1,598 research outputs found

    Assistive Planning in Complex, Dynamic Environments: a Probabilistic Approach

    Full text link
    We explore the probabilistic foundations of shared control in complex dynamic environments. In order to do this, we formulate shared control as a random process and describe the joint distribution that governs its behavior. For tractability, we model the relationships between the operator, autonomy, and crowd as an undirected graphical model. Further, we introduce an interaction function between the operator and the robot, that we call "agreeability"; in combination with the methods developed in~\cite{trautman-ijrr-2015}, we extend a cooperative collision avoidance autonomy to shared control. We therefore quantify the notion of simultaneously optimizing over agreeability (between the operator and autonomy), and safety and efficiency in crowded environments. We show that for a particular form of interaction function between the autonomy and the operator, linear blending is recovered exactly. Additionally, to recover linear blending, unimodal restrictions must be placed on the models describing the operator and the autonomy. In turn, these restrictions raise questions about the flexibility and applicability of the linear blending framework. Additionally, we present an extension of linear blending called "operator biased linear trajectory blending" (which formalizes some recent approaches in linear blending such as~\cite{dragan-ijrr-2013}) and show that not only is this also a restrictive special case of our probabilistic approach, but more importantly, is statistically unsound, and thus, mathematically, unsuitable for implementation. Instead, we suggest a statistically principled approach that guarantees data is used in a consistent manner, and show how this alternative approach converges to the full probabilistic framework. We conclude by proving that, in general, linear blending is suboptimal with respect to the joint metric of agreeability, safety, and efficiency

    Knowing when to assist: Developmental issues in lifelong assistive robotics

    Get PDF
    Children and adults with sensorimotor disabilities can significantly increase their autonomy through the use of assistive robots. As the field progresses from short-term, task-specific solutions to long-term, adaptive ones, new challenges are emerging. In this paper a lifelong methodological approach is presented, that attempts to balance the immediate context-specific needs of the user, with the long-term effects that the robots assistance can potentially have on the users developmental trajectory

    Adaptive shared control system

    Get PDF

    Open World Assistive Grasping Using Laser Selection

    Full text link
    Many people with motor disabilities are unable to complete activities of daily living (ADLs) without assistance. This paper describes a complete robotic system developed to provide mobile grasping assistance for ADLs. The system is comprised of a robot arm from a Rethink Robotics Baxter robot mounted to an assistive mobility device, a control system for that arm, and a user interface with a variety of access methods for selecting desired objects. The system uses grasp detection to allow previously unseen objects to be picked up by the system. The grasp detection algorithms also allow for objects to be grasped in cluttered environments. We evaluate our system in a number of experiments on a large variety of objects. Overall, we achieve an object selection success rate of 88% and a grasp detection success rate of 90% in a non-mobile scenario, and success rates of 89% and 72% in a mobile scenario

    Robotic assistants for universal access

    Get PDF
    Much research is now focusing on how technology is moving away from the traditional computer to a range of smart devices in smart environments, the so-called Internet of Things. With this increase in computing power and decrease in form factor, we are approaching the possibility of a new generation of robotic assistants able to perform a range of tasks and activities to support all kinds of users. However, history shows that unless care is taken early in the design process, the users who may stand to benefit the most from such assistance may inadvertently be excluded from it. This paper examines some of those historical missteps and examines possible ways forward to ensure that the next generation robots support the principles of universal access

    Integrating the users in the design of a robot for making Comprehensive Geriatric Assessments (CGA) to elderly people in care centers

    Get PDF
    Lisboa, (28-31 de agosto 2017)Comprehensive Geriatric Assessment (CGA) is a multidimensional and multidisciplinary diagnostic instrument that helps provide personalized care to the elderly, by evaluating their physical and mental state. In a social and economic context of growing ageing populations, medical experts can save time and effort if provided with interactive tools to efficiently assist them in doing CGAs, managing standardized tests or data collection. Recent research proposes the use of social robots as the central part of these tools. These robots must be able to unfold all functionalities that questionnaires or motion-based tests require, including natural language, face tracking and monitoring, human motion capture and so on. But another issue is the robot's acceptability and trust by the end-users, both patients (elderly people) and clinicians: the robot needs to be able to engage with the patients during the interaction sessions, and must be perceived as a useful and efficient tool by the clinicians. This paper presents the acquisition of new user requirements for CLARC, through participatory and user-centered design approach, to inform the improvement of both interface and interaction. Thirty eight persons (elderly people, caregivers and health professionals) were involved in the design process of CLARC, based on user-centered methods and techniques of Human-Computer Interaction discipline.This work has been partially funded by the European Union ECHORD++ project (FP7-ICT-601116) and the TIN2015-65686-C5-1-R Spanish Ministerio de EconomÍa y Competitividad project and FEDER funds

    The design and evaluation of an interface and control system for a scariculated rehabilitation robot arm

    Get PDF
    This thesis is concerned with the design and development of a prototype implementation of a Rehabilitation Robotic manipulator based on a novel kinematic configuration. The initial aim of the research was to identify appropriate design criteria for the design of a user interface and control system, and for the subsequent evaluation of the manipulator prototype. This led to a review of the field of rehabilitation robotics, focusing on user evaluations of existing systems. The review showed that the design objectives of individual projects were often contradictory, and that a requirement existed for a more general and complete set of design criteria. These were identified through an analysis of the strengths and weaknesses of existing systems, including an assessment of manipulator performances, commercial success and user feedback. The resulting criteria were used for the design and development of a novel interface and control system for the Middlesex Manipulator - the novel scariculated robotic system. A highly modular architecture was adopted, allowing the manipulator to provide a level of adaptability not approached by existing rehabilitation robotic systems. This allowed the interface to be configured to match the controlling ability and input device selections of individual users. A range of input devices was employed, offering variation in communication mode and bandwidth. These included a commercial voice recognition system, and a novel gesture recognition device. The later was designed using electrolytic tilt sensors, the outputs of which were encoded by artificial neural networks. These allowed for control of the manipulator through head or hand gestures. An individual with spinal-cord injury undertook a single-subject user evaluation of the Middlesex Manipulator over a period of four months. The evaluation provided evidence for the value of adaptability presented by the user interface. It was also shown that the prototype did not currently confonn to all the design criteria, but allowed for the identification of areas for design improvements. This work led to a second research objective, concerned with the problem of configuring an adaptable user interface for a specific individual. A novel form of task analysis is presented within the thesis, that allows the relative usability of interface configurations to be predicted based upon individual user and input device characteristics. An experiment was undertaken with 6 subjects performing 72 tasks runs with 2 interface configurations controlled by user gestures. Task completion times fell within the range predicted, where the range was generated using confidence intervals (α = 0.05) on point estimates of user and device characteristics. This allowed successful prediction over all task runs of the relative task completion times of interface configurations for a given user
    corecore