

validation data sets and figure 6.26 shows those for the aggregated neural network. The 

performances of the individual networks are inconsistent in that a network that gives 

small errors on the training data set may not give small error on the validation set and 

vice versa. The MSE for the aggregated network on the training, testing and validation 

data are given in table 6.18. In comparison with the minimum values for single network, 

the aggregated   network shows a significant improvement on the model accuracy.   
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Figure 6.25: Model error of the single neural networks 

 

Figure 6.26: Model error of the aggregated neural networks of the CDU  
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Table 6.18: Model error of single and aggregated neural network 

 MSE Testing MSE Training MSE Validation 

Aggregated network 1.110×10-6 1.301×10-6 2.264××10-6 

Individual network 1.652×10-6 1.528×10-6 2.78×10-6 

 

6.6.1 BANN model of CDU with pre-flash column 

Figure 6.27 shows the performance of BANN model of the CDU with the addition of 

the pre-flash column. Figures 6.28 and 6.29 show the model error of the single networks 

and the aggregated  network. 

 

Figure 6.27: BANN model of CDU with pre-flash column 
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Figure 6.28: Model error of the single network for CDU with pre-flash column 

 

Figure 6.29: Model error of the aggregated network for CDU with pre-flash column 
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6.6.2 BANN model of CDU with pre-flash drum 

The overall exergy efficiency of the CDU with pre-flash drum was also modelled using 

BANN.  Figure 6.30 shows the BANN model with the training, testing and validation 

data sets for the CDU with pre-flash drum. The model can be seen to actually represent 

the system. In figure 6.31, the mean square error (MSE) of the aggregated neural 

network for the CDU with pre-flash drum is shown. As compared to the single network 

in figure 6.32, the combinations of 30 models culminate in the production of a single 

perfect and more robust model.  

  

Figure 6.30: BANN model of CDU with pre-flash drum 

 

Figure 6.31: Model error of the single network for CDU with pre-flash drum 
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Figure 6.32: Model error of the aggregated network for CDU with pre-flash drum 

6.7 Exergetic Optimisation of the CDU 

The optimization problem can be stated as 

J
X

min = −(φ− 𝛽𝜎)
  

s.t.            6.27 

 φ = f(𝑥1,𝑥2,, 𝑥3,𝑥4,, 𝑥5,𝑥6,, 𝑥7,𝑥8,, 𝑥9) 

ublb prod  x  

where J is the objective function, 𝑥  =[𝑥1,𝑥2,, 𝑥3,𝑥4,, 𝑥5,𝑥6,, 𝑥7,𝑥8,, 𝑥9 ] is a vector of 

decision variables, i.e. neural network model inputs, φ is the exergy efficiency,  σ is 

standard prediction error, and  β is the weighting factor for σ. 

In addition to the process operation objective, minimising the model prediction 

confidence bounds is incorporated as an addition optimisation objective. The 

optimisation problem was solved using the SQP method implemented by the function 

“fmincon” in MATLAB Optimisation Toolbox. 
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The objective is to maximise the overall exergy efficiency of the CDU. The results of 

the optimisation for the base case and the pre-flash units’ cases are shown in Table 6.19. 

The values of the decision variables for the base case and the optimum cases are also 

shown. The optimisation results clearly show improvement in the overall exergy 

efficiency of all the cases considered. This shows that the method being proposed here 

can effectively give an improvement in the exergy efficiency of the CDU with or 

without the addition of the pre-flash unit.  

Table 6.19: Optimisation results of the base case and modified cases 

Decision 

variables 

Base case 

optimum 

pre-flash 

drum 

optimum 

pre-flash 

column 

optimum 

Base 

case 

lower 

bound 

Base 

case 

upper 

bound 

unit 

AGO  150 150 150 150 203 kmol/hr 

Diesel  150 150 150 140 212 kmol/hr 

H Naphtha  478 220 150 470 529 kmol/hr 

PA1  1587.6 1587.6 1587.6 1348 1826 kmol/hr 

PA2  997 997 997 848 1147 kmol/hr 

PA3  450 450 450 383 518 kmol/hr 

LGVO  102 102 102 100 138 kmol/hr 

HVGO  60 60 60 60 80 kmol/hr 

Vacuum 

overhead  
142 142 142 135 158 kmol/hr 

Overall Eff  57.22 60.30 46.89   % 

HYSYS 

validated  
65.18 67.33 43.57   % 

Relative 

error 
0.122 0.104 0.076    

 

The results are further validated with HYSYS simulation. The relative error of the 

validated efficiency was calculated as the absolute difference between the neural 

network and HYSYS model predictions divided by the HYSYS model prediction. The 

large relative errors clearly signify the need to minimise the standard prediction error 

(model prediction confidence bound) in the optimisation. 
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The model prediction confidence bound is then incorporated in the optimisation 

procedure. The result for the base case is presented in table 6.20. The effect of 

penalization of the wide model prediction confidence bounds can be seen. For all the 

considered cases, the model prediction confidence bounds become narrower and the 

predicted value of the model move towards the HYSYS validated value. The weighting 

factor of 0.01might be the most appropriate here as it gives the lowest relative error. 

The result presented here shows another good advantage of using BANN for the 

modelling and subsequent optimisation of the CDU. This also indicates that the 

proposed method is reliable in the sense that the performance on the actual model is 

close to that predicted by the neural network model. 

Table 6.20: Optimisation results with confidence bounds 

β 0.01 0.05 0.5 1 unit 

AGO  150 150 161.8 162.2 kmol/hr 

Diesel  150 150 150.6 150 kmol/hr 

Naphtha  478 478 478 478 kmol/hr 

PA1  1587.6 1587.9 1587.9 1585.5 kmol/hr 

PA2  997 997.7 997.7 998.5 kmol/hr 

PA3  450 450 450 449 kmol/hr 

LGVO  120 120 120 120 kmol/hr 

HVGO  60 60 60 80 kmol/hr 

Vacuum 

overhead  
142 142 142 142 kmol/hr 

Overall Eff 

(%) 
57.09 56.57 50.71 46.42 % 

HYSYS 

validated (%) 
60.83 60.83 57.21 53.49 % 

Relative error 0.061 0.07 0.1136 0.1321  

 

6.7.1 Multi-objective optimisation 

 As discussed in Section 6.3.3, an additional objective of minimising the standard error 

of individual network predictions was introduced and formulated using the goal 

attainment multi-objective optimization procedure. The objective functions are 

optimised simultaneously. 
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Equation 6.27 becomes 

𝐽 =  [
−𝜑
𝜎
]  

   min
x,δ

δ          6.28 

s.t.   𝐽(φ) −𝑊𝑖𝛿 ≤ 𝐹  

       φ = 𝑈(𝑥) 

where J is the objective function, φ is the exergy efficiency, U is the BANN model of 

the ADU, 𝑥 = [𝑥1,𝑥2,…𝑥9] is a vector of decision variables for the ADU and VDU. 

These are flow rates AGO, diesel, Heavy Naphtha, PA1, PA2, PA3, LGVO, HGVO and 

vacuum overhead. σ is standard prediction error, F is the desired goal, and W is a vector 

of weighting parameters.  

The focus is to improve the optimum results from the optimisation and introduce 

another degree of freedom that may enhance operating and design choices. Often in 

practical process performance are measured with respect to multi-objectives (Bamufleh 

et al., 2013). It might then be possible to quantify the tradeoffs in satisfying the 

objectives or find a single solution that satisfies the objectives.  

The results of the optimisation for the case of the CDU without pre-flash units are given 

in tables 6.21 and 6.22. Then objectives functions can be said to be conflicting. This is 

because improving the exergy efficiency degrades the other objective values and vice 

versa. Minimising the standard error of prediction is at the cost of trading off the exergy 

efficiency of the system. The efficiency is at the lowest when the standard error is 0.01. 

The exergy loss at this value is the highest too as given in table 6.22. Depending on the 

design and operation objectives, the technique as described here can aid in making 

choices amongst several alternatives. The confidence in the design of processes is that 

the process as designed can be replicated in practical. Minimising the confidence 

bounds error while keeping an eye on the goal of efficiency as presented here could be 

of great value. In addition, the exergy efficiency of the CDU is the focus here. While 

optimising it, invariably the ADU and VDU efficiencies are optimised as well. The 

HYSYS validated results of the ADU efficiency are presented in table 6.22. Optimising 

the CDU as a whole is a much effective way of optimising the crude distillation system. 
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Table 6.21: Multi-objective optimisation results without pre-flash units 

Hysys 

validated 

Optimum 

1 (Eff) 

Optimum 

2 (cb) 

Goal 1 

(Eff) 

Goal 2 

(cb) 

Weight 

1 (Eff) 

Weight 

2 (cb) 

Relative 

error 

48.99 48.24 0.0218 0.6 0.01 1 0.1 0.015 

44.88 44.69 0.0115 0.6 0.01 1 0.01 0.005 

57.19 54.36 0.0664 0.6 0.01 1 1 0.049 

64.21 58.71 0.1391 0.6 0.01 0.1 1 0.085 

66.18 59.81 0.1850 0.6 0.01 0.01 1 0.096 

 

Table 6.22: Multi-objective optimisation results of decision variables without pre-flash 

units 

β 1,0.1 1,0.01 1,1 0.1,1 0.1,1  unit 

AGO  176.4 175 150 150 150  kmol/hr 

Diesel  150 150 150 150 150  kmol/hr 

H Naphtha  478 478 478 478 478  kmol/hr 

PA1  1431.2 1698.7 1507 1609.8 1460.5  kmol/hr 

PA2  1066.1 1037.1 1147 1147 1065.6  kmol/hr 

PA3  383 383 383 383 383  kmol/hr 

LGVO  110.9 138 119.8 102 102  kmol/hr 

HVGO  80 80 80 60 60  kmol/hr 

Vacuum 

overhead  
150.7 142 142 142 142  kmol/hr 

Overall 

Eff  
48.24 44.69 54.36 58.71 59.81  % 

HYSYS 

validated  
48.99 44.88 57.19 64.21 66.18  % 

ADU 

efficiency 
71.11 69.71 75.91 74.99 77.64  % 

Exergy 

loss 

1.561×108 1.726×108 1.335×108 1.125×108 1.034×108 
 kJ/hr 
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6.8 Conclusions  

This study shows that BANN models result in greater model accuracy and more robust 

models. They have an additional advantage of providing model prediction confidence 

bounds indicating the reliability of model predictions. Incorporating model prediction 

confidence bounds in the optimisation objective function can enhance the reliability of 

optimisation results. Thermodynamic analysis offers a much better way of process 

system analysis. Method of incorporating it in the analysis of process system is a 

valuable tool for design and operation of process systems. The complexity of the 

process greatly influences the prediction accuracy of the process. This is reflected in the 

prediction error of the CDU in comparisons with the case of ADU discussed in the 

previous section. Effect of the pre-flash unit on the overall exergy efficiency of the 

CDU shows a preference of the pre-flash drum to the pre-flash column. Though both 

increases the exergy efficiency of the ADU, having an overall view of their effect gives 

a much more informed decision. Rather than opting for localised improvement of the 

ADU as is common in most research, improving the overall efficiency of the CDU is a 

more realistic way of reducing the energy consumption of the refinery as a whole. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

Distillation processes have been vital for chemical and petrochemical industries. They 

have always been a prime target for energy efficiency improvement. In previous 

research, thermodynamic analysis of distillation processes has been presented mostly as 

an analytical tool for quantifying the energy efficiency of processes in terms of useful 

work. It has often been used for locating points of inefficiency and quantifying 

recoverable energy of the process. In this research, thermodynamic analysis has been 

presented not only as an analytical tool but as well as a design tool for improving the 

efficiency of a distillation process. There is a great need for concerted efforts to be 

targeted by means of using the available analytical and simulation tools for energy 

consumption reduction. In the first part of this thesis, an integrated approach of process 

design and control with the aim of enhancing energy efficiency was presented with 

particular application to distillation columns. And in the second part, optimisation 

techniques embedding thermodynamic analysis for energy efficient operation of 

distillation columns was presented. 

With the wake of energy crises and environmental implications of unutilised energy, 

control loop configuration should not focus on control loop stability and quality of the 

controller variable alone but also need to include energy efficiency. Control structure 

selection for distillation column should be supplemented with relative exergy array 

(REA) for energy efficiency consideration in addition to the traditional relative gain 

array (RGA) for operability analysis. REA was developed from analysing the exergy 

efficiency of the control configuration. It gives an indication of the control loop 

interaction on the exergy efficiency of the control loop. REA gives an additional 

consideration for control structure selection in terms of exergy efficiency and hence can 

help in deciding the final control structure selection. The tools when combined can aid 

in the selection of optimum control structure for a distillation column and could 

possibly find application in determining optimum operating conditions of the column. 

REA and RGA were performed based on steady state matrix. The steady state selection 

of the control structure based on REA and RGA should be confirmed with dynamic 

simulation. This is to demonstrate the effectiveness of the selection and in case of 

several options, to assist in the choice of a probable one. Also since real processes are 

mostly in the dynamic domain, there is a strong need to validate the steady state 
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selection in the dynamic state. The steady state results obtained from the application to 

binary distillation columns in this study were further confirmed with dynamic 

simulation. It should be stressed that the steady state REA and RGA choices should be 

validated for informed decision. 

In an attempt to model the exergy efficiency of the distillation column a number of data 

driven models were explored. Artificial neural network (ANN) was found to accurately 

model the exergy efficiency of a distillation column irrespective of the complexity of 

the column. To improve the generalisation capability of the model, Bootstrap 

aggregated neural network (BANN) were introduced. BANN is a combination of 

several neural networks modelling different faces of the data input space. This makes 

BANN more robust than a single neural network. BANN enhances model prediction 

accuracy and also provides model prediction confidence bounds. Model prediction 

confidence bounds give a measure of the reliability of the model. It gives a sense of 

confidence that the model can replicate the actual plant data. BANN is advised for 

better prediction accuracy of the exergy efficiency and product composition modelling 

in distillation columns especially for complex columns such as crude distillation unit. 

Often in the exergy analysis of chemical processes, every change in the design and 

operating conditions necessitate a re-calculation of the exergy efficiency to determine 

the impacts of such changes on the system. Developing a model for the exergy 

efficiency as given in this thesis might minimise such rigours. This might be quite 

handy in the preliminary design of processes. It could also be of great use in deciding on 

the combination of operating conditions to improve the exergy efficiency of the process. 

The exergy efficiency model as developed was further employed to improve the exergy 

efficiency of the column. With maximising the exergy efficiency of the column as the 

optimisation objective, optimum operating conditions of the columns were found. 

Optimisation technique for distillation process based on BANN model is thus presented 

in this work. Model prediction confidence bounds could be incorporated in the objective 

function or formulated as a multi-objective optimisation problem. In either case, the 

weighting factor of choice greatly influences the optimisation results and should be 

carefully considered. Inclusion of model prediction confidence bounds introduces a 

measure of penalization of the optimisation results and improves the reliability of the 

results. The optimisation technique as applied to a number of distillation columns in this 

research shows a marked improvement in the exergy efficiency of the column as 

compared to their initial values. The efficiency improvement has an added advantage of 
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improved economic cost without having to incur an additional capital cost. The 

performance on the actual process (represented by HYSYS model) is close to that 

predicted by BANN model. The technique as presented will be of great advantage at 

addressing energy and economy issues of distillation processes. 

A reliable modelling and optimisation strategy based on BANN for improved 

generalisation of the predicted model is also presented. The method could predict 

optimum operating conditions of the column. Simulation based optimisation as 

presented in this thesis treats simulation as black box model. Hence, it does not require 

mathematical details of the model making it easy to implement. It also does not require 

simplification of the process model making it a high fidelity model and it can be readily 

adapted for parallel computing with reduced computational time. These advantages 

suggest the possibility of the versatility of the technique.  

Every distillation process is often tailored to a particular product specification 

depending on demands and objectives of the process. Products quality constraints were 

introduced in the optimisation objectives.  Products quality constraints introduce a 

measure of penalisation on the optimisation result to give as close as possible to what is 

obtained in reality. Where there are product specification constraints, the technique still 

holds true. The exergy efficiency may however be reduced as compared to what it will 

ordinarily be without the constraints. This is mainly due to the restricted optimum 

search area as a result of the limitations imposed by having to satisfy the constraints.  

Also, the complexity of the process greatly influences the prediction accuracy of the 

process. For instance, the lowest prediction errors between the models and HYSYS 

validated cases are 0.0006, 0.007 and 0.061 for the multi-component system, the 

atmospheric distillation unit (ADU) and the crude distillation unit (CDU) respectively. 

This suggests the need for caution in using the simulation based optimisation. All the 

variables that greatly influence the objective function should be well factored in the 

model. It might not be well suited for problems with many variables such as heat 

exchanger network integration. 

The effect of the pre-flash units on the overall exergy efficiency of the CDU shows a 

preference of the pre-flash drum to the pre-flash column. Though both increases the 

exergy efficiency of the ADU, having an overall view of their effect gives a much more 

informed decision. Rather than opting for localised improvement of the ADU as much 
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common in most researches, improving the overall efficiency of the CDU is a more 

realistic way of reducing the energy consumption of the refinery as a whole. 

7.2 Recommendations 

The quest for reducing the energy consumption of distillation process has led to the 

evolution of columns such as heat integrated columns, petyluk column and thermally 

coupled dividing wall; all targeted at reducing the energy consumption of distillation 

processes. The application of the techniques developed in this work has been limited to 

the conventional distillation units. It would be interesting to study what further 

improvement this techniques can have on the energy efficiency of heat efficient 

distillation columns. 

The main focus has been on the operating parameters of the column. Further work could 

be focused on design parameters and possible consideration of other optimisation 

objectives such as feed tray location, type of feed and heat exchanger networks. 

Furthermore, distillation unit is often a part of a whole process. The techniques as 

developed here have been targeted to distillation units. The next step ahead would be to 

apply these techniques to the whole plant. The increased complexity of the process will 

require for detailed preliminary studies to determine the variables to be considered in 

the model as well as setting their upper and lower boundaries.  In addition, there are a 

number of unit operations that though may not consume as much energy as a distillation 

process but will probably benefit much more from the application of the techniques. 

A detailed step wise procedure of the techniques developed in this thesis has been 

presented. This can be further developed into software. The software could possibly be 

for the selection of energy efficient control structure or it might be for the optimisation 

procedure. Perhaps it might be possible to actually have the two combined in single 

software. At the moment, software that incorporates these techniques has not been 

developed. 

The method as presented could be further developed for real time optimisation and or 

model predictive control of the column. This should find application in the operational 

control and optimisation of the column. 
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APPENDIX A 

 Perform a closed loop tuning based on Ziegler-Nichols method to obtain the ultimate 

gain 𝜇𝑢 and the ultimate period 𝑃𝑢 

 Subtitute the values obtained to get the relevant controller parameter as given in the 

table below 

Controller type   Gain(𝐾𝑍𝑁)  Reset(𝜏𝑍𝑁) 

 Derivative 

P    
𝜇𝑢

2
 

PI    
𝜇𝑢

2.2
   

𝑃𝑢

1.2
 

PID    
𝜇𝑢

1.7
   

𝑃𝑢

2
   

𝑃𝑢

1.8
 

 Assume a factor F usually between 2-5 

The Gain 𝐾𝑐  and the period 𝜏𝑖 are calculated as 

𝐾𝑐 =
𝐾𝑍𝑁
𝐹

 

𝜏𝑖 = 𝐹 ∗ 𝜏𝑍𝑁 

 Make a plot of 𝑊𝑖𝑤 = −1+ 𝐷𝑒𝑡(1 + 𝐺𝑚(𝑖𝑤)𝐵𝑖𝑤)  

Where 𝐵𝑖𝑤 = 𝐾𝑐 (1 +
1

𝜏𝑖
) 

𝐺𝑚(𝑖𝑤) is the open loop transfer relating controlled variable to manipulated variable 

 Make a plot of Lcm. This is the closed loop log modulus which is the magnitude of the 

closed loop servo function. For a choosen controller, the maximum value of Lc is 

determined, if is less than dB, the gain is increased. 

𝐿𝑐 = 20𝑙𝑜𝑔 |
𝐺𝐵

1 + 𝐺𝐵
| 

 

An example code for calculating this in MATLAB is given as follows 

 

%BLT method 
ku1 = 10;% Ultimate gain from Ziegler nichols method 
ku2 = 3; 
pu1 = 5; 
pu2 = 3.5; 
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wu1 =2*pi/pu1%Ultimate frequency from Ziegler nichols method (note 

period pu =2*pi/wu 
wu2 =2*pi/pu2 

  
f =4.45; %BLT assumed factor 
j = sqrt(-1) 
k1 = ku1/(2.2*f); % Gains of feedback controller 
k2 = ku2/(2.2*f); 
t1 = f*2*pi/(1.2*wu1); % Reset time fo controller 
t2 = f*2*pi/(1.2*wu2); 

  

  
y = logspace(-3,1,80); 
for i =1:80 
    x =y(i); 
    c =[k1*(1+1/(j*x*t1)) 0; 0 k2*(1+1/(j*x*t2))]; % transfer function 

for feedback controller 
    g =[-1.49/(1+1.216*j*x) -1.1/(1+5.766*j*x); -5.43/(1+1.016*j*x) 

7.04e-1/(1+4.333*j*x)];  
    w(i) = -1+det(eye(2)+g*c); 
    l(i) = 20*log10(abs(w(i)/(1+w(i)))) 
end 
semilogx(y,l) 
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APPENDIX B 

%Code for BANN modelling 

clear all 
load input_data.txt 
load output_data.txt 
plot(output_data(:,1),output_data(:,2)) 
  [sx,mex,stdx]=autosc(input_data(:,[2:5])); %calculates the mean, 

standard deviation and scales the data but excludes the time 
[sy,mey,stdy]=autosc(output_data(:,2));  
  x = sx(:,[1:4]); 
     y = sy(:,1); 

  
rand('seed',0) 
[xt,yt,xv,yv] = select(x,y,0.8); 
[xtr,ytr,xts,yts]=select(xt,yt,0.7); 
NNTWARN OFF 

  
%STACKED NEURAL NETWORK 
nm = 30; 
 for i=1:nm 
      av = bootsr([xt yt],i); 
[xtr2,ytr2,xts2,yts2]=select(av(:,1:4),av(:,5),0.7); 

  
ess = 1e30; 

  
sse=[]; 

  
for nh=5:30;  
  rand('seed',0) 
  w1=0.2*(rand(nh,4)-0.5); 
  b1=0.2*(rand(nh,1)-0.5); 
  w2=0.2*(rand(1,nh)-0.5); 
  b2=0.2*(rand(1,1)-0.5); 
  

[w1,b1,w2,b2,tre,tse]=nntrlm(w1,b1,'logsig1',w2,b2,'purelin1',xtr2,ytr

2,xts2,yts2,[100;0.0001]); 
   ytrp=simuff(xtr2',w1,b1,'logsig1',w2,b2,'purelin1')'; 
   ytsp=simuff(xts2',w1,b1,'logsig1',w2,b2,'purelin1')'; 
  yvp=simuff(xv',w1,b1,'logsig1',w2,b2,'purelin1')'; 
   ErrorPred=yvp-yv; 
%   %sse2=[sse;(yv-yvp)'*(yv-yvp) ]; 
%  
   sse=[sse;(ytr2-ytrp)'*(ytr2-ytrp) (yts2-ytsp)'*(yts2-ytsp) (yv-

yvp)'*(yv-yvp)]; 

  
 [ii1,ii2]=min(sse(:,2)); 
 nh=ii2+4; 
   tse = sumsqr(yts2-simuff(xts2', w1, 

b1,'logsig1',w2,b2,'purelin1')'); 
  if(tse < ess) 
      ess=tse; 
      ws1=w1; 
      bs1=b1; 
      ws2=w2; 
      bs2=b2; 
      is(i,1)=nh; 
  end 
end 
 sw1(1:is(i,1)*6+1,i) = [reshape(ws1,is(i,1)*4,1);bs1;ws2';bs2];  
  ytrp1(:,i) = simuff(xtr', ws1,bs1,'logsig1',ws2,bs2,'purelin1')'; 
  ytsp1(:,i) = simuff(xts', ws1,bs1,'logsig1',ws2,bs2,'purelin1')'; 
  yvp1(:,i) = simuff(xv', ws1,bs1,'logsig1',ws2,bs2,'purelin1')'; 
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 end 
ypln = mean(ytrp1')'; 
ytspln = mean(ytsp1')'; 
yvpln = mean(yvp1')'; 
sse1 = [sse; (ytr-ypln)'*(ytr-ypln) (yts-ytspln)'*(yts-ytspln) (yv-

yvpln)'*(yv-yvpln)]; 
sse2(i,1) = (ytr-ytrp1(:,i))'*(ytr-ytrp1(:,i)) ; 
sse2(i,2) = (yts-ytsp1(:,i))'*(yts-ytsp1(:,i)); 
sse2(i,3) = (yv-yvp1(:,i))'*(yv-yvp1(:,i)); 
ypln_lp = ypln-1.96*std((ytrp1-ypln*ones(1,30))')'; 
ypln_up = ypln+1.96*std((ytrp1-ypln*ones(1,30))')'; 
ytspln_lp = ytspln-1.96*std((ytsp1-ytspln*ones(1,30))')'; 
ytspln_up = ytspln+1.96*std((ytsp1-ytspln*ones(1,30))')'; 
yvpln_lp = yvpln-1.96*std((yvp1-yvpln*ones(1,30))')'; 
yvpln_up = yvpln+1.96*std((yvp1-yvpln*ones(1,30))')'; 
sseb = [sse; (ytr-ypln)'*(ytr-ypln) (yts-ytspln)'*(yts-ytspln) (yv-

yvpln)'*(yv-yvpln)]; 
for i = 1:nm; 
    mse(i,1) = (ytr-ytrp1(:,i))'*(ytr-ytrp1(:,i))/length(ytr); 
    mse(i,2) = (yts-ytsp1(:,i))'*(yts-ytsp1(:,i))/length(yts); 
    mse(i,3) = (yv-yvp1(:,i))'*(yv-yvp1(:,i))/length(yv); 
    ytpp = mean(ytrp1(:,1:i)',1)'; 
    ytspp = mean(ytsp1(:,1:i)',1)'; 
    yvpp = mean(yvp1(:,1:i)',1)'; 
    mse(1,4) = (ytr-ytpp)'*(ytr-ytpp)/length(ytr); 
     mse(1,5) = (yts-ytspp)'*(yts-ytspp)/length(yts); 
    mse(1,6) = (yv-yvpp)'*(yv-yvpp)/length(yv); 
end 
save 'model_ref3b_newest2' sw1 is nm ws1 bs1 ws2 bs2 mex stdx mey 

stdy ; 
 figure 
subplot(311) 
plot(ytr,'-') 
hold 
plot(ytrp1,'r--','LineWidth',1) 
title('Predicted and actual values for training') 
 xlabel('Samples') 
 ylabel('Exergy efficiency') 
subplot(312) 
plot(yts,'-') 
hold 
plot(ytsp1,'r--','LineWidth',1) 
title('Predicted and actual values for testing') 
 xlabel('Samples') 
 ylabel('Exergy efficency') 
subplot(313) 
plot(yv,'-') 
hold 
plot(yvp1,'r--','LineWidth',1) 
title('Predicted and actual values for validating') 
 xlabel('Samples') 
 ylabel('Exergy efficency') 

  
 figure 
 plot(ytr*stdy+mey, ypln*stdy+mey, 'b+') 
 hold 
plot(yts*stdy+mey, ytspln*stdy+mey, 'g--') 
plot(yv*stdy+mey, yvpln*stdy+mey, 'ro') 
xlabel('Actual energy efficiency') 
ylabel('Predicted energy efficiency') 
title('+:training data;--:testing data o:validation data') 

  
figure 



 

203 
 

plot(yv*stdy+mey,'o') 
hold 
plot(yvpln*stdy+mey,'r+') 
plot(yvpln_lp*stdy+mey,'g--') 
plot(yvpln_up*stdy+mey,'g--') 
xlabel('samples') 
ylabel('Exergy efficiency') 
title('o:actual values; +:predictions; --:95%confidence bounds') 
%plot MSE of single networks 
figure  
subplot(311) 
bar(mse(:,1)) 
ylabel('MSE(training)') 
subplot(312) 
bar(mse(:,2)) 
ylabel('MSE(testing)') 
subplot(313) 
bar(mse(:,3)) 
ylabel('MSE(Validation)') 
xlabel('Network No') 

  
%plot MSE of stacked networks 
figure  
subplot(311) 
bar(mse(:,4)) 
ylabel('MSE(training)') 
subplot(312) 
bar(mse(:,5)) 
ylabel('MSE(testing)') 
subplot(313) 
bar(mse(:,6)) 
ylabel('MSE(Validation)') 
xlabel('Network No') 

 

 


