
"

Middlesex
University
London

Middlesex University Research Repository:
an open access repository of
Middlesex University research

http://eprints.mdx.ac.uk

Parsons, Bernard Neil, 2001.
The design and evaluation of an interface and control system for a

scariculated rehabilitation robot arm.
Available from Middlesex University's Research Repository.

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

Copyright and moral rights to this thesis/research project are retained by the author and/or other
copyright owners. The work is supplied on the understanding that any use for commercial gain is
strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without
prior permission and without charge. Any use of the thesis/research project for private study or
research must be properly acknowledged with reference to the work's full bibliographic details.

This thesis/research project may not be reproduced in any format or medium, or extensive quotations
taken from it, or its content changed in any way, without first obtaining permission in writing from the
copyright holder(s) .

If you believe that any material held in the repository infringes copyright law, please contact the
Repository Team at Middlesex University via the following email address:
eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

The Design and Evaluation of an
Interface and Control System

for a
Scariculated Rehabilitation Robot Arm

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Bernard Neil Parsons

June 2001

School of Engineering Systems
Middlesex University

London (United Kingdom)

Abstract

This thesis is concerned with the design and development of a prototype implementation of a

Rehabilitation Robotic manipulator based on a novel kinematic configuration. The initial aim of

the research was to identify appropriate design criteria for the design of a user interface and

control system, and for the subsequent evaluation of the manipulator prototype. This led to a

review of the field of rehabilitation robotics, focusing on user evaluations of existing systems.

The review showed that the design objectives of individual projects were often contradictory,

and that a requirement existed for a more general and complete set of design criteria. These were

identified through an analysis of the strengths and weaknesses of existing systems, including an

assessment of manipulator performances, commercial success and user feedback.

The resulting criteria were used for the design and development of a novel interface and control

system for the Middlesex Manipulator - the novel scariculated robotic system. A highly modular

architecture was adopted, allowing the manipulator to provide a level of adaptability not

approached by existing rehabilitation robotic systems. This allowed the interface to be

configured to match the controlling ability and input device selections of individual users.

A range of input devices was employed, offering variation in communication mode and

bandwidth. These included a commercial voice recognition system, and a novel gesture

recognition device. The later was designed using electrolytic tilt sensors, the outputs of which

were encoded by artificial neural networks. These allowed for control of the manipulator through

head or hand gestures.

An individual with spinal-cord injury undertook a single-subject user evaluation of the

Middlesex Manipulator over a period of four months. The evaluation provided evidence for the

value of adaptability presented by the user interface. It was also shown that the prototype did not

currently confonn to all the design criteria, but allowed for the identification of areas for design

improvements.

This work led to a second research objective, concerned with the problem of configuring an

adaptable user interface for a specific individual. A novel fonn of task analysis is presented

within the thesis, that allows the relative usability of interface configurations to be predicted

based upon individual user and input device characteristics. An experiment was undertaken with

6 subjects perfonning 72 tasks runs with 2 interface configurations controlled by user gestures.

Task completion times fell within the range predicted, where the range was generated using

confidence intervals (a = 0.05) on point estimates of user and device characteristics. This

allowed successful prediction over all task runs of the relative task completion times of interface

configurations for a given user.

11

Acknowledgements

My director of studies, Peter Warner, succeeded in generating in me some of the strong

motivation he holds for developing a rehabilitation robot arm. Throughout the project, his wealth

of experience has very quickly placed the problems I have encountered into an appropriate

context, and guided me towards a solution. Along with my supervisors Anthony White and Raj

Gill, I have been provided continual support and guidance, without which very little would have

been achieved.

Many thanks to Jeremy Lewis who has provided a degree of help far above and beyond the call

of friendship: from technical and spiritual advisor, to proof reader extraordinaire. Steve Prior's

encouragement and support at the beginning of the project provided a guiding light that was

sorely missed when he disappeared to sunnier climes. I am grateful to Roger Delbourgo for

helping out with the trigonometric analysis in chapter 4. I would like to thank members of the

Computing Science department at Middlesex University, for supporting this research within

Engineering Systems. In particular Harold Thimbleby, Ann Blandford, Christopher Kindberg,

Mathew Jones and Mat Smith - their expertise within the field of human-computer interaction

has been invaluable.

The technical staff within Engineering Systems have suffered my continual badgering, and in

spite of this, still provided me with help. Thanks to Imtiaz Bhaiji, Issam Siman, Ken Bone,

Goodwin Griffiths, and Neil Matticks.

I owe a great debt of gratitude to Paul Rocca for first agreeing to participate in the user

evaluation, and then for investing such energy and commitment over a prolonged period of time.

His understanding of the issues involved in assistive technology have formed an essential part of

this work. The same is true of the experience and understanding of the field held by Robin Platts

111

of the Royal National Orthopaedic Hospital, whose association with this project was also a vital

component.

I am grateful to the postgraduate and undergraduate students who have undertaken projects in

support of the work reported here. In particular Lothar Gellrich, for his long hours and hard work

during his six month visit to London.

My friends and colleagues at Middlesex University have provided a supportive and friendly

working environment, particularly Jaime Valles-Miro, Jagpal Surdah and Aboubaker Lasebe of

Advanced Manufacturing and Mechatronic Systems.

Finally, thanks to my family for their unwavering support and encouragement.

iv

In loving memory of

Clive Arnold Parsons

Who taught me all about travelling.

To travel hopefitlly is a better thing than to
arrive, and the true success is to labour.

Robert Louis Stevenson.

v

Table of Contents

Abstract
Acknowledgements
Abbreviations and acronyms
List of figures & tables

Section I

Introduction and literature survey

CHAPTERl
INTRODUCTION

Motivation & background
Objectives and deliverables

1.1
l.2
l.3
1.4
l.5

Contribution to Rehabilitation Robotics research
A brief history of the work
Structure of the thesis

CHAPTER 2
REHABILITATION ROBOTICS

2.1 Introduction
2.2 The Manus arm
2.3 Handy-1
2.4 The Wolfson, Wessex, and Weston systems
2.5 The Neil Squire foundation
2.6 Other rehabilitation robotic systems
2.7 The costlbenefit argument
2.8 System mobility
2.9 System performance
2.10 System functionality
2.11 The user interface and control system
2.12 Design Criteria

VI

111

xu
xiv

2

3
4
6
6
7

9

10
11
14
16
19
21
23
25
25
26
27
27

Section II

Manipulator and motor control system design

CHAPTER 3
THE MIDDLESEX MANIPULATOR

3.1
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.2
3.2.1
3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.6

Defining user requirements
General Requirements
Design Requirements
Environmental Conditions
Ergonomics and Aesthetics
Safety
Cost
Life Expectancy and Servicing
Kinematic design
The Scariculated Arm Design
The Middlesex Manipulator prototype (Phase II)
Controller and interface requirements specification (Phase III)
Requirements
User Interface
The Control System
User interface and control system overview (Phase III)
Summary

CHAPTER 4
THE MOTOR CONTROL SYSTEM

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.3
4.3.1
4.3.2
4.3.3

Hardware design
System overview
The embedded microcontroller module
The distribution module
The shaft encoder
The motor drive module
Motor control system implementation
Microcontroller software development
Microcontroller software requirements specification
Determining control constants and sampling frequency
Implementing Cartesian Control
Top-level motor controller pseudo-code
The Move function
Reading axes positions
Serial 10
Performance characteristics
Axes 1 and 5 - velocity
Axes 1 and 5 - repeatability
Axes 2 and 4 - velocity

vii

31

32
35
35
36
36
37
37
37
37
39
40
42
43
43
44
44
45

46

47
47
49
51
51
53
54
54
55
56
59
63
65
65
66
68
69
70
71

4.3.4 Axes 2 and 4 - repeatability
4.3.6 Axis 3 - velocity
4.3.7 Axis 3 - repeatability
4.4 Concluding remarks

Section III

USER INTERFACE DESIGN

CHAPTERS
HCI AND INTERCACTIVE SYSTEM DESIGN

5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.4
5.4.1
5.4.2
5.5
5.6

Introduction
The product design life-cycle
Analytic techniques
Task analysis
Grammar based analysis
Goms task analysis
Usability inspection techniques
Heuristic evaluation
Cognitive walkthrough
Experimental evaluation
Summary

CHAPTER 6
THE USER INTERFACE SYSTEM

6.1 Modelling user tasks
6.1.1 The pick and place task
6.1.2 The painting task
6.1.3 The feeding task
6.2 Modes of control
6.3 The UIS software architecture
6.4 UIS implementation (version 1)
6.5 UIS implementation (version 2)
6.6 User interface input and output devices
6.7 Summary

CHAPTER 7
GESTURE RECOGNITION FOR USER INPUT

7.l Gesture encoding with tilt-sensors
7.2 Pattern classification
7.2.1 The Dynamic Programming Algorithm
7.2.2 The Single Layer Perceptron
7.2.3 The DPA and SLP compared

Vlll

74
74
75
76

79

80
81
82
83
84
86
88
89
92
96
97

99

100
101
104
106
107
109
117
118
119
120

121

122
125
126
128
129

7.2.4 The multi-layered perceptron
7.2.5 The MLP and SLP compared
7.2.6 The Radial Basis Function
7.2.7 The MLP and RBF compared
7.3 Configuring the tilt-sensor for use with the UIS
7.4 Gesture encoding with a trackball
7.4.1 Outline of a gesture-recognition windows application
7.4.2 Trackball gesture-recognition: initial results
7.5 Conclusions

Evaluation

CHAPTER 8
SYSTEM EVALUATION

A heuristic evaluation
Method
Results
Conclusions
User evaluation overview
Background
Method

Section IV

8.1
8.1.1
8.1.2
8.1.3
8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2
8.3.3.
8.3.4
8.4
8.4.1.
8.4.2
8.4.3.
8.4
8.4.1
8.5

Usage data summary and analysis
Task duration
User interaction
Learning effects
Conclusion
User feedback
Questionnaire design
Questionnaire Responses
Interview summary
Assessment against general design criteria
Criteria conformance
Summary

Section V

Adapting the User Interface

CHAPTER 9

l32
l35
l36
l38
l39
140
140
143
144

146

147
147
149
154
154
154
155
156
157
162
164
165
166
166
167
172
174
174
176

180
USING TASK ANALYSIS TO CONFIGURE AN ADAPTABLE USER INTERFACE

9.1.
9.2
9.3.

Introduction
Task analysis for interface configuration
Experimental objectives

ix

181
183
184

9.4.
9.4.1
9.4.2.
9.4.3
9.4.4
9.4.5
9.5
9.6

Method
Modelling Tasks and User Interaction
Predicting Task Completion Time
Estimating user characteristics
Measuring Task Completion Time
Experiment design.
Results
Conclusions

Section VI

Discussion and Conclusions

CHAPTER 10
CONCLUSIONS AND FURTHER WORK

10.1 Contributions to research
10.2 Future work
10.2.1 The manipulator and motor control system
10.2.2 The user interface system
10.2.3 Choice of user interface and control system platfoml
10.2.4 User Evaluation
10.3 Concluding remarks

Section VII

Supporting materials

References
Additional media included with thesis

APPENDICES

A. JUVO Motor Control Language Opcode Summary

B. JUVO motor control language reference

C. Motor control code listings
1. Main source file containing top level code
2. IO routines
3. Serial comms routines
4. Constant definitions

D. Task executable template

E. Juvo User command language

x

185
186
188
190
190
190
191
195

197

198
201
201
202
202
203
204

206
216

A.l

B.1

C.1
C.2

C.7
C.12
C.14

D.1

E.1

F.

G.

H.

I.

J.

K.

L.

User interface code listings F.l
l. Dialogue manager F.2
2. Feedback device module F.l3
2. Example modal logic unit F.lS

Neural network code listing G.l

Neural test Application code listing H.l

Unified Modelling Language Notation I.1

Evaluation Video Contents II

Automated Task Analysis I.1
l. Spreadsheet task descriptions 1.2
2. Visual basic routines 1.3

Published Work

l. Parsons B.N., Warner P. R, Gill R., White A. S, (1996), "The Development of
an adaptable control system and human-machine interface for a rehabilitation
robotic maniplualtor", CAD/CAM Robotics and Factories of the future, London
1996. L.2

2. Parsons B.N., Warner P. R, Gill R., White A. S, (1996), "An approach to the
development of adaptable manipulator controller software", International
conference on rehabilitation robotics, Bath 1996. L. 7

3. Parsons B.N., Gellrich L., Warner P. R, White A. S Gill R., (1996),
"Application of a gesture recognition system to the control of a rehabilitation
robotic manipulator", Engineering in Biology and Medicine, Amsterdam, 1996.

L.12

4. Parsons B.N., Warner P. R, Gill R., White A. S, (1997), "Initial evaluation of
the Middlesex Manipulator rehabilitation robotic arm", Rehabilitation
Engineering Society of North America, June 1997.

L.15

5. Parsons B.N., Warner P. R., White A. S, Gill R., (1997), "Configuring an
adaptable user interface for gesture control", Advancement of Assistive
Technology, Assistive Technology research series 3,1997. L.18

xi

List of abbreviations and acronyms

AID
ADL
ANN
BP
C
c++
CLG
DC
DOF
DDE
DDEML
DLL
DM
DPA
FDM
FET
GOMS
HCI
HTA
IC
IDM
10
ISO
JMCL
mCL
JUVO

LCD
LTM
MHP
MLP
MLU
NGOMSL
OOA
PC
PID
PPI
PS
PUMA

Analogue/Digital
Activities of daily living
Artificial neural network
Back propagation
The C programming language
The C++ programming language
Command language grammar
Direct current
Degrees of freedom
Dynamic Data Exchange
Dynamic data exchange management library
Dynamic link library
Dialogue Manager
Dynamic programming algorithm
Feedback device manager
Field effect transistor
Goals, operators, methods and selection rules
Human - computer interaction
Hierarchical Task Analysis
Integrated circuit
Input device manager
Input/output
International standards organisation
Juvo motor control language
Juvo user command language
Meaning 'to assist' in Latin - is a term used to refer to the Middlesex
Manipulator
Liquid crystal display
Long term memory
Model human processor
Multi-layer perceptron
Modal logic unit
Natural GOMS language
Object oriented analysis
Personal computer
Proportional Integral Derivative control
Programmable peripheral interface
Problem severity
Programmable universal machine for assembly

xu

PWM
RBF
RC
SBUF
SC
SCARA
SCON
s.d.
SLP
TAG
TAL
TIDE

UART
UML
UIS
VA
VB
VDU
WM

Pulse width modulation
Radial basis function
Resistor/Capacitor
Serial buffer (on 8051 micro controller)
Solution cost
Selective compliance assembly robot arm
Serial control register (on 8051 microcontroller)
Standard deviation
Single layer perceptron
Task Action Grammar
Task Action Language
Technology Initiative for Disabled and Elderly people - a European Union
funding initiative.
Universal asynchronous transmitter receiver
Universal modelling Language
User interface system
Veterans Association (USA).
Visual basic programming language
Visual display unit
Working memory

xiii

List of Figures and Tables

FIGURE 2.1. THE MANUS MANIPULATOR 12
FIGURE 2.2. THE HANDY 1 FEEDING AID 14
FIGURE 2.3 THE WESSEX ARM 18
FIGURE 2.4 THE WESTON ARM 19
FIGURE 2.5 THERTXROBOT ARM 22

FIGURE 3.1 THE SCARICULATED DESIGN 39
FIGURE 3.2 MIDDLESEX MANIPULATOR - ENGINEERING DRAWING 40
FIGURE 3.3 MIDDLESEX MANIPULATOR WITH END EFFECTOR 42
FIGURE 3.4 USER INTERFACE AND MOTOR CONTROL SYSTEM ARCHITECTURE. 45

FIGURE 4.1 MOTOR CONTROL SYSTEM OVERVIEW 48
FIGURE 4.2 EMBEDDED MICROCONTROLLER MODULE 49
FIGURE 4.3 DISTRIBUTION MODULE 51
FIGURE 4.4 SHAFT ENCODER DISK 52
FIGURE 4.5 SIGNAL GENERATION FOR SHAFT ENCODER COUNTER CIRCUIT 52
FIGURE 4.6 OPTO SWITCH PULSE-TRAIN 53
FIGURE 4.7 MOTOR DRIVE CIRCUIT 54
FIGURE 4.8 MANIPULATOR AXIS RESPONSE TO A STEP INPUT 57
FIGURE 4.9 PLAN VIEW OF LINKS B AND C 59
FIGURE 4.10 LINEAR VELOCITY V DISPLACEMENT FOR LINK C = 500MM 62
FIGURE 4.11 LINEAR VELOCITY V DISPLACEMENT FOR LINK C = 650MM 62
FIGURE 4.12 CONTROLLER MAIN PROGRAM PSEUDO-CODE 64
FIGURE 4.13 MOVE FUNCTION PSEUDO-CODE 66
FIGURE 4.14 PSEUDO CODE FOR READING AXIS POSITION 66
FIGURE 4.15 FUNCTION TO GET THE NEXT BYTE OF A DIALOGUE 67
FIGURE 4.16 FUNCTION TO WRITE A DATA WORD TO SERIAL PORT 68
FIGURE 4.17 MANIPULATOR CONFIGURATION 69
FIGURE 4.18 REPEATABILITY ESTIMATES (AXIS 2) 72
FIGURE 4.19 REPEATABILITY ESTIMATES (AXIS 4) 73
FIGURE 4.20 REPEATABILITY ESTIMATES (AXIS 3) 75

FIGURE 5.1 GENERATING A REQUIREMENTS SPECIFICATION 81
FIGURE 5.2 AN ITERATIVE SOFTWARE DESIGN CYCLE 82
FIGURE 5.3 HTA REPRESENTATION OF A PICK AND PLACE TASK 83
FIGURE 5.4 CLG SYNTACTIC LEVEL DESCRIPTION 85
FIGURE 5.5 EXAMPLE TAL RULE DESCRIPTIONS 86

FIGURE 6.1 INITIAL PICK & PLACE TASK DESCRIPTION 101
FIGURE 6.2 TOP LEVEL HTA DESCRIPTION OF PICK AND PLACE TASK. 102
FIGURE 6.3 SUB-GOAL TO MOVE TO A PRE-TAUGHT POSITION 102
FIGURE 6.4 SUB-GOAL TO MOVE A JOINT 103
FIGURE 6.5 SUB-GOAL TO MOVE IN A PARTICULAR DIRECTION 103
FIGURE 6.6 INITIAL DESCRIPTION OF PAINTING TASK. 104
FIGURE 6.7 TOP LEVEL HTA DESCRIPTION OF PAINTING TASK. 105
FIGURE 6.8 SUB-GOAL TO EXECUTE PRE-PROGRAMMED ROUTINE 105
FIGURE 6.9 INITIAL DESCRIPTION OF A FEEDING TASK 106
FIGURE 6.10 SUB GOAL TO EXECUTE A PRE-PROGRAMMED TASK 106
FIGURE 6.11 STRUCTURE OF TEACH POSITION MODE 108
FIGURE 6.12 STRUCTURE OF TEACH ROUTINE MODE 108
FIGURE 6.13 UMLCLASSES III
FIGURE 6.14 USER INTERFACE SYSTEM WITH DIALOGUE MANAGER CLASS 112

xiv

FIGURE 6.15 UML SEQUENCE DIAGRAM OF INTER-MODULE INTERACTION 112
FIGURE 6.16 A MODULAR USER INTERFACE SYSTEM 113
FIGURE 6.17 SYSTEM COMPONENTS 114
FIGURE 6.18A TOP LEVEL MENU 117
FIGURE 6.18B JOINT SUB-MENU 117
FIGURE 6.18C DIRECTION SUB-MENU 117
FIGURE 6.18D STOP SUB-MENU 117
FIGURE 6.19 A SIMPLE SCANNING SYSTEM 118
FIGURE 6.20 DIALOG BASED USER INTERFACE 119
FIGURE 6.21 SILICON MICRO-MACHINED TILT SENSOR 120

FIGURE 7.1 TILT SENSOR CIRCUIT 123
FIGURE 7.2 TILT SENSORS MOUNTED ON A BASEBALL CAP 124
FIGURE 7.3 SET OF 3 GESTURES, PREDOMINATELY IN THE X PLANE 124
FIGURE 7.4 SET OF 3 GESTURES, PREDOMINATELY IN THE Y PLANE 125
FIGURE 7.5A VECTORS APPLIED TO MATRIX 127
FIGURE 7.5B CELLS COMPUTED AS VECTOR DIFFERENCE 127
FIGURE 7.5C APPLYING LOCAL CONSTRAINT 128
FIGURE 7.5D RESULTING COMPARISON VALUE 128
FIGURE 7.6 SINGLE LA YER PERCEPTRON WITH 4 INPUTS AND 3 OUTPUTS 128
FIGURE 7.7 FOUR MEMBERS OF A TYPICAL GESTURE CLASS 130
FIGURE 7.8 MODELED GESTURE WITH VARYING DEGREES OF DEGRADATION 131
FIGURE 7.9 MAXIMUM VARIATION FOR SUCCESSFUL CLASSIFICATION 131
FIGURE 7.10 STRUCTURE OF A 2 LAYERED MLP 132
FIGURE 7.11 K-MEANS CLUSTERING ALGORITHM 137
FIGURE 7.12 LEAST MEAN SQUARE ALGORITHM 138
FIGURE 7.13 FUNCTION TO INITIATE GESTURE RECORDING 140
FIGURE 7.14 FUNCTION TO RECORD GESTURE 141
FIGURE 7.15 FUNCTION TO CLASSIFY GESTURE 142
FIGURE 7.16 COMPUTES OUTPUT OF HIDDEN LAYER 143
FIGURE 7.17 COMPUTES NETWORK OUTPUT 143

FIGURE 8.1 INTERFACE MENU SEQUENCE - SELECTING 'POWER ON' 147
FIGURE 8.2 INTERFACE MENU SEQUENCE - SELECTING 'SPEED MEDIUM' 147
FIGURE 8.3 INTERFACE MENU SEQUENCE - MOVING TO A POSITION 148
FIGURE 8.4 INTERFACE MENU SEQUENCE - SELECTING JOINT MOVEMENT 148
FIGURE 8.5 ESTIMATING PROBLEM SEVERITY 149
FIGURE 8.6 MOVING SHOULDER AND ELBOW JOINTS 149
FIGURE 8.7 MOVING ELBOW, WITH INCORRECT SELECTION OF SHOULDER 150
FIGURE 8.8 MOVE SELECTION WITH 'GO' TO CONFIRM 150
FIGURE 8.9 INCLUSION OF 'AND' OPTION 151
FIGURE 8.10 TEACH POSITION SIDE-ONE, WITH CONFIRM 152
FIGURE 8.11 SET SPEED TO FAST WITH CONFIRM : 153
FIGURE 8.12 FEEDING TASK COMPONENTS 158
FIGURE 8.13 FEEDING TASK COMPONENTS (WITH MODIFIED USER INTERFACE) 159
FIGURE 8.14 COMPARING DRINKING TASK COMPLETION TIMES 160
FIGURE 8.15 MANIPULATOR AXES 1 - 5 161

xv

FIGURE 8.16 PROPORTION OF DRINKING TASK ATTRIBUTABLE TO EACH AXIS 161
FIGURE 8.17 RELATIVE DURATION OF COMPONENTS OF THE DRINKING TASK 162
FIGURE 8.18 DRINKING TASK COMPLETION TIMES 165

FIGURE 9.1 USER TASK DESCRIPTION 185
FIGURE 9.2 NGOMSL TASK DESCRIPTION 185
FIGURE 9.3 NGOMSL SUB-GOAL DESCRIPTION 186
FIGURE 9.4 TASK DESCRIPTION WITH NEW OPERATOR SET 187
FIGURE 9.5 EXAMPLE SPREADSHEET SUBROUTINE 188
FIGURE 9.6 SPREADSHEET TASK DESCRIPTION 188
FIGURE 9.7 EXPERIMENT DESIGN 190
FIGURE 9.8 SCANNING SYSTEM - PHASE 1 191
FIGURE 9.9 DIRECT MENU SELECTION - PHASE 1 191
FIGURE 9.10 SCANNING SYSTEM PHASE 2 192
FIGURE 9.11 DIRECT MENU SELECTION PHASE 2 192
FIGURE 9.12 PREDICTED GAIN - PHASE 1 193
FIGURE 9.13 PREDICTED GAIN - PHASE 2 193

FIGURE 10.1 DESIGN CRITERIA CONFORMANCE COMPARISONS 199

TABLE 2.1 REHABILITATION ROBOTICS - COMMERCIAL ENDEAVOURS 24

TABLE 3.1 MOST IMPORTANT TASK LISTS 32
TABLE 3.2 WEIGHTED MATRIX RESULTS 33
TABLE 3.3 HIGHEST SCORING TASKS (FROM WEIGHTED MATRIX RESULTS) 34

TABLE 4.1 JMCL INSTRUCTION SET. 56
TABLE 4.2 SPEED LEVELS (AXES 1 & 5) 70
TABLE 4.3 AXIS 1 (NO LOAD) 71
TABLE 4.5 AXIS 5 (NO LOAD) 71
TABLE 4.4 AXIS 1 (LOAD = 1KG) 71
TABLE 4.6 AXIS 5 (LOAD = 1KG) 71
TABLE 4.7 SPEED LEVELS AXES 2 AND 4 73
TABLE 4.8 AXIS 2 (NO LOAD) 74
TABLE 4.9 AXIS 2 (LOAD = 1KG) 74
TABLE 4.10 AXIS 4 (NO LOAD) 74
TABLE 4.11 AXIS 4 (LOAD = 1KG) 74
TABLE 4.12 AXIS 3 SPEED LEVELS 75
TABLE 4.13 AXIS 3 (NO LOAD) 75
TABLE 4.14 AXIS 3 (LOAD = 1KG) 75
TABLE 4.15 REPEATABILITY ESTIMATES 76
TABLE 4.16 AXIS 2 (NO LOAD) 76
TABLE 4.17 AXIS 3 (NO LOAD) 76

TABLE 8.1 COMPARING INPUT DEVICES 163
TABLE 8.2 INPUT DEVICE COMPARISONS 171

xvi

~
 =

00
-

~

~

~

~

0
~

Q
.

.....
.

0

=

=

~

~

~

.....
.

0 =

=
 =

Q
.
.
~

~

~
 =

~
 =

~

~

fIJ
. =

~
 -< ~ ~

Chapter I Introduction

Chapter 1

Introduction

This chapter provides an outline of the research objectives, and describes the work that was

undertaken to achieve these. Two questions are addressed within this thesis, the first being:

Does the Middlesex Manipulator - a prototype implementation of the Scariculated robot

design - conform to a set of design criteria that are essential for the design of successful

rehabilitation robotic systems?

To answer this question, a number of steps were required, including: defining appropriate

design criteria, building a control system and user interface, supervising the construction of

the Middlesex Manipulator prototype, and evaluating the prototype.

The project led to an examination of the relationship of Rehabilitation Robotics to related

fields, such as human computer interaction (HeI) and artificial intelligence. This resulted in

the novel application of design and evaluation methodologies from these fields. In particular,

this work addressed the question:

How may existing He! evaluation methodologies be used to quantify the effect of

adaptability on the usability of an intelface designedfor a rehabilitation robot arm?

2

Chapter 1 Introduction

1.1 Motivation & background

Rehabilitation Robotics provides an area of research with a unique combination of

challenges, rewards and fascinations. The principal challenge is to increase the independence

and enrich the lives of people with physical disabilities. This challenge has been taken up by

a number of mainly academic or government-assisted institutions over the past three decades.

This is in contrast to 'mainstream' robotics, where development has occurred primarily in the

private sector. Why should it be the case that this field is so different? A cynical view may

be that there is a perceived lack of high-profit on offer. But it is certainly also the case, that

there exists far greater diversity, both in the expertise required, and within the potential user

group, who necessarily form part of a lengthy iterative design-cycle.

The design-cycle of the field as a whole has now passed the proof-of-concept stage, and has

produced commercially available systems, (for example, Kwee 1989 and Topping 1996).

However, these systems have achieved only a limited amount of success if measured by the

degree of user-acceptance and commercialisation that they have attained. As discussed in

Chapter 2, their advent has provided new challenges, and underlined the importance of some

of the aims of the pioneering projects, which remain only partially achieved.

The research reported in this thesis has been motivated and guided by these challenges,

building upon some initial research initiated at Middlesex University in 1988 (see Prior et.

aI., 1992). The research objective was to develop a robotic arm capable of assisting people

with physical disabilities in activities of daily living (ADL). An extensive survey of potential

users was undertaken to identify user requirements. The survey produced a set of user tasks

that were assessed in terms of the cost, complexity, accuracy and the payload that they would

require. This work resulted in the novel 'Scariculated' kinematic configuration - a

combination of the SCARA robot design, and the vertically articulated design. The work

reported in this thesis relates to the development of a control system and user-interface for a

prototype implementation of the Scariculated design, referred to as the Middlesex

Manipulator.

3

Chapter I Introduction

1.2 Objectives and deliverables

The initial objective of the work reported in this thesis was to test whether a prototype

implementation of the Middlesex Manipulator conformed to design criteria that are essential

for the development of a successful rehabilitation robotic arm. The work undertaken towards

this objective was as follows:

Identification of design criteria

A Criterion is defined within the Oxford Concise English Dictionary as 'a principle or

standard by which a thing is judged'. In the case of a rehabilitation robotic arm, judgment is

ultimately performed by the users or potential users of the arm. Design criteria were

therefore identified by undertaking a review of the field of rehabilitation robotics, with a

particular focus on the results of the user evaluations of exiting systems. This exercise

allowed for the identification of general criteria, the conformance or violation of which could

be used to explain the successes and failures of existing systems. Design criteria differ from

the design requirements of specific projects in their level of generality, thus design criteria

provide a measure against which different systems may be compared.

Design and implementation of a motor control system and user interface

Following a review of the field of rehabilitation robotics, design requirements appropriate for

the Middlesex Manipulator's user interface and control system were specified. These were

then used to develop a motor control system for the manipulator prototype. Implementation

of a user interface included an investigation into novel forms of user interaction. This

necessitated the design of an appropriate software architecture, and an investigation into

novel input devices. This occurred in parallel with the supervision of the construction of the

manipulator prototype based upon the Scariculated design.

Evaluation of the Middlesex Manipulator

Once a functioning Manipulator had been realized, a process of evaluation was undertaken.

Initially this consisted of assessing the manipulator's construction and performance against

design requirements. This was followed by an extensive user evaluation of the prototype by

an individual with spinal-cord injury. The results were measured against the design criteria

allowing for an assessment of whether the current prototype could reasonably be evolved into

a manipulator that was likely to attain wide user acceptance.

4

Chapter 1 Introduction

The three components described above were necessary stages in achieving the stated

objective, and were used to form a process analogous to an iterative design-cycle. For

example, the user evaluation was undertaken in four separate phases. The outputs of each

phase allowed modifications to be made to the user interface and control system, and for the

design requirements to be modified or verified.

Adapting the user interface

Work towards the design of an appropriate user interface included a review of the field of

Human-Computer Interaction (HCI). The objectives of the field of HCI are common to those

of rehabilitation robotics, and to the field of assistive technology in general. However, past

overlap between the two fields has been limited. Typical HCI evaluation methodologies are

biased towards the use of graphical user interfaces, with conventional input devices and the

notion of 'typical' users. Consequently, the design requirements of the Middlesex

Manipulator presented issues that are not typically addressed by the HCI evaluation

methodologies reviewed. Principal amongst these requirements, was the project's need for

the interface to be configurable to match the controlling ability of a specific individual. This

problem led to the second objective of the work reported in this thesis: to test whether HCI

evaluation methodologies may be used to quantify the effect of adaptability on the usability

of an interface designed for a rehabilitation robot arm.

A method of Task Analysis was identified that may be used to make predictions of the

relative usability of different interface configurations. Possible measures of usability include

the time required to undertake tasks, error frequencies, error recovery times, interface

complexity and interface consistency. In its standard form, this approach incorporates the

concept of a typical user, which is represented by the 'Model Human Processor'. A form of

task analysis is proposed within this thesis that replaces this model with estimates of users'

controlling ability. Controlling ability is defined as the combination of the user's functional

ability, and device characteristics. An experiment was undertaken as part of this research, to

test whether this novel form of task analysis could be used to quantify the effect of

adaptability on the usability of an interface designed for a rehabilitation robotic arm.

5

Chapter 1 Introduction

1.3 Contribution to rehabilitation robotics research

This thesis presents a set of general design criteria for the development of rehabilitation

robotic arms. These criteria are likely to be refined and developed through future

technological advances, however their existence is necessary to consolidate the lessons learnt

from existing systems. This thesis argues that systems currently prominent within the field do

not adequately conform to these criteria, and that this has significantly limited their user

acceptance. Nevertheless, an examination of the various combinations of attributes

previously achieved, demonstrates the feasibility of greater success.

The work reported in this thesis produced a novel Rehabilitation Robot arm : the Middlesex

Manipulator. Similar systems currently exist (for example Hillman and Jepson 1997, and

Sheredos 1996), but none have conformed to the same design criteria, and each offers unique

solutions to design requirements. Consequently, continual evaluation and comparison of

these systems, as undertaken within this thesis, is required to progress the field of

rehabilitation robotics towards its aims.

This thesis attempts to contribute towards encouraging an ~)Verlap between rehabilitation

robotics and related fields. Whilst work within assistive technology is necessarily multi

disciplinary, this thesis has formally applied techniques from the field of artificial

intelligence and human-computer interaction, providing novel ways of implementing and

analysing user interaction. Specifically, a novel form of Task Analysis was developed and

tested. Results demonstrated the technique's unique applicability to the assessment of the

relative usability of configurable user interfaces, where user's controlling ability is a

significant determining factor.

1.4 A brief history of the work

Initial work on the content of this thesis began in January 1995 with an up-to-date review of

the field, allowing appropriate design criteria for a control system and user interface for the

Middlesex Manipulator prototype to be identified.

A motor control system employing low-cost embedded microcontrollers was developed

through the course of 1995. Motor control software was developed for the embedded system,

using the C programming language, in the last half of 1995.

6

Chapter J Introduction

This took place in parallel with the supervision of a number of postgraduate Mechanical

Engineering students, undertaking the construction of a Scariculated prototype.

Systems analysis techniques were used to model and define typical user tasks, leading to the

design of a modular software architecture for the user interface and manipulator controller,

which commenced in the last half of 1995. By April 1996, implementation of this system

began, involving the development of a number of Windows applications using c++.

Investigations into the development of novel communication devices resulted in the

identification of an electrolytic tilt-sensor that proved capable of encoding simple hand

gestures and head-gestures. The first half of 1996 involved the development of a gesture

recognition system, employing an artificial neural network, that may be used to classify

gestures issued by either the sensor, or by a standard trackball.

By the end of 1996 a working prototype was ready, and an initial evaluation of the system

was undertaken, by an individual with a C41 incomplete spinal cord injury. Results of the

evaluation allowed for the refinement and improvement of the manipulator system, which

continued throughout 1997. A further two user evaluations were undertaken, each more

extensive than the last. These involved semi-structured interviews and user observations,

addressing aspects of the interface and manipulator. Typical user tasks such as pick-and

place, feeding and drinking were undertaken.

A review of the field of human-computer interaction had been undertaken to assist with the

development of the user interface. In May 1997 this work focused on the application of HCI

evaluation methodologies to assist configuring adaptable systems. These ideas were

developed through 1997, resulting in a modified form of task analysis. An experiment was

designed and undertaken in February 1998 to test the suitability of task analysis for interface

configuration.

1.5 Structure of the thesis

This thesis is divided into the following major sections. Section (I) Introduction and

literature survey: provides an introduction to the work undertaken in this thesis, and an

I C4 refers to the level break within the spinal column. Ranging from 1 to 10, with lower numbers
referring to the top of the spine.

7

Chapter 1 Introduction

overview of the field of rehabilitation robotics. Section (II) Manipulator and motor control

system design: outlines the background of the Middlesex Manipulator project, and describes

the approach taken for the design of a motor control system .. Section (III) User interface

design : provides a review of the field of human-computer interaction, and presents the

design of an adaptable user interface system. Section (IV) Evaluation; presents the results of

an initial evaluation of the manipulator. Section (V) Adapting the user intelface : provides a

discussion of how task analysis may be used to configure an adaptable user interface, and

describes an experiment undertaken to test this approach. Section (VI) Conclusion: provides

a summary, a discussion of possible future work, and concluding remarks. Section (VII)

Supporting Materials: Contains references, a list of acronyms, and appendices including

notations used in design specifications, source listings, circuit diagrams and published

papers. A video of sections of the user evaluation is included with the thesis, a transcription

of which exists as an appendix.

8

Chapter 2

Rehabilitation Robotics

This chapter provides an overview of the field of Rehabilitation Robotics, by providing a

comparison of the characteristics and relative successes of projects that are representative of

the field. A number of conclusions are drawn, principally:

• In contradiction to a prevalent costlbenefit argument, if a system is marketed at too high a

cost, then user-uptake will be severely restricted, irrespective of the system's functionality.

• To' maximize user acceptance, a range of user tasks should be addressed, with the minimum

performance characteristics defined as those required to undertake these tasks.

• To minimize costs, 'base-line' performance and functionality should be identified, but should

be extendable, such that systems may evolve to meet changing user needs and attitudes.

• The system should be mobile, aesthetically acceptable and safe.

• Flexibility should be inherent to the user interface and control system.

These conclusions were used to define a set of design criteria. This thesis argues that whilst

the design criteria should evolve, they form a coherent picture of the field as a whole, and

should be used as general guidelines for the development of rehabilitation robotic devices.

Consequently they were used in the design of a user interface and control system for the

Middlesex Manipulator, and formed the criteria against which the system was evaluated.

9

2.1 Introduction

Assistive Technology may be defined as a field of research which furthers the development

of devices that can be used by people with physical disabilities to improve their quality of

life. This goal may be achieved by reducing either the severity of a physical impairment, or

its effect; i.e. by providing therapy, assistance or both. As a part of this field, Rehabilitation

Robotics adopts the same objectives, and attempts to achieve them through the application of

robotic technology. The field has developed over the past four decades, with many of its

original pioneers active in the development of orthotic and prosthetic devices (for example,

the Texas Institute for Rehabilitation and Research, and the VA Palo Alto Research Centre).

Rapid progress in robotic technology during the late 1960s and early 1970s, particularly for

the automotive industry, led to a widespread interest in its application to Assistive

Technology throughout Europe, America and Japan.

This thesis focuses on Rehabilitation Robotic systems that aim primarily to provide forms of

assistance, as opposed to therapy, though as discussed below, one is often a by-product of the

other. The systems have typically been designed to address either vocational tasks or

activities of daily living, and have employed either industrial robots, educational robots or

purpose-built arms. However, the most common form of classification has been based on

how the robot arms are mounted. The typical categories being : fixed workstations,

wheelchair-mounted, or mobile systems. Perhaps inevitably, researchers have disagreed as to

where the boundaries between these categories lie. For example, relatively light systems

mounted on easily movable platforms are regarded by some as being mobile, and by others as

being fixed workstations (c.f. Prior 1993, and Hillman, 1992). Furthermore, systems

developed originally to be wheelchair-mounted have been employed as workstations (for

example, Driessen, 1997), and technologies developed as workstations are evolving into a

mobile form (for example, Dario et. aI., 1995). Attempting to relax these forms of

classification, the following chapter is structured around a discussion of the prominent

examples of rehabilitation robotic projects. No attempt has been made to reference every

project ever undertaken, but to focus on a number that collectively represent the culmination

of more than thirty years of research and development. For a broader survey of the field see

Hillman (1992), Kassler (1993), Dallaway (1995) or Mahoney (1997).

10

This chapter highlights a number of common and significant issues that have emerged from

this research, and from system evaluations in particular. The chapter summarises these

issues, and argues that a coherent picture results, that can be used to provide guidelines and

design criteria for the development of successful rehabilitation robotic devices.

2.2 The Manus Arm

The Manus arm, illustrated in figure 2.1, was developed primarily as a wheelchair-mounted

system to assist with daily living tasks. It employs a sophisticated kinematic structure

consisting of eight axes, allowing a wide range of tasks to be addressed. The designers'

attention to aesthetics has resulted in a more slender and lighter design than industrial

systems with comparable functionality. From a commercial standpoint, only a handful of

rehabilitation robotic systems can claim to have had any real success (see Mahoney, 1997),

and in terms of the number of units sold, the Manus arm comes second. The system has been

evaluated extensively within Europe and the US, and in many ways has acted as an

impressive flagship for the field in general. The Manus project was initiated in 1984 by the

Dutch Organisation for Applied Physics, though expertise was employed from an earlier

French initiative named Spartacus (Guittet et al1979).

FIGURE 2.1. THE MANUS MANIPULATOR

The design employs an articulated arm on a telescoping base with a combined mass of 20 kg,

providing a reach of 88 cm and a payload of 1.5 kg. Rounded appearance and light weight is

11

achieved by using aluminium castings and carbon fibre tubing, these house the DC motors

with associated gears and belt drives. Slip couplings are employed on a number of the joints,

limiting the torque that may be exerted, and hence increasing system safety. The control of

the system is managed by a control box mounted to a wheelchair. This houses an 80186

processor, transducer interfaces, a power supply and communication interfaces. The standard

input devices for the Manus arm are a keypad and a joystick, with feedback being provided

by a small LED display. The arm is operated by moving the end-effector through Cartesian

space, with pitch, yaw, and roll also possible. The cost of the basic system is approximately

$30,000. For additional technical details see Kwee and Duimel (1989).

Preliminary evaluations of the Manus arm were undertaken in Canada (Milner et. al., 1992),

France (Brelivet, 1992), and Norway (Oderud and Bastiansen, 1992), by users with a range of

disabilities including muscular dystrophy, cerebral palsy and spinal injury. A large number of

activities were successfully undertaken with the arm, including feeding and drinking tasks;

manipulating objects such as knobs and dials; and picking and placing objects such as books

and video tapes. A summary of these evaluations (Verburg et. al. 1996), describes the users

as unanimously finding the use of the arm enjoyable. However, a number of difficulties were

encountered, which significantly restricted the number of users willing to participate in more

extensive tests that would involve the Manus arm being attached to their wheelchairs for up

to four week periods.

Reasons identified for this included:

• The size and bulk of the arm effecting the mobility of the wheelchair.

• Incompatibilities existing between the Manus control requirements and the

wheelchair control system.

• Insufficient margin between effort to control the arm, and the return for that amount

of effort

• The strength and fine control of finger movement that the standard input devices

required.

These results led to further work being undertaken to improve the mounting system, the

interface, and methods for integrating the Manus arm with wheelchair control systems.

Development was undertaken by a Dutch company, Exact Dynamics, receiving funding from

the Dutch government via the public health insurance company. Currently over fifty units

have been sold, creating a large Dutch user group of about forty individuals, mainly with

12

muscular dystrophy, but also spinal cord injury, and multiple sclerosis. Feedback from the

user group has resulted in findings similar to those reported above (see Stuyt 1997). The

users reacted to the system positively, though still encountered some difficulties with

wheelchair mobility. Frustration was expressed regarding the time required to complete tasks

with the arm. The time required to learn to use the arm effectively can range from one hour

to three months depending on the individual's ability and motivation. A desire was expressed

by the users for the existence of pre-programmed routines, and the ability to lift heavier

loads. An evaluation of the system by 14 individuals reported by Oderud (1997), reiterates

the size problems, as well as lack of programmable routines. The study also raises the issue

that the usability of the device should be improved. Nevertheless, as with all evaluations, a

positive response was encountered, and users stressed the fact that a positive psychological

effect results from being able to perform tasks independently.

A more recent evaluation of MANUS was performed at Lund University Hospital (Eftring &

Boschian, 1999). User trials involved eight users for 3-4 hours per day for 1-2 days

undertaking tasks such as pick and place and drinking tasks. User feedback suggested that the

arm was too large, too heavy and difficult to control. One of the 8 was keen to obtain a

MANUS for use at home, with 4 more stating they would be interested if improvements were

made. The main improvements being smaller and lighter design, possibly mounting on the

back of the wheelchair, and simplified control.

2.3 HANDY-l

The HANDY -1 system, illustrated in figure 2.2, was developed as a dedicated feeding aid, by

modifying a low-cost educational robot, the Cyber 310. The system has had more

commercial success than any other rehabilitation robotic device, with over 140 units sold.

However, the success of the project should also be judged by the numerous accounts of the

valuable independence users have gained at meal-time, and the therapeutic effects the device

offers, that are now coming to light.

13

FIGURE 2.2. THE HANDY 1 FEEDING AID

The project was initiated by Mike Topping, a student at Keele University in 1988, to enable a

12 year old boy with cerebral palsy to eat unaided. By 1992, the system had evolved into a

commercially available product, marketed by a company based at Keele science park, namely

Rehabilitation Robotics Ltd. The Cyber robot is a 5-axis arm, weighing 15 kg, and offering a

repeatability of 1.5 mm. The arm is fairly compact at 51 cm height, with a length when fully

extended of 90 cm. The principal modifications made to the arm were the replacement of the

gripper with a spoon holder, and doubling the payload to 500 g. The arm has been provided

with a suitable cover, and mounted on a small, portable base stand. A tray is provided that

can contain the prepared food in seven separate sections. A simple LED scanning system is

used to allow the user to select food from one of the sections by slight movement of a control

switch. This 'no frills' approach has resulted in a system cost of £4750, including assessment

for suitability, delivery, training, and a 1 year call-out service contract (Topping 1996).

Initial evaluations of the system (Topping, 1993), report an extremely positive response by

users. A level of independence, often never previously experienced, is gained by the user

being in control of the pace of a meal, and the choice of separate items of food. A more

recent study (Smith and Topping 1997), supports these early findings with a questionnaire

completed by a random selection of 22 Handy 1 users. Reference is made to the dignity that

the system allows the user, in what previously had been regarded as a humiliating situation.

A positive response is also elicited from carers, who enjoy the fact that they are now able to

eat at the same time as those they care for. From a therapeutic point of view, a number of

users have improved control of their head positioning, since the arm is consistent with its

delivery of the food (carers are able to compensate for poor head positioning). An

14

improvement in hand-eye coordination is also claimed, resulting from operation of the

control switch. Improvement of oral motor control has also been reported, and verified in a

study at Wayne State University (Erlandson et. al., 1995).

Partly in response to requests from the existing user group, work is currently being

undertaken to extend the functionality of Handy 1. A project referred to as RAIL (Robotic

Aid to Independent Living), is being undertaken as part of a TIDE initiative (Technology

Initiative for Disabled and Elderly people - a European Union funding initiative). As

described by Topping et. al. (1997), additional tasks being addressed include shaving,

grooming, and make-up application. The RAIL project has added positional feedback sensors

and more sophisticated control algorithms, allowing more accurate control of both trajectory

and position (see Bolmsjo et al., 1997). However, no fundamental modifications are being

made to the kinematic configuration of the arm, which remains based on the fairly restrictive

Cyber 310 design. Instead of attempting to evolve the system into a general-purpose arm

comparable to the Manus arm, researchers are developing a number of light-weight

interchangeable attachments, such as, a washing attachment that may hold a sponge, a

toothbrush, or a shaver. Clinical evaluations of the RAIL system have yet to be reported.

15

2.4 The Wolfson, Wessex, and Weston systems.

Research into rehabilitation robotics has been active at Bath Institute for Medical

Engineering since the mid 1980's, and provides a clear example of evolving technology.

Initially a commercially available robot was employed in a fixed workstation, this was

replaced by a purpose-built arm, which was eventually mounted on a mobile platform.

Current investigations include the development of a wheelchair-mounted system. At each

stage of project development potential users have been involved, either by questionnaire, or

system evaluation. Unlike the Manus and Handy 1 projects, this research has not progressed

to a commercial product, but has made a significant contribution to defining and

understanding user requirements.

The initial workstation system employed a commercially available Atlas manipulator from

LJ Electronics, Norwich, UK. System evaluations within a Spinal Injuries Unit allowed

appropriate design specifications for a purpose built arm to be determined, these included :

0.5 mm resolution, 1 kg payload, and the ability to traverse the workspace in 5 s (Hillman

and Jepson 1992).

It was also concluded that the size and appearance of the Atlas arm were deemed

unacceptable. The resulting system, referred to as the Wolfson workstation system, was

based on a SCARA design, employing a jointed cylindrical configuration. This was mounted

on a desk unit that also contained a cassette tape player, tape storage, computer disk drive,

and book storage, around which a number of tasks could be planned. Both direct control of

the arm, and the use of pre-programmed routines, were possible. User interaction was via a

scanning system and a single or double switch joystick.

The evaluations reported by Hillman and Jepson (1992), elicited a generally positive reaction

by users and Occupational Therapists, and better than had been achieved with the Atlas

system.

16

A number of conclusions were drawn:

• better aesthetics would be achievable by either more slender or rounded design;

• ease of use was limited by the scanning system, and most users are capable of

using some form of analogue input device;

• the use of pre-programmed routines is important in facilitating robot control,

and

• systems would be easier to learn to use if initial configurations offer simple

instructions and limited options, which may later progress to more advanced

facilities.

There was also the suggestion by Occupational therapists that the system would not be of use

as a feeding aid, since the meal-time constitutes an important social occasion. This

contradicts the Handy 1 evaluations, perhaps highlighting the diversity of the potential user

population, and therefore the diversity of user needs.

Hillman and Jepson (1997), conclude that there were two main reasons why a workstation is

impractical for everyday use:

• a desk mounted manipulator is too large for an average home setting, and

• many of the tasks undertaken by individuals were personal care functions, and

they wished to perform these tasks in an appropriate place.

Consequently, a project was undertaken to transfer the experience and technology developed

to a more mobile, trolley mounted system - referred to as the Wessex system illustrated in

figure 2.3.

17

FIGURE 2.3. THE WESSEX ARM

Various improvements to the arm were made, including: appearance, payload (2 kg), and

efficiency of the motor drive system. A case study evaluation was undertaken, and is

described by Hillman and Jepson (1997). The system was evaluated over a three month

period by an individual with spinal cord injury in his home. A wide range of tasks are

reported as being successfully undertaken with the arm. The user was able to take advantage

of the system's mobility, using it in a number of different rooms, usually placed adjacent to

the wheelchair. The user quickly became proficient at using the system, and was soon to be

requesting functionality that could not be provided. This seems to reiterate the comment

previously made by Occupational Therapists, that systems should be able to be adapted to

increase functionality over time. A phenomenon was also reported that occurred in a number

of user evaluations with the Manus system: the patience and creativity of the user will result

in the system being applied to a number of tasks not originally envisaged by the system's

designers.

Current research at Bath includes the development of a wheelchair-mounted system, the

Weston arm (Hagen et. aI., 1997). The project employs a design similar to the Wessex arm,

mounted on a vertical mast attached to a wheelchair as shown in Figure 2.4.

18

FIGURE 2.4. THE WESTON ARM

The arm's design and positioning attempts to minimize the weight and size impact on the

controllability of the wheelchair. Care has been taken with respect to aesthetics, and ease of

maintenance. At time of writing, user evaluations of the system are planned.

2.5 The Neil Squire Foundation

The Neil Squire Foundation is a non-profit organisation based in Canada, involved in service

delivery and research which addresses the needs of people with severe disabilities. The centre

has been involved in the development of robotic technology since the late 1980s, developing

a fixed workstation system that operates in a structured vocational environment. The system

is referred to as the Neil Squire Foundation Robotic Assistive Appliance (RAA), and is also

known by its commercial name : Regenesis. Research at the Foundation has been

distinguished by an extensive evaluation of the RAA, which has attempted to quantify the

effectiveness of vocational systems. This is in contrast to the majority of evaluations of

previous workstation systems, that have tended to focus on subjective issues.

Most of the work discussed so far in this chapter has resulted in systems with some form of

mobility. The RAA is unequivocally a fixed workstation system, and builds upon the

19

experience of a number of similar projects that were the focus of rehabilitation robotics in

North America throughout the 1980s and into the 1990s. The most prominent of these is the

DeVar system (Van der Loos and Hammel, 1990), which employs an industrial robot arm,

the PUMA 260, mounted on an overhead track. Although evaluations of DeVar have been

successful (Hammel et. al. 1992), migration of systems into the real world has been

hampered by high cost. Only three systems have been built to date, at an estimated cost of

$lOO,OOO per system. The Neil Squire Foundation has attempted to meet user needs at low

cost, by developing a purpose built robot arm. The initial requirements analysis resulted in

the following objectives (Birch, 1993) :

• low cost;

• ease of use;

• functionality based on user needs;

• full programmability;

• portability;

• safety;

• flexibility in configuration, and

• reliability.

The resulting system has 4 rotary and 2 linear axes, a payload of 2.2 kg, and a mass of 8 kg.

Potentiometer feedback is used for closed loop PID control, providing a resolution of

0.73 mm for the linear axes, and 0.33° for rotational axes. The motor control system employs

a Motorola 6809 CPU, communicating to a PC based user interface. User interaction has

been via a standard keyboard, with the assistance of a handstick, mouthstick, or headstick.

An expanded keyboard has been used by those with poorer motor control. The estimated cost

of the robotic system is $23, 000. However, the total cost of the workstation system including

a special desk, computer adaptations, and architectural modifications, is estimated at $35,000

(Birch et aI., 1996).

A formal evaluation of the system was undertaken by seven severely disabled individuals,

and a number of able-bodied attendants, as described by Birch (1993). An experiment was

designed that allowed the subjects to undertake a word-processing based task using two

similar workstations, only one of which contained the RAA. The nature and length of

interventions required by the attendants was measured, as was the overall productivity, in

order to gauge the effectiveness of the RAA. Results showed that the workstation with the

20

RAA required significantly fewer attendant interventions, however, this was offset by

significantly lower productivity of the RAA based system.

A discussion of the results (Birch et aI., 1996), states that the number of interventions was

fewer with the RAA based workstation, as filing and printing tasks could be handled without

the attendant's assistance. The suggested cause of lower productivity, was that operation of

the RAA is slower than waiting for and receiving assistance from an attendant. In a real

working environment, it is assumed that attendants would be co-workers. Therefore, in order

to estimate the effectiveness of the RAA it is necessary to estimate the loss of productivity

caused by disturbing a co-worker, and the loss of productivity of the disabled worker whilst

waiting for attendance. If the cost of disturbance and waiting were high, then the RAA based

workstation could be argued as being more cost effective, even though the overall

productivity is lower. It is not difficult to see some fundamental problems in this approach.

Office-based work that requires a significant amount of word-processing can usually be

arranged such that productivity does not grind to a halt when a worker is waiting for a

printout. Additionally, many office environments are such that trips to a shared printer by

somebody in the office is frequent. There is also a drive by some companies to create 'paper

less' offices where possible. Each of these issues may serve to dissuade an employer (or

government) from purchasing the systems - a fact that seems to have been borne out over the

last decade.

2.6 Other Rehabilitation Robotic Systems

As the projects and system evaluations described above are fairly representative of the field

as a whole, the remaining active or recent projects that are particularly relevant to this thesis

are covered below with a little less detail.

A project referred to as RAID (Robot to Assist the Integration of Disabled people) has had

objectives and an approach similar to the RAA described above. A workstation system was

developed to address vocational tasks, employing an arm that was developed for

rehabilitation or light industrial applications - the RTX by Universal Machine Intelligence

Ltd, UK as shown if figure 2.5.

21

o

FIGURE 2.5 THE RTX ROBOT ARM

Like the RAA, and DeVar, RAID has undertaken successful evaluations (see Danielsson and

Holmberg (1994)), but its high cost at $55,000 per workstation, has been central in restricting

its deployment to clinical evaluations. As with the RAA, user feedback was generally

positive, though tasks were regarded as being fairly slow. Common to most system

evaluations, improvements to the user interface were suggested - particularly in terms of

available input devices. The project is currently being progressed under the EPI-RAID

acronym as part of a TIDE initiative. This employs a more recent robot based on the RTX

(RT200, Oxford Intelligent Machines Ltd, UK), a new programming language CURL (see

Mahoneyet. a1. (1992)), and a modified workstation offering greater reliability than the first.

Reports of evaluations of the current system are expected in 1998 - greater system usability is

anticipated, but lower cost is not.

A company called Kinetic Rehabilitation Instruments in the USA has developed the Helping

Hand - a wheelchair-mounted robotic arm. Simplicity has been central to system design,

resulting in an aml significantly cheaper than the Manus arm at $9,500. The 5 degree of

22

freedom arm has also addressed the size and weight problems of the Manus arm: at 11 kg the

arm adds just 1 inch to the width of the wheelchair. Simplicity has restricted how the arm

may be controlled: the arm is operated one joint at a time by a joystick. Closed-loop control

is not implemented, and cartesian movement or pre-programmed routines are not available.

However, evaluations have demonstrated that a large number of daily living tasks could be

undertaken with the system (Sheredos et. aI., 1996; Sheredos et. aI. 1997).

A number of projects have investigated the use of pneumatic actuators for robot control, as

they provide a relatively low-cost and safe form of actuation. However, trials of devices by

Prior et. aI. (1992), and Mattie and Hannah (1994), identified a number of difficulties

including : the control of excessive sway and drift, the bulkiness of the actuators affecting

aesthetics, and an unacceptable level of noise from the air compressor. More recently, work

at the Queen Alexandra Centre for children's health in Canada has improved on one of the

original pneumatic devices - the Inventaid Arm developed by Jim Hennequin of the

Papworth Group UK. This new device, the QA manipulator (Mattie J., Hannah R, (1995)),

has an improved control system, but has retained unacceptable appearance and noise levels.

2.7 The cost/benefit argument

Mahoney (1997), has estimated the cost and number of units sold, of several rehabilitation

robotic systems. The major purchasers have been identified, as summarised in table 2.1

below. The Handy 1 system has clearly been the most successful commercial venture to date.

This is demonstrated not only by the significantly greater number of units sold, but also by

the fact that systems have been purchased and are owned by individual users (though

purchase was often with the assistance oflocal councils and charities).

23

Product R&D
Support

Approx Approx h ld
Cost # sold were so

DeVar VA Palo Alto $100,000 3 Clinical
Stanford Univ.

"""1""t;,,n

Manus IRV, TPD $35,000 50
Various

Handy I Keele Univ. $6,000 140 Individuals

Helping Hand KRI $9,500 \0 Clinical
evaluation

Inventaid Papworth Grp. $8,000 5
Not known

RAID TIDE $55,000 9 Clinical
p.v>llnM;rm

RAA Neil Squire $23,000 7 Clinical
Foundation evaluation

Table 2.1 Rehabilitation Robotics - commercial endeavours

(Reproduced from Mahoney, 1997).

The Manus arm, which comes second in terms of number of units sold, has typically been

bought either by research centres, or via a funding scheme involving the Dutch government -

a scheme which has since been replaced (Verburg et. aI., 1996). Given that Handy I has less

functionality than its competitors, it would seem to be the case that the cost of systems must

be kept low if they are to be successful. However, as discussed in section 2.5 above,

researchers have attempted to justify the high costs of vocational systems by using a

costibenefit analysis, relying on assumptions that would be unlikely to convince potential

funding bodies. A return-on-investment analysis has also been made in support of the Manus

system (Styuyt, 1997). Manus evaluations have shown that the system was used for 2 hours

per day on average. Styuyt equates this 2 hours to a reduction in care requirements of 2 hours

per day, and argues that this would lead to a return-on-investment in one year. However, 2

hours of system use per day is not equivalent to 2 hours reduction in care. The number of

interventions required by a carer is dependent on the nature of the user's disability, what they

are using the system for, and how experienced they are at using it. Additionally, in many

cases, carers are unpaid members of the family. Ultimately, the success of the Handy 1

system has been the improvement in the quality of life of its users, not any financial savings,

and the shape of the field as a whole suggests that future systems will need to be at a

comparable price to emulate or improve on this success.

24

2.8 System Mobility

The failure to win the costlbenefit argument in the eyes of potential employers has meant

that more success has been achieved with systems that address activities of daily living, as

opposed to vocational systems. This is the domain of the mobile (or at least portable) system,

and trade-offs exist when determining how this mobility is achieved. Attaching an arm to an

electric wheelchair provides an immediate and potentially extensive degree of mobility.

However, this imposes severe restrictions on the weight and size of the manipulator - a

problem as yet unresolved with the Manus system, though successfully addressed by the less

sophisticated Helping Hand. Evaluations have also suggested that aesthetic design is more of

an issue for wheelchair-based systems : an arm attached to a wheelchair is very closely

associated with its occupant, as evident from feedback concerning the Weston arm (Hagen et.

aI, 1997). Additionally, designing a system for an electric wheelchair restricts t~e potential

user group to those who posses an appropriate electric wheelchair. As pointed out by Verburg

et. al. (1995), some wheelchair designs do not allow mounting of the Manus arm. One of the

principal disadvantages of systems such as the trolley-mounted Wessex Arm and Handy 1,

are that a carer is required to position the system appropriately for any activities undertaken.

While the field awaits the maturity of fully autonomous systems, evidence suggests that a

valuable area of research is the development of systems that could be mounted either on a

wheelchair or a mobile platform, thereby combining the benefits of both approaches.

2.9 System performance

A direct comparison of performance characteristics of different robotic systems provides

limited information as to the impact of their relative performance levels. Certainly there is no

correlation between accuracy or payload and user acceptance. The HANDY 1, with a

repeatability of 1.5 mm and a payload of 0.5 kg, provides lower performance than the

remaining systems, but has achieved greater success. It is more informative to consider

performance in terms of the tasks that specific systems are designed to address. The MANUS

system has a payload of 1.5 kg, but has received user feedback suggesting that this should be

increased. This request results from the fact that a general-purpose robotic system requires a

greater payload than a dedicated feeding aide.

25

The minimum perfonnance characteristics required of a robotic system may therefore be

defined as those required to successfully undertake the tasks that the system is designed to

address. This allows for the development of a base-line product that has the potential for user

acceptance, providing that it can be marketed at an appropriate price. Evaluations of the

MANUS and Wessex systems, suggest that increased perfonnance will always be requested,

even if the original tasks identified can be completed. However, this is typical of most

consumer products. For example, wheelchair design has made significant ergonomic

advances since the invention of the wheelchair, but these improvements were not a pre

requisite of user acceptance or commercial success.

2.10 System functionality

Following its commercial success, user feedback from the HANDY 1 project quickly

highlighted the need for general-purpose robotic systems. This echoed a prediction made by

Finlay (1988), stating that the projected UK sales for a proposed 'fetch and carry' robot

priced at £10, 000 could be 170 units per year. Due to its limited functionality, the HANDY 1

project has been unable to repeat its success as a feeding aide when applied to any other task,

and has therefore only scratched the surface of a potentially large assistive technology

market.

The concept expressed above of developing a base-line product, the perfonnance of which

may be progressed through time to meet a greater number of user's needs, is also applicable

to system functionality. An example of evolving technology towards a solution is provided

by the projects undertaken at BATH University as described above. Each project phase

builds on the lessons learnt from the previous, and where designs incorporate limitations,

these are abandoned or modified accordingly. As the field of rehabilitation robotics is

maturing, a significant measure of any system's value is not its current level of user

acceptance, but its potential for being evolved into a system with greater user acceptance.

This requires not designing limitations into the system at early stages in the project (or

inheriting limitations as is the case with HANDY 1).

The situation for the MANUS ann may be regarded in some respects as being the reverse of

that of HANDY 1. The MANUS is a general-purpose device, and as mentioned above, its

expense has limited its success. This suggests that a sensible course of progress for MANUS

should be back towards a base-line product, with research investigating whether aspects of

26

the system have been over-engineered, and whether costs can be reduced. However, this is

not the natural course of evolution for any product, and has not as yet been pursued for

MANUS.

2.11 The User Interface and Control System

The extreme diversity that exists within the potential user population of rehabilitation robotic

systems, has led evaluations to call for wider ranges of available input devices. In response,

the M3S TIDE initiative is attempting to develop an interface standard, which includes a Bus

system to which any M3S compliant device may be attached (see Overboom et aI., 1997).

Problems can result where the original design of a system does not anticipate such

adaptability. As reported by Kwee (1994), the functionality and flexibility of the Manus

system was severely restricted when incorporated within an M3S system. User diversity has

also been a factor in highlighting the need for systems that can be configured to present an

appropriate level of functionality. As discussed in the study by Hillman and Jepson (1992),

systems should be capable of being re-configured as the requirements and experience of

specific users change over time. The evaluations outlined above have also indicated that the

usability of systems is enhanced when a number of different control modes are available, i.e.

joint, cartesian, pre-programmed positions, and pre-programmed routines.

2.12 Design Criteria

The above examination of the strengths and weaknesses of extant rehabilitation robotic

systems is used here to define guidelines for the development of future systems. This chapter

has discussed how the Handy 1 system has successfully addressed a single task at low-cost,

but notes that it is restricted from becoming a general purpose manipulator due the limited

functionality of the robot arm employed. Manus has demonstrated the value of general

purpose manipulators, but has been restricted in its success due to its high-cost, limited

interface and control options, and its physical size. Helping Hand provides an example of

engineering specifications that address the size problems, and the Wessex system has

27

demonstrated the value of mobility and the need for control options that include pre

programmed routines.

The points argued in sections 2.7 to 2.11 may be summarised as follows. If a system is

marketed at too high a cost, then user-uptake will be severely restricted, irrespective of the

system's functionality. Systems should be designed to address a range of user tasks, and the

minimum performance characteristics required of any system may be defined as those

required to successfully undertake the specific tasks addressed. The base-line performance

and functionality of systems should be modifiable, such that systems may evolve to meet

changing user needs and attitudes. A degree of system mobility should be provided, and

flexibility should be inherent to the user interface and control system. Finally, the appearance

of the resulting system has to be acceptable to potential users.

The design guidelines are formulated as follows:

• low-cost should be prioritised;

• the system should be of general purpose, providing functionality that addresses a

range of user needs;

• base-line performance characteristics should be derived from the requirements of

the user tasks that are addressed;

• The design should facilitate future modifications to improve system performance

and functionality;

• a form of system mobility/portability should be provided;

• operation should be possible with a wide range of user input devices;

• a variety of control modes should be available;

• ease of use should be enhanced by allowing systems to be configured to match

individual user needs;

28

• the system should have an acceptable appearance, and

• the system should allow for safe operation.

The following chapter examines the design of the Middlesex Manipulator prototype, and

illustrates the application of the guidelines outlined above to the design of a user interface

and control system for the prototype.

29

~
~

0
0

~

~

~

~

......
=

~

(J
Q

...

...

.....
.

=
~

0 =

=

.....
..

~

~

~

~

0 ~

~
 =

Q
. 9 0

w

~

0

0 ~

~

0 =

~

~

0
..

~

~

~

~

~
 9

Chapter 3 The Middlesex Manipulator

Chapter 3

The Middlesex Manipulator

This chapter discusses the background to the development of the Middlesex Manipulator. This

may be regarded as consisting of three phases:

Phase I User Requirements & Consequent Mechanical Design Specification

The user requirements analysis and system design specification included a user survey (Prior,
1990), and a novel manipulator design. This work was undertaken at Middlesex University by Dr
Steve Prior (Prior, 1993), and is reported in this thesis as background material.

Phase II Construction

An implementation of Prior's design was undertaken at Middlesex University by graduate
students under the supervision of Peter Warner, and later under the supervision of the author.
This resulted in a prototype employing DC servo-motors, replacing an earlier pneumatic
prototype developed by Prior.

Phase III User interface design, Control system design & System Evaluation.

The design and implementation of a control system and user interface for the Middlesex
Manipulator prototype, and its subsequent evaluation, was undertaken by the author. This is
introduced in this chapter, and described throughout the remainder of this thesis.

31

Chapter 3 The Middlesex Manipulator

3.1 Defining User Requirements (Phase I)

An analysis of user requirements was performed by Prior (1993), as the first stage of product

development. This consisted of a review of world rehabilitation robotics research (Prior, 1989),

and a survey of potential users (Prior, 1990), expanding on and updating a similar survey

performed by Clay and others (Clay et. aI., 1987). The survey of 50 individuals with various

disabilities, identified the activities that were either difficult or impossible to perform, and

established a number of tasks that people would wish to undertake with a robotic device.

Personal Hygiene Tasks

(% with Difficulty + %Not at all)

88% Washing Hair

80% Rearranging Clothes After Toilet

68% Cleaning After Toilet

54% Combing Hair

54% ShavinglMakeup

Domestic Tasks

(% with Difficulty + %Not at all)

84% Cooking

82% Preparing Food

78% Filling the Kettle

78% Opening/Closing Windows

70% Pouring WaterlMilk

Leisure and Recreational Tasks

(% with Difficulty + %Not at all)

58% Pick-up and Throw Objects

54% Opening a Wine Bottle

52% Gardening

46% Shooting

44% Playing SnookerlPool

Working Environment Tasks

(% with Difficulty + %Not at all)

48% Opening a Letter

48% Using a Stapler

46% Posting a Letter

44% Pick and Place Objects

44% Filing Documents

Table 3.1 Most Important Task Lists

Prior employed a weighted matrix method (Middendorf, 1986), to order the tasks dependent

upon the cost, control complexity, accuracy and payload that they would be likely to require.

This was achieved by assigning each of these criteria a weight corresponding to an estimate of its

importance relative to the other criteria. Each of the tasks were judged against the criteria, and

awarded a score. The tasks with the highest scores should in theory be the easiest to incorporate

32

Chapter 3 The Middlesex Manipulator

into the design of the manipulator. The results acted as a prioritized task list, on which the design

specification was based. These are shown in table 3.2 below. The tasks are then listed in table 3.3

in order of score. Estimates are also shown of the number of degrees of freedom (D.O.F) the

manipulator is likely to require in order to undertake the tasks.

ICriteria (weight)

IPersonal Hygiene
Washing Hair
I Re-arranging Clothes
ICleaning after the TOilet
GCim5iilg-11air------

IShaving/Makeup

Domestic TciSks--

Cost (0.4) 1 Complexity (0.3)1 Accuracy (0.2)· Payload (0.1)

0.1
-0~2o

0.1
O.T

0.25

Score

-0~1un---r--D:2 0.15 10:r25--

0.2 0.2 0.2 0.22
0.15 0.15 0.2 0.135
0.3 0.2 --0.2 0.27

0.2-5 -~--O:25 0.25 0.25

ICooking 0.2 0.2 0.2 -0.15 i0-:-f95
I Preparing Food 0.1 0.1 j 0.1 0.25 j 0.115
Filling the Kettle 0.2 --0.2---- ---0:-2----0-:-15--- -O-:T9S---

IOpening/Closing Windows 0.2 0.2 0.25 0.2 0.21
I Pouring Liqu!9m 0.3 0.3 ~ ____ O.25 0.25 0.285

I Leisure & Recreational
I Pick-up & Throw Objecls 0.1 I 0.2
Gardening 0.3-------r---0:-2----·-----

IOpening a Wine Bortle 0.2 0.2

1~~~~~I~:ool/snooker ~:~ +___g:~~_ _

0.3
0.25
0.15
0.15
0.15

0.15 0.175
0~2 --0.25---

0.2 0.19
0.25 j 0.21 --.--------- - -----------1- --
0.2 O. 75

IWorking EnvironmenT
Dpenlng- a Letter 0.15 - - ---0:15--1----0-:-15----;-- -0:2 - --- - 10.155

I Using a Stapler 0.15 0.2 0.2 0.15 0.175
I Posting a Letter
Pick & Place Objects

0.3
0.2 °o~: -_u_I--- °0~2~ u..90;~--I--90~;-n

I FilfngDCicuments 0.2 0.2 0.2 0.2 0.2

IOtherTasks
IDrinking 0.3 0.3
I Painting --u:3 0.3
IWriTing/TYPlng 0.15 0.15
IShowering 0.1 0.1
I Creaming 0.15 0.15

TOp Five Tasks
I Reaching & Gripping 0.2 0.25
I Pick & Place from Floor 0.2 I 0.25
Fatlng/Feed~--------O:-T------ -- -- - - 0:2

I Dressing 0.15 0.1
IPicKuPLarge7Heavy Object 0.15 r -0.2

0.25 0.15 0.275
Q.25 0.25 0.285
0.15 0.2 0.155
0.2 0.15 0.125
0.15 0.25 0.16

0.25 -0.2 O~225

0
1
.2 _ _ Oo-,-~ 1_0~;5_

O. 5 .0 I 0.2 ...
0.2 0.2 0.15
0.2 0.1 0.17

Table 3.2 Weighted Matrix Results

33

Chapter 3 The Middlesex Manipulator

Task Score D.O.F.

Pouring liquid 0.285 4

Painting 0.285 5

Drinking 0.275 4

Posting a letter 0.270 4

Combing hair 0.270 5

Gardening 0.250 5

Shaving/makeup 0.250 5

Eating/feeding 0.240 5

Reach & grip. 0.225 6

Re-arranging clothes 0.220 6

Pick from floor 0.215 5

Open/close windows 0.210 5

Playing pool/snooker 0.210 4

Pick & place objects 0.200 5

Filing documents 0.200 5

Cooking 0.195 5

Filling the kettle 0.195 5

Pick & throw objects 0.175 6

Table 3.3 Highest Scoring Tasks (from weighted matrix results)

The results of the survey, and a process of consultation with disabled people and care

professionals, led to the development of the following design specifications. These are grouped

into : i) general requirements; ii) design requirements; iii) environmental conditions; iv)

ergonomics and aesthetics; v) safety; vi) cost; and vii) life expectancy and servicing.

34

Chapter 3 The Middlesex Manipulator

3.1.1 General Requirements

• The system shall be capable of use by the majority of wheelchair users via several modular

user interface options.

• The system shall have either a versatile end effector capable of picking up a large number of

differently shaped objects or a tool changing end effector with an on-board selection of

different end effectors.

• The operation of the system shall require minimal specialist training.

• The system shall be capable of being mounted to as large a range of wheelchairs as possible

without substantial modifications.

• The system shall be able to be fitted on either side of the wheelchair with minimal

modifications to the system.

• The system shall be capable of direct control by the operator through visual feedback together

with re-programmable memory locations for use with pre-programmed routines.

• The system shall be capable of connection to a personal computer for workstation use.

• The system shall be capable of being easily detached from the wheelchair for either

transportation or servicing.

• The operation of the system should not unduly fatigue the operator.

• The system shall be designed to be easy to manufacture, simple to assemble and accessible

for repair and servicing.

3.1.2 Design Requirements

• The system shall be capable of lifting at least 1 kg anywhere within its working envelope.

• The system shall have a reach characteristic, r, of (0.7 m« r« 0.9 m).

• The system shall have an absolute positional accuracy of 15 mm.

• The system shall have a repeatability of 10 mm.

• The system shall have a coarse control speed of 0.2 mls and a fine control speed of 0.05 mls

for the end point velocity.

• The system shall be able to reach to a zone on the floor, to the front and side of the

wheelchair.

• The system shall be capable of reaching to a maximum height of 1.7 m above the floor.

35

Chapter 3 The Middlesex Manipulator

• The system shall be capable of reaching to a zone in front of the operator from head to thigh

(normal operating mode).

• The system shall be designed to have a kinematic configuration which under normal use is

stiff in the vertical plane and compliant in the horizontal plane.

• The system shall have a total weight of less than 8 kg.

• The system shall be designed to comply with ISO 7176 : Part 1: Determination of Static

Stability, and ISO 7176 : Part 2 : Determination of Dynamic Stability of Electric

Wheelchairs.

• The system shall be designed and programmed with reference to the top eighteen tasks (listed

in table 3.3).

3.1.3 Environmental Conditions

• The system shall be capable of operation within a temperature range of 0-40°C.

• The system shall be designed to prevent the ingress Of dust and dirt.

• The system shall be constructed of materials able to withstand contact with chemicals and

substances, which it might reasonably encounter during it's working life.

• System noise levels are to be limited to 40 dB at 1 m.

• The system shall be designed for both indoor and outdoor use.

• The system shall be designed to comply with ISO 7176 : Part 9 : Climatic Tests for Electric

Wheelchairs.

3.1.4 Ergonomics and Aesthetics

• The system shall have a parked or home position which does not substantially increase the

overall size of the wheelchair's width or length.

• The system's height when parked shall be below the height of the wheelchair's armrest.

• The system shall not prevent the wheelchair from passing through a normal doorway.

• The system's power supply shall come from the wheelchair's batteries.

• The system shall be capable of continuous operation for at least 4 hr/day.

• The system shall be designed to conserve energy when static.

• The system shall be aesthetically designed, in terms of foml, size, colour, texture and

movement.

36

Chapter 3 The Middlesex Manipulator

3.1.5 Safety

• When in operation the system shall be prevented from causing injury to the operator by

employing slow speed of operation, low inertia of moving parts, system monitoring and hard

stops.

• An emergency stop switch and system reset switch should be provided.

• All external surfaces shall be free from sharp comers and projections.

• The system shall not unbalance the wheelchair when operating at maximum reach.

3.1.6 Cost

• The system shall have a maximum component cost of £1,500 - excluding the cost of interface

mechanisms.

3.1.7 Life Expectancy and Servicing

• The system shall not require maintenance for at least the first 500 hours use, with an annual

service thereafter.

• The system shall have a total life of at least 6,000 hours.

3.2 Kinematic Design (Phase I)

As described by Prior (1993), the initial conceptual designs for the kinematic arrangement were

based on the following five standard industrial robot geometries:

• Articulated (PUMA: Programmable Universal Machine for Assembly);

• Horizontally articulated (SCARA: Selective Compliance Assembly Robot Arm);

• Cartesian;

• Spherical and

• Cylindrical.

Prior notes that the SCARA geometry has increased rapidly in popularity for industrial applications

over the passed two decades, having demonstrated significant performance advantages over other

37

Chapter 3 The Middlesex Manipulator

industrial robot designs (see Makino and Furuya, 1982). The concept has also been employed by

successful rehabilitation robot designs such as the RTX and Wessex systems. Prior outlines a

number of the design's advantages, for example, the major joints do not oppose gravitational forces,

and can therefore be of small torque ratings. The arrangement of jointed planar linkages allow the

actuators to be either direct-drive, or mounted in-board and driven through belts or chains. This

lowers the moment of inertia of the links and the bending moment of the arm about the base joint.

The compliant nature of the SCARA robot in the horizontal plane is also an important safety feature

when in close proximity to the user. The workspace of the SCARA robot is in the form of a heart

shape, which would suit the wheelchair application where there is a need to reach to the user as well

operate at the front and side of the wheelchair.

The industrial SCARA robot is mainly designed to perform tasks involving pick, place and

insertion operations. The vertical travel is small compared to the large horizontal workspace, and is

usually achieved by placing a prismatic joint directly on the axis of the end effector. For

rehabilitation applications, there is a similar need for a large horizontal workspace, but there is also

a need for a large vertical stroke. Prior argues that using the industrial SCARA geometry and

making the vertical stroke at the end effector larger is impractical, due to the related negative

effects that the extra size and mass would cause.

In the wheelchair application, the space criteria dictates that the whole of the arm may park in a

position that is beneath the armrest and which does not make the wheelchair substantially wider or

longer. The high reach characteristic (reach up to 1.7 m) could be achieved with a fixed pillar

arrangement, upon which the whole arm was raised, as in the RTX design. However, Prior notes

that this would prevent the arm being parked, cause visibility problems for the wheelchair user and

would be unlikely to be accepted; and therefore rejected the concept.

An alternative design solution was suggested, combining one or more of the basic kinematic

arrangements. Combining the advantages of the SCARA configuration with the vertically

articulated arm seemed to give an optimum solution to the twin problems of reach and suitable

workspace.

38

Chapter 3 The Middlesex Manipulator

3.2.1 The Scariculated Arm Design

The design solution proposed by Prior (1993), combines the advantage oflarge vertical stroke from

the vertically articulated geometry with the advantage of large horizontal stroke from the SCARA

geometry. This was achieved by inserting a 0° ± 90° joint at the beginning of the first link of a

standard SCARA design. The arm is thus enabled to reach to the floor (-90° position) in the

vertically articulated mode and up to a high reach (+90° position) also in the vertically articulated

mode by the use of this extra joint; with the 0° position being the normal SCARA mode. The design

consists of seven joints and the end effector grasp (five rotary and two linear). The kinematic

arrangement selected for the prototype design is therefore a hybrid combination of the SCARA

geometry and the vertically articulated geometry, and is referred to as the SCARlCULATED arm

geometry, illustrated in figure 3.1.

7 ~

4

FIGURE 3.1 - THE SCARICULATED DESIGN

39

Chapter 3 The Middlesex Manipulator

3.3 The Middlesex Manipulator Prototype (Phase II)

An early prototype of the Middlesex Manipulator employed pneumatic 'flexator' actuators.

Research in the application of these actuators to the field of rehabilitation robotics was motivated

by the safety offered by their natural compliance, their low-cost, and their favorable power to

weight ratio. As anticipated, the actuators presented a more challenging control problem than DC

motors, partly due to friction and hysteresis. However, Prior (1993) reports a number of

techniques that can be used to reduce hysteresis. Prior also notes that flexator actuators will be of

most use where the miniaturization of actuators is not a requirement. As discussed in Chapter 2,

user evaluations have indicated that the bulkiness of pneumatic actuators results in unacceptable

appearance. Consequently, the decision was made to employ DC servomotors for the current

version of the Middlesex Manipulator.

Elbow

Upper ann

---.

Foreann

~ .~.~~.~.~o~ ~ ~~._ ~
~ .~ ~~"'3 4%·~···· n7'~ ~...l4.Q/r·,,-ct:jg.ii \ ! ,~'0
~. li--:Z; J O~\ ~3 i _.JV,fl"'~\ .. ,. ~ V' ~.~",{i,£;~ ,~" S' ."<:~~ (,#1/ Cd ~ <' ["; .

.;_<. • _._._ >0... $~ :

Shoulder

... Base
~
~j

FIGURE 3.2 MIDDLESEX MANIPULATOR - ENGINEERING DRAWING

40

Chapter 3 The Middlesex Manipulator

The mechanical construction of the prototype was initiated by two undergraduate students (Heide

and Roorda, 1993), and continued by Dijkstra and Fennema (1994), all under the supervision of

Peter Warner, Principal Lecturer, Middlesex University. Assembly and modification of the

design was performed by the author and undergraduate students (Buter and Veltman, 1996)

under the supervision of the author. The manipulator without end-effector is shown in figure 3.2,

with DC motors replacing th~ original flexators.

The five axes shown include two prismatic axes (base and forearm), and three rotational axes

(elbow, and two degrees of freedom at the shoulder). The Upper arm is 360 mm in length, and

the forearm is 330 mm, extendible to 530 mm. The overall height of the manipulator varies from

620 mm to 900 mm. The shoulder joint can rotate through 2000 in the horizontal plane, and 3600

in the vertical plane. The elbow joint can rotate through 3150
•

To reduce weight, holes have been drilled in the manipulator's aluminum tubing. Lightweight

plastics are employed for the cover, and where possible for gears, and high density polyethylene

strips form linear bearings for the prismatic joints. The resulting overall weight is 7 kg

(excluding end effector).

A three degree of freedom end effector with detachable fingers is currently under development,

and is shown with the manipulator on a temporary trolley mounting in Figure 3.3.

41

Chapter 3 The Middlesex Manipulator

FIGURE 3.3 MIDDLESEX MANIPULATOR WITH END EFFECTOR

3.4 Controller and Interface Requirements Specification (Phase III)

As discussed in Chapter l, the development of a control system and user interface for the current

Middlesex Manipulator prototype is central to the work reported in this thesis. The inputs to the

process of generating a requirements specification were:

• the general design criteria derived in Chapter 2;

• the initial Manipulator design specification generated by Prior (1993) and outlined above;

• a review of the field ofHCI as discussed in Chapter 5, and

• consultation with researchers, care professionals and potential end-users.

The items that are pertinent to the control system and user interface were extracted from the

initial design specification, with the following modifications and additions included. Firstly, the

repeatability requirements were tightened, as the original estimates had been based on levels

42

Chapter 3 The Middlesex Manipulator

deemed achievable with pneumatic actuators. The reference to modular interface options in the

original design specification is expanded to explicitly refer to the provision of different input and

feedback devices, and the possibility of adapting the system in terms of the functionality

provided, and the form of user interaction employed. The issue of compatibility is also

addressed, particularly with reference to compliance with developing interface standards. A

target cost for the manipulator including the control system and user interface is provided, based

on the approximate cost of the HANDY - I system. Finally, as Chapter 2 discussed the

advantages of systems that can be mounted on a wheelchair or a mobile platform, the current

requirements specification regards the potential user group as being people with physical

disabilities, as opposed to only electric-wheelchair users.

3.4.1 Requirements

G 1. System design should address the user tasks outlined in table 3.3

G2. The system should be safe to operate.

G3. The operation ofthe system should not unduly fatigue the operator (design should address

ease of interface navigation, intuitive operation, and minimized likelihood of errors);.

G4. The operation of the system shall require minimal specialist training.

G5. The system should be subjectively pleasing;

G6. The cost of the Manipulator, control systems, and user interface should be low, at

approximately £5000, and;

G7. The system should be easy to repair and maintain.

3.4.2 User Interface

UI. The system should allow for operation with a range of different input and feedback devices.

U2. The system should be adaptable, allowing the functionality and interface complexity to be

configured to match user requirements.

U3. The system shall be capable of direct control by the operator through visual feedback

together with programmable memory locations, and routines.

U4. The system shall be capable of connection to a personal computer for workstation use.

US. The system should allow for connection to other assistive technology devices through

common interface standards.

43

Chapter 3 The Middlesex Manipulator

3.4.3 The Control System

C 1. The system shall have a repeatability of S mm.

C2. The system shall have a coarse control speed of 0.1 mls and a fine control speed of O.OS mls

for the end point velocity.

C3. The system's power supply shall come from the wheelchair's batteries.

C4. The system shall be capable of continuous operation for at least 4 hrlday.

CS. The system shall be designed to conserve energy when static.

C6. When in operation the system shall be prevented from causing injury to the operator by

employing slow speed of operation, low inertia of moving parts, system monitoring and hard

stops.

C7. An emergency stop switch and system reset switch should be provided.

3.5 User Interface and Control System Overview (Phase III)

Initial design considerations resulted in the proposal of a system architecture as depicted in

figure 3.4. A Personal Computer provides the platform for the user interface. This was chosen to

provide greater flexibility than an embedded system for interface device development, as

required by items G2, UI, U2, U4 and US of the requirements specification. However, both

power consumption and cost may be increased as a result of not using an embedded system

(items GS, C3 &C4). A solution would therefore be to port the system developed on a PC to an

embedded PC at an appropriate stage of system development.

The User Interface system communicates with a separate motor control system implemented on

dedicated embedded micro-controllers. A dedicated embedded control system with built-in

redundancy increases system safety (G2 &C6), and reduces the performance requirements of the

Pc. With the appropriate choice of micro-controller, this approach would not substantially

increase cost. Drive circuitry for the DC servo motors is purpose built, implementing closed-loop

position control (CI), and open-loop speed control (C2). Input and feedback devices may be

purpose-built andlor commercial dependent on system configuration (UI).

44

Chapter 3 The Middlesex Manipulator

Input device(s)

D

D

D

D
Feedback device(s)

PC-based User Interface
management system

Embedded controller
motor control system

DC servo motors

o

o

FIGURE 3.4 USER INTERFACE AND MOTOR CONTROL SYSTEM ARCHITECTURE.

3.6 Summary

This chapter described the background to the mechanical design of the Middlesex Manipulator,

presenting a discussion of the initial design specification, and a design solution provided by a

novel kinematic configuration. A requirements specification for the development of a control

system and user interface was generated from consideration of: the Manipulator's initial design

specification, a review of rehabilitation robotics, general HeI design issues, and user

requirements. A modular architecture is proposed for system realization. The following chapters

provide a detailed design description of the hardware and software for each of the system

components.

45

Chapter 4 Motor control system

Chapter 4

The Motor Control System

This chapter outlines the design of the Middlesex Manipulator's motor control system. Given the

cost constraints and moderate performance requirements, an embedded micro-controller is used to

provide closed-loop position control and open-loop speed control for the 8 axes of the Middlesex

Manipulator. The system is designed to accept commands from a PC-based User Interface system

as described in Chapter 3.

Purpose-built shaft encoders were developed for positional control, reducing the cost of

peripheral components. Separate opto-isolated motor control modules were developed with motor

control ICs generating Pulse Width Modulated outputs.

A method was devised to allow the micro controller to approximate Cartesian movement without

performing inverse kinematic calculations. The resulting performance characteristics are

summarised.

46

Chapter 4 Motor control system

4.1 Hardware design

4.1.1 System overview

The following section provides an overview of the motor control system for closed-loop

positional control and open-loop speed control. I As discussed in Chapter 3, the decision was

taken to implement the motor control system using embedded microcontrollers. The 8051 family

of microcontrollers was selected, due to the availability of support tools within the University (an

emulator and a C compiler), and the previous design experience of the author. The cost of the

8051 is low (at around £5), and its 8-bit architecture results in lower design costs than 16-bit

alternatives.

The option was available to implement a motor control module containing an 8051 for each of the

Manipulator's axes. However, the cheaper option was selected, of having a single microcontroller

for all axes. As described in section 4.2.2 below, it was estimated that an 8051 operating at 12

MHz with an appropriate selection of peripheral components, would provide adequate processing

power to achieve the moderate performance required. This could be achieved through the use of

programmable timer ICs generating Pulse Width Modulated (PWM) drive signals. A second

embedded microcontroller could be included in a separate and simpler module, to provide system

redundancy and enhance system safety.

Suitable low-cost motor drive ICs were identified, capable of accepting PWM control signals.

These also contained a system-brake input that could be triggered by a motor-current sense

facility as a safety option. The brake input also allows for power consumption reduction when the

Manipulator is not in motion.

During the construction of the manipulator prototype, multi-turn potentiometers had been

mounted for positional feedback for all rotational axes. Sensors had not been implemented for the

prismatic joints. To maintain the low-cost approach, the decision was made to develop purpose

built shaft encoders.

1 Open-loop control of speed was selected as there was no requirement for accuracy in controlling speed,
only in providing appropriate limits of speed.

47

Chapter 4 Motor control system

Evaluations of rehabilitation robotic systems have highlighted the need for carers to be able to

control or move the manipulator. As carers can not always use the input devices provided,

systems such as the MANUS and Helping Hand employ slip clutches that allow the arm to simply

be pushed out of the way. However, the current design of the Middlesex Manipulator employs

self-locking joints that are cheaper to manufacture, and offer safety when the power to the system

is cut. The design option was therefore taken to include a manual control system that can override

the embedded microcontroller, operated by pressing buttons mounted on each of the

Manipulator's axes. Provision for this mode of operation has been included within the system

design, but is not currently implemented.

A power supply module is included, to generate the various voltage levels required from a l2V

battery. Power for the motor drive modules, is provided by a 24 V supply, electrically isolated

from the remainder of the system. Figure 4.1 illustrates the interconnection of these system

components.

From User
Interface

Embedded
Controller

Module

8032 microcontroller

1.

Positional Feedback
Module

ND conversion
Signal conditioning

4.

Shaft Encoder
__ M9dllle

Potentiometers

Linear axes
5.

Rotational Axes
6.

FIGURE 4.1

2.

Distribution
Module

Signal routing
and

Optical isolation

Manual Control
Module

Allows manual
(button-press)

3. operation

Powers Supply
Module

7.

Modules I - 5

Motor Drivel
Module 1---------'

8.

Motor Drivel-I _______ _
Module

9.

Motor Drive 1-1 ________ ---'

Module

10.

Motor Drive 1-1 ________ --'
Module

11.

Servo Motors

MOTOR CONTROL SYSTEM OVERVIEW

The following section provides a functional description of each of the system modules.

48

Chapter 4 Motor control system

4.1.2 The embedded micro controller module

Figure 4.2 shows the main components of the embedded microcontroller module. The 8032

micro controller was chosen, as opposed to the 8051 which uses internal program memory, and

the 8031 which has only 128 bytes of on-chip data memory (the 8032 has 256 bytes).

Address Bus
Reset motor circuit
Brake motor circuit _ I Data Bus

E
10

Error detect ~ TimerlC PWM 1-3
Manual/auto detect ~

8032
embedded 64K

microcontroller Program
memory

RS232L~1 Tx
----.-1 Driver Rx

To User ---.
Interface TimerlC ---. PWM4-6 ---.

8K
Data
Memory

12-bit AID Converter

TimerlC
~ PWM6 - 8

~
24 bit
General
Purpose

Analogue Switch PPI

General purpose
Input/Output

Analogue in
Positional feedback I - 8

FIGURE 4.2 EMBEDDED MICROCONTROLLER MODULE

49

Chapter 4 Motor control system

Peripheral components were address-mapped, and these include:

• 8254 programmable timer ICs for PWM signal generation. These may be operated by writing

a data word to the IC's register. This determines the mark-space ratio of the output pulse at a

constant frequency determined by a clock pulse. The pulse train remains unchanged until a

new data word is written.

• An 8255 programmable peripheral interface IC for general purpose 10. Twenty four bits of

configurable 10 are available, 8 of which may be used to set motor brakes for each

manipulator axis. Currently a single brake signal is employed for all axes, operated from a

single output bit of one of the 8032's ports.

• A 12 bit AID converter, the HI 5812, allows for conversion of the positional feedback signals.

This is incorporated into an 8-bit system by having 2 internal registers corresponding to the

lower 8 bits and upper 4 bits, both registers may be individually addressed.

• An analogue multiplexer, the MAX 378, allows the processor to select 1 of 8 analogue input

channels. The multiplexer is 10 mapped, using 3 bits of an 8032 output port.

• An RS 232 line driver, the MAX- 202, allows for serial communication with the PC-based

user interface system. The TTL output of the 8032's serial port is converted to RS 232 voltage

levels.

Two of the remaining available bits of the microcontroller's 10 ports are used as outputs to brake

and reset the motor drive ICs. A further two are used as inputs to detect for auto/manual mode,

and the occurrence of a motor drive error caused by a current limit being exceeded. A system

interrupt was not employed for error input, as logic circuitry ensures that generation of an error

signal would automatically disable all motor drive ICs.

50

Chapter 4 Motor control system

4.1.3 The distribution module

As shown in figure 4.3, a circuit was designed to provide electrical isolation between the motor

drive modules and the remainder of the system. One of the project objectives was to develop a

modular motor control system to facilitate system repair and servicing, i.e. faulty modules should

be easily located, and simply un-plugged for replacement. The distribution module provides some

of the signal routing to allow this modularity. The module also allows for the source of the PWM

signals to be either the microcontroller, or the manual control module, depending upon mode of

operation selected. Finally, a circuit is included to detect low battery power.

Optical Isolators

Reset -----.

PWM I -----.

--0 L =87 II ~!r-II A-ut~~~;-tnual ~f
--O-J II, E,,,,,,,,,,
-----.
-----.

PWM8 ~

PWM signals from
manual control
module

·Motor drive error outputs are active low,
hence brakes are set automatically on power-up.

PWM to motor
drive modules

Reset motor drives

Set motor drive brakes

Error outputs
from motor
circuits·

Low ~ Low power
power I -- alann
detect

24v-----'

FIGURE 4.3 DISTRIBUTION MODULE

51

Chapter 4 Motor control system

4.1.4 The shaft encoder

To act as shaft encoders two plastic disks were made, on which small reflective strips were

mounted. These were used with optical switches for pulse generation.

reflective
strip

L=:::J

00

00

plastic
disk

FIGURE 4.4 SHAFT ENCODER DISK

The pitch of the lead screw for the prismatic axes is 2 mm, consequently with four pairs of

reflective strips the resolution for control of each of the prismatic joints is ±O.5 mm. The 2

reflective strips of each pair are positioned such that they are detected by two separate optical

switches. The order in which the switches detect the strips depends on the direction in which the

disk is rotating. The pulse trains generated by the optical switches provide inputs to the shaft

encoder circuit. The circuit consists of a 12 bit counter, made up from 3 cascaded 4-bit counters.

Figure 4.5 below shows in simplified form, how the up/down and clock signals are generated for

the counter circuit.

From opto-swicth A elk Q 1-1 ---1
Up/down

)0 F=9D-= to ''""tcr
--•• - circUit

From opto-swicth B

~k
6

I
FIGURE 4.5 SIGNAL GENERA nON FOR SHAFT ENCODER COUNTER CIRCUIT

52

Chapter 4 Motor control system

The pulse train input to the two D-type flip-flops will be slightly out of phase, with the signal that

is leading being dependent on the direction of the encoder disk.

Pulse train
from opto
switch A

Pulse train
from opto
switch B

FIGURE 4.6

U U lJ
OPTO SWITCH PULSE-TRAIN

The outputs of the inverters at nodes 3 and 4 in figure 4.5 are toggled by the flip-flops. The

up/down signal is nonnally low and the clock is nonnally high. Nodes 3 and 4 are toggled slightly

out of phase. A short clock pulse is generated at node 6, determined by the RC circuit at node 4.

The counter circuits are clocked by a rising edge, so the clock pulse generated occurs when the

up/down signal is low ifnode 4 changed state before node 3, or high if the opposite is true.

The output of the shaft encoder circuit is an analogue voltage produced by a 12 bit D/A converter.

This provides compatibility with the signals from the feedback potentiometers of the rotational

axis, and therefore aids modularity. The alternative to this approach would have been to use 12

bits of the PPI (programmable peripheral interface) on the embedded controller module to read

the counter output. As it was envisaged that a number of uses for the PPI may arise, for example

as sensors are added to the system, the current approach was preferred.

All positional feedback signals are routed through the positional feedback module. The module

provides simple signal conditioning by way of an amplifier for gain, and a summing amplifier for

offset. Low-pass filtering is implemented to reduce the noise pick-up from the DC motors.

4.1.5 The motor drive module

Motor drive is achieved with a motor drive IC, the LMD 18200, which can supply up to 3A to a

motor, and accepts a PWM signal as input. The IC may be configured to allow bi-directional

control, with a unipolar PWM signal varying from 0 to 100 % mark-space ratio. A current sense

output is available. Figure 4.7 shows how this may be applied to a comparator circuit to provide a

current-limit facility. The IC also has a brake input that results in the generation of a PWM signal

with equal mark-to-space ratio, thus removing motor drive current. Brake is connected to either

53

Chapter 4 Motor control system

+5V or ground, as controlled by a relay circuit. A latch circuit causes the brake to be set if the

current limit is exceeded, or if a brake signal is received from the embedded controller. A reset

signal is used to toggle the latch output.

PWM -----.

LMD18200

O/P

Cun'ent
Brake sense 1-1-------.<--__ -1

Relay
circuit

Limit set

Brake input

) IS Q

R

Reset input

FIGURE 4.7 MOTOR DRIVE CIRCUIT

4.1.6 Motor control system implementation

Error
output

Printed circuit boards were designed for each of the hardware modules described above, with the

exception of the embedded controller which was wire-wrapped. Each module is currently of

Eurocard size, and mounted in a Eurocard rack. This form was convenient for system

development and testing. However, with the system now functional, a significant degree of

miniaturization may be achieved. Some of the fabrication and assembly of the circuits was

carried out by an undergraduate student (Gellrich, 1995), under the supervision of the author. All

circuits were then tested and integrated into the system by the author. The total cost of

components and materials for the motor control system was £440. This figure would be reduced if

components were sourced more competitively, and purchases were made in bulk.

4.2 Microcontroller software development

The microcontroller is responsible for lower-level control concepts, such as setting a speed, or

moving a joint to a specific position. The algorithms for higher-level control, such as task

execution, are implemented on the PC-based User Interface System (UIS). By focusing at this

lower level, and analysing both the system requirements specification, and the functionality of the

54

Chapter 4 Motor control system

hardware described above, the following microcontroller software requirements specification was

evolved.

4.2.1 Microcontroller software requirements specification

The microcontroller should respond to requests from the UIS to :

• set motor brakes for all axes;

• reset motor brake circuits;

• set the maximum speed for all axes;

• move a joint in a specific direction;

• move a joint to a specific absolute position; and,

• stop movement of all axes.

The microcontroller should be able to communicate to the UIS :

• the occurrence of motor brake set through current limiting;

• the position of each of the axes; and,

• the occurrence of the software limit of an axis being encountered.

A protocol was developed to allow this communication between the microcontroller and the UIS.

This is referred to Juvo Motor Control Language (JMCL). JUVO, meaning to assist in Latin, was

used as a simpler name for the Middlesex Manipulator during project development. JMCL

consists of a set of instructions defined in both mnemonic and op-code form. An instruction exists

for each of the requirements listed above, and the following that are specific to communication:

• an 'acknowledge' instruction is sent to acknowledge receipt of an instruction;

• a' cancel' instruction issued by the UIS to cancel a dialogue (sequence of instructions);

• an 'error-in-transmission' instruction for violation of protocol (i.e. incomplete dialogue);

• a 'next' instruction elicits the next component of a dialogue.

Each instruction is represented by a single byte, and may be accompanied by one or two

operands. The JMCL protocol is defined fully in Appendices A and B, however, a listing of the

instructions is provided in Table 4.1 , to allow for their use in the pseudo-code contained in

subsequent sections.

55

Chapter 4 Motor control system

BRK- sets motor brake for all axes

ERM- indicates motor brake set

ACK- acknowledge

CAN - cancel dialogue

ERT - error in transmission

HLT- stop all axes

Hn stop axis n

Sk set max speed for axis k

Vn set speed of axis n to value passed in next byte

Mnd - move axis n in direction d

Pn - move axis n to absolute position specified by next 2 bytes

WIn - transmit 2 bytes containing position of axis n

RST - reset motor brakes

NXT - request next byte

Lnd - limit of axis n in direction d encountered.

where: 0 :s; n :s; 7, O:s; d :s; 1, and O:s; k:s; 31.

Table 4.1 JMCL instruction set.

4.2.2 Determining control constants and sampling frequency

With the interface to the UIS defined, the microcontroller code could be developed. The approach

taken was to implement proportional control for closed-loop positional control2
• This is achieved

by polling the positional error for each of the 8 axes, and writing a byte to a timer IC proportional

to the magnitude of the error. The proportional control constants were determined empirically.

This approach was taken as a high degree of friction existed for each axis, and varied

significantly throughout the range of movement for the axis, complicating the development of an

adequate mathematical model of the system. The constants were determined by increasing their

values until the positional error for each axis was minimized. This was performed for each axis at

slow speed, and then repeated at increased speed levels until positional accuracy was

compromised. This allowed a maximum operating speed for each axis to be determined. The

actual speed levels and corresponding accuracy measurements are summarised in section 4.3.

56

Chapter 4 Motor control system

The manipulator's axes were modeled as first-order systems, as the time response of each motor

was negligible compared to that of the corresponding axes, subjected to significant frictional

components through gearing. Figure 4.8 below, shows the response of one of the Manipulator's

axes to a step input (the axis with the fastest response), as approximating a first order step

response given by :

VOIII = K (1 - e)
ViII

4.1

Where V OIII and Ti;1I are the output and input signals, K is a constant (in this case normalised to

1), T is the time constant, and t is the measurement of time.

1 1 I ;;:="

I 0.9 -

~

0.8

0.7 _

0.6 _

0.5

0.4

0.3

0.2 .

0.1

o ' ! ' , " !' ! ' ,. , I

() d>' ()CO ,,'), ,,<0 ",} ~ rV' ~'), ~<O ,,\>< ~ tACO
(). () . () . (). ~ () . () . () . () . ~ () . () .

Time (5)

FIGURE 4.8 MANIPULATOR AXIS RESPONSE TO A STEP INPUT

2 More sophisticated control algorithms such as PID were not investigated due to the system 's moderate
perfOimance requirements.

57

Chapter 4

When t = r , the output signal is given as :

V
OIII

= 1- e -1 = 0.632v

This corresponds to the point t = 0.065s.

The response of the system in the s - domain is given as :

And in the frequency domain as :

V
OIII

(s)
--
~II(S)

1
(1 + sr) = G(s)

K
G(jw) = (1 + jwt)

Motor control system

4.2

4.3

4.4

The bandwidth of the system is estimated as corresponding to the point at which the gain is

reduced by 3 dB where:

1
W= -;- - 0.065

4.5

As:

w= 2tif

4.6

the bandwidth is estimated at 2.5 Hz. This may be used to estimate an appropriate sampling

period. One criterion that has been used successfully is to set the sampling frequency at ten times

the bandwidth (Franklin & Powell, 1981). This corresponds to 25 Hz, the reciprocal of which

gives a sampling period of 40 ms.

The target sampling period may be achieved through efficient structuring of code, and limiting

the complexity of the control algorithms. Initial code tests indicated that a sampling rate of 30 ms

would be achievable if the code were to be written in the C programming language.

58

Chapter 4 Motor control system

The presence of noise on the feedback signals necessitated the definition of an acceptable

positional error signal. As the axes were designed to be self-locking, this would allow the motor

brakes to be set (and hence power cut) once each axis had reached its target position ± the

acceptable error. The magnitude of the acceptable error for each axis was limited to ensure that

the accuracy requirements of the system were achieved. The values were fixed just below this

limit, to allow motor brakes to be set as frequently as possible.

4.2.3 Implementing Cartesian Control

The use of an embedded micro-controller for the motor control system meant that implementing

cartesian control (straight-line movement through the x,y or z planes) would be problematic. The

kinematic computations required to achieve this in real-time would be beyond the capabilities of

the processor, particularly as the processor had to perform other tasks, such as maintain a 40ms

sampling period. The approach taken was to limit cartesian movement as being available only

when the manipulator is operating in SCARA mode. The following trigonometric analysis was

performed to provide a method of controlling the manipulator in the x and y plane.

A SCARA robot achieves straight-line motion in the horizontal plane through the simultaneous

adjustment of 2 angular joints. With reference to figure 4.9, the x and y coordinates of the end of

link C may be calculated as :

y = B sin 8 + C sin (8 + <1»

and

x = B cos 8 + C cos (8 + <1»

Where Band C are the link lengths.

FIGURE 4.9

Y L .----
X

PLAN VIEW OF LINKS B AND C

59

4.5

4.6

Chapter 4 Motor control system

For movement through the X plane, x is held constant, and speed may be calculated as the sum of

the partial derivatives de and d¢ derived as follows:
dt dt

dy dB (dB d¢) -=B-cosB+C -+- cos(B+¢)
dt dt dt dt

=B-cosB+[x-BcosB -+-dB {dB d¢)
dt dt dt

dx But as - = 0:
dt

_B
dB sinB-C(de + d¢)sin(B+¢)=0
dt dt dt

therefore:

(_ B dB sin B)
dy dB [] dt - = B-cosB+ x-BcosB
dt dt C sinCe + ¢)

=B dB {COSB_[X-BCosB]sinB}
dt Csin(B+¢)

and, by Pythagoras :

dy =B dO {coso- [x-BcosO]sinO }
dt dt ~C2 -(x-BcosB)2

Additionally, d¢ may be computed dB , as :
dt dt

hence:

d¢

dt

d¢

dt

- B ~~ sin B - C dB sin(B + ¢)
dt dt

C sin(B + ¢)

dB BsinB+~C2 -(x BcosB)2

dt ~C2 -(x-BcosB)2

60

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Chapter 4 Motor control system

Hence, for constant velocity through the X plane, i.e. for a given value of dy , values for dB and
dt cit

dt) may be computed. As discussed above, the current implementation uses open-loop speed
dt

control, thus errors would occur and not be corrected. However, more significantly than this,

performance measurements reported in section 4.3, show that the maximum value for dt) is O.l
dt

rad S-I. Consequently, the required linear velocity of 100 mm S-1 would be unattainable.

An alternative approach to approximating straight line motion would be to hold dt) at its
dt

maximum, and for each new e, compute a value of $ to satisfy (from 4.6) :

(
. -1 x - B sin eJ ¢ sm - e

c
4.15

This approach results in far lower computational complexity, than solving dB and dt) for a
dt dt

. dy Th . d' d 1d b h 1 . .,. dy Th' 'fi d gIven -. e major Isa vantage wou e t e resu tmg vanatlOn III -. IS was quantI Ie
~ ~

by using equation 4.15 to calculate typical values of d
y

, and typical levels of variation. The
dt

results are shown in figures 4.10 and 4.11.

61

Chapter 4

.........
~
E
E -"0 -->-
"0

100
I

80 .

60

," x=600

, ,
.. ,
,

"
,x=400

I

40
0' ~.~,o J

20 ~---- ;,
. (- --
" L'

o "
804 680 525 379 263 174 103 37 -47

Y (mm)

Motor control system

FIGURE 4.10 LINEAR VELOCITY V DISPLACEMENT FOR LINK C = 500 MM

~
E
E
'-"

~
"0

100

80

60

40·

2 0 ·1'// -::::--;-;-, /,--'"

o

X=600,'
.'

" I
X=400 J

1

--------------~,;

954 834 682 535 415 324 259 214 191

Y (mm)

FIGURE 4.11 LINEAR VELOCITY V DISPLACEMENT FOR LINK C = 650MM

The results show that the end-point velocity increases rapidly as a limit is approached, beyond

which the angles for maintaining a constant X cannot be computed. For the remaining values of

displacement, velocity is limited to around 40 mm S·I, with levels of variation highly dependent

on x and C (link extension). A user evaluation would be required to determine how usable a

system was that employed this method of control, i.e. to establish to what extent a user may

accommodate variations in speed.

62

Chapter 4 Motor control system

However, for particular configurations, variations in dy are small. For example, for link C = 500
dt

dy
mm and x = 400 mm, - = 34 ± 4 mm S-l for 628 mm travel. In other words, the maximum

dt

variation of speed over 79% of the range of linear movement was 12 % .

4.2.4 Top-level motor controller pseudo-code

At the highest level, the microcontroller is concerned with:

i) Servicing any requests from the VIS. This may involve:

• setting or resetting motor brakes;

• modifying the target positions of one or all of the axes;

• setting the maximum permissible speed; and,

• providing positional information for the VIS.

ii) ModifYing motor drive and brake signals by :

• deciding if brakes have been set (forced on) by the UIS;

• making a local decision for brakes to be set if target positions were previously reached;

• determining whether any positional error has been exceeded and motors should be

moved.

Software was implemented in C to achieve this, the pseudo-code of which is provided in figure

4.12 below. For commented code listings refer to appendix C. However, to supplement the code

documentation, a number of functions that are called by the main program are expanded in

pseudo-code form in the following sections, these include:

• a 'move' function - calculates magnitude of output signal for an axis;

• a 'read current position' function - reads position of all axes;

• a 'read' function - reads a byte from the microcontroller's serial port; and,

• a 'transmit' function - transmits to VIS through serial port.

63

Chapter 4 Motor control system

Micro controller main program, begin
ensure motor brakes are set
set the initial positions for each axes as target positions
repeat forever:
begin

if input has been received from UIS, read it and
begin:

if input is BRK then
set brake on for all axes
set speed to zero for all axes
set target position to current position for all axes

if input is HL T then
bring each axes to a stop by setting the target position to
the current position ± a small pre-specified amount.

if input is Hn then
bring axis n to a stop by setting the target position to
the current position ± a small pre-specified amount.

if input is RST then
reset motor brake for each axes

if input is WIn
transmit the current position of axis n

if input is Mnd then
set target position of axis n to maximum value in direction d

if input is Sk then
set maximum speed for all axes to k

if input is Vn then
set maximum speed for axis n to following byte

if input is Pn then
then read two bytes containing target position and
set target position of axis n.

end (of new input block)

check whether any axes require moving by
begin

read current position of all axes and calculate positional error
if the brakes are not currently forced on by the UIS, then
begin

end

if status for all axes = target reached then
set brakes on

otherwise, if the brakes were previously set, then
reset brakes

For each axis
if positional error> permissible error then

move the axis towards target and
set the axis status to target not reached.

othelwise
set the axis status to target reached.

end (of check for move block)
end (of repeat forever loop)

end (of main program)

FIGURE 4.12 CONTROLLER MAIN PROGRAM PSEUDO-CODE

64

Chapter 4 Motor control system

4.2.5 The Move function

Initial tests showed that better control of the ann was found to be possible if two proportional

constants were used for each axis. This allowed the algorithm to cater for the fact that for most

axes the damping due to friction, and the offset due to gravity, was different in each direction.

Two arrays were therefore used to contain these constants.

If a step input was applied to the motor of any axis in response to a large positional error, the

motor torque generated would cause the current limit setting to be exceeded. To cater for this, a

simple low-pass filter was implemented in software, limiting the rate at which the drive signal

may change.

An averaging value is calculated for output using the first order equation:

Y = j3 y, + (1- fJ)YH

4.1

where)lis the value output, y,is the output as calculated proportional to the error signal, Y'_I is

the previous signal output. The characteristic constant j3 detennines the effect to which a new

calculated output value effects the actual output. As rapid acceleration of the motors was not

required, this constant was set fairly low. The actual current limits may be adjusted through a

potentiometer mounted on each motor drive board. Tests were undertaken iteratively to detennine

a fJ value low enough for the most sensitive current limit setting. See appendix C for

implementation

4.2.6 Reading axes positions

The 'read current position' function implements a software filter similar to that described above.

This reduces noise on the feedback signal, complementing the hardware filters implemented on

the positional feedback board. Pseudo-code for reading from a single axis is shown in figure 4.13.

65

Chapter 4 Motor control system

Function to move Axis n
begin

end

multiply positional error by gain Kq or Kp dependent on direction to
the determine drive-signal magnitude

if drive-signal magnitude> maximum level for current speed setting
then

drive-signal = maximum level for current speed setting
if accelerating
then filter output

drive-signal = drive-signal x alpha constant
drive-signal = drive-signal + previous drive-signal x (1 - alpha constant)

output drive-signal

FIGURE 4.13 MOVE FUNCTION PSEUDO-CODE

Function to read axis position
begin

set a count equal to the required data sample length
select the appropriate input channel with the analogue switch
initiate AID conversion
set a variable LastSample to value read from AID converter
repeat while count> 0

initiate AID conversion
set a variable Sample to value read from AID converter
set LastSample = LastSample x (1 - alpha constant)
set LastSample = LastSample + Sample x alpha constant
decrement count

end of repeat
end of function

FIGURE 4.14 PSEUDO CODE FOR READING AXIS POSITION

4.2.7 Serial 10

The 8032 has a Universal Asynchronous Transmitter Receiver (UART) to handle serial

communication. This was configured as an 8-bit UART, with a baud-rate determined by one of

the 8032's onboard counter timers. Transmission of a byte is achieved by writing the byte to a

special purpose register (SBUF), and a byte is received by reading from SBUF. Flags set by the

serial control register (SCON), allows for transmit and receive status to be determined.

Reading a byte (character) from the serial port is achieved by :

66

Chapter 4

i)

ii)

iii)

checking the SCON flag to detennine if a character is ready;

clearing the SCON flag; and,

reading a byte from SBUF.

Motor control system

If a dialogue is in progress, the next byte of the dialogue is requested by the GetNextByte

function described in figure 4.l5 below.

The transmission of a byte is achieved by :

i) waiting until SCON flag indicates UART is ready to transmit;

ii) clearing SCON flag; and,

iii) writing a character to SBUF.

A dialogue requiring two bytes (a word) to be transmitted may call the SerialWordOut function

shown in figure 4.l6.

function GetNextByte
begin

end

set a timer variable to zero
transmit the JMCL NXT command

while a character is not ready and timer < acceptable wait period
begin

increment the timer variable
end

if timer < acceptable wait period
read and return character from SBUF

otherwise
return ERROR (calling function will transmit ERT);

FIGURE 4.15 FUNCTION TO GET THE NEXT BYTE OF A DIALOGUE

67

Chapter 4 Motor control system

function SerialWordOut
begin

end

split word into 2 character variables msb and Isb

initialise a timer variable to zero

transmit I11sb

while a response character is not ready and timer < acceptable wait

begin

increment timer
end

iftimer < acceptable wait

read character (data)

if data = NXT

transmit lsb and return not ERROR

otherwise
transmit ERT and return ERROR;

FIGURE 4.16 FUNCTION TO WRITE A DATA WORD TO SERIAL PORT

4.3 Performance characteristics

This section summarises measurements of the manipulator's performance characteristics,

achieved with the control system described above. The measurements were taken as a part of the

design process, in parallel with the design decisions described earlier in the chapter.

As discussed below, a compromise was involved when attempting to meet the speed and accuracy

requirements of the design specification for each of the manipulator's axes. For ease of reference,

the manipulator is described here as consisting of 4 links, and 6 axes as labeled in figure 4.17.

This section begins with a discussion of the two linear axes (1 and 5). These allow for movement

through the vertical plane, and for extension of link C. The rotational axes 2 and 4 are then

considered, as their simultaneous control allows for movement through the horizontal plane in

SCARA mode. An analysis is presented to allow prediction of performance in SCARA mode

from the measured perforn1ance of these two axes in 'joint' mode.

68

Chapter 4

4,5

Links A, B, C and D

Axes 1 to 6

2,3

D
A

FIGURE 4.17 MANIPULATOR CONFIGURATION

Motor control system

Finally, an assessment of axis 3, used to provide vertical articulation, is presented. As a 3 degree

of-freedom end-effector is currently under development, the characteristics of Axis 6, which is

used to control a temporary gripper, are not discussed.

4.3.1 Axes 1 and 5 - velocity

Ideally, the operating speeds of each of the manipulator's axes would be set to allow a velocity at

the manipulator's end-effector corresponding to that detailed in the design specification, i.e. a

maximum operating speed of 100 mm s-\ with fine-control of 50 mm S-I. The magnitudes of the

drive signals to each axis could thus be determined empirically, as part of the design process.

However, initial tests indicated that aspects of the manipulator's construction meant that the

required speed levels would not be achievable. For the linear axes, speeds were limited

principally by the unacceptable levels of acoustic noise generated by friction between the plastic

strips used as linear bearings, and the manipulator's casing (the hollow casing acting as an

acoustic amplifier).

The design specification required a noise level of no greater than 40 dB at I m. A noise level

meter was used to record the noise generated (type 2203, Bruel & Kjaer, Naerum, Denmark). The

meter was configured with a frequency response matching an 'A' weighting scale, providing

weighting corresponding to the relative annoyance typically produced by different frequency

components. Noise levels of around 65 dB(A) were measured at angular speeds of around 1500

rev/min for axis 1, and 1800 revolutions/min for axis 4. One approach would have been to reduce

axis speeds until levels below 40 dB(A) were generated. However, the user evaluation reported

below, highlighted the fact that the type of noise being generated was also a significant factor. In

particular, variation in pitch and amplitude with the manipulator in motion was reported to have a

significantly negative effect on the user's impression of the system. Consequently, a more

69

Chapter 4 Motor control system

subjective approach was taken to establishing the maximum speed of each axis: speed levels were

reduced until noise levels were deemed acceptable by the user (and designer). This limited the

angular velocities of axes 1 and 5 to 750 r.p.m. and 900 r.p.m respectively.

Axis 1 may produce a movement through the vertical plane at a velocity given as :

OJd
V=-

60
4.2

Where v is linear velocity (mm S-I), co = angular velocity (r.p.m.), and d is the lead-screw pitch

(mm). As dis 2 mm, velocities of up to 25 mm S-1 were attainable. Similarly, axis 5 may produce

an extension to link C at a speed of up to 30 mm S-I.

Although falling short of the design specification, the values computed above correspond to the

fastest speed settings for the two linear axes. The decision was made to define two further speed

levels (medium and slow), providing a degree of consistency with the remaining axes. Slow was

set at approximately half of fast speed, with medium falling near the mid-point. The resulting

speed levels are summarized in Table 4.2 below.

Axis Speed co / (rev min") V / (mm s-l)

1 slow 360 12
5 slow 480 16
1 med 540 18
5 med 720 24
1 fast 750 25
5 fast 900 30

Table 4.2 Speed levels (axes 1 & 5)

4.3.2 Axes 1 and 5 - repeatability

A number of measurements were undertaken to determine how repeatability varies with speed

and load. Four positions along the range of each axis were selected as target positions. A dial

gauge was used to measure the variation in positioning around the target. Each set of

measurements produced a cluster of positions, from which a center point was calculated.

Repeatability was estimated by examining the maximum variation from the center point, and the

average variation. The results are summarised in tables 4.3 to 4.7 below.
70

Chapter 4 Motor control system

Speed Repeatability measure / (mm) Speed Repeatability measure / (mm)
maximum average maximum average

Slow 0.8 0.7 Slow l.0 0.7
Med 0.9 0.7 Med l.2 0.8
Fast 1.4 0.8 Fast l.7 l.0

Table 4.3 Axis 1 (no load) Table 4.4 Axis 1 (load = 1 kg)

Speed Repeatability measure / (mm) Speed Repeatability measure / (mm)
maximum average maximum average

Slow 0.9 0.7 Slow 0.9 0.4
Med l.0 0.7 Med 0.9 0.7
Fast l.3 0.9 Fast l.3 0.8

Table 4.5 Axis 5 (no load) Table 4.6 Axis 5 (load = 1 kg)

4.3.3 Axes 2 and 4 - velocity

As with the linear axes described above, practical considerations resulted in limiting the

maximum operating speeds for axes 2 and 4 to levels below the design targets. The principal

limiting factor was the variation of friction throughout the axes' range, particularly for axis 2, and

the fact that this variation had a greater impact on positional accuracy at higher speeds.

Deterioration of perfomlance with increasing speed was quantified by measuring repeatability at

a number of positions throughout the axis range. For each axis, 5 positions were selected, from

which a sample of 8 measurements was taken. Measurements were taken at the end of link C,

with the link fully extended, providing a worst-case configuration. As with the linear axes,

repeatability was estimated by quantifying the maximum and average distances from cluster mid

points. The process was repeated as the speed of the axis was increased. Figure 4.18 below

summarizes the perfomlance of axis 2.

71

Chapter 4

20

~~ 15 S .-
s 8-
'-' I

~:2 10
~ S
~ S
t; 0 .- '-

5
Q~

'-'

Motor control system

o ~I--------------~------------------~------~
0.06 0.07 0.08 0.09 0.1 0.11 0.12

Speed / (rad S-I)

FIGURE 4.18 REPEATABILITY ESTIMATES (AXIS 2)

As can be seen, if repeatability were prioritized above speed, the operating speed may be set

below 0.08 rad S-I, before the deterioration in repeatability is evident. However, as shown below,

this would result in speeds well below those required. Thus, as a compromise, a value of 0.1 rad

S-1 was selected, avoiding the sharp deterioration in repeatability displayed at 0.11 rad S-1 and

above.

Figure 4.19 shows the deterioration of repeatability for axis 4 as being more gradual than axis 2.

However, setting the maximum speed of the two axes at significantly different levels, may

decrease the usability of the system, as the concept of 'fast' would take on very different

meanings for each axis. The maximum operating speed of axis 4 was therefore set slightly greater

than axis 2 at 0.14 rad S-I.

72

Chapter 4 Motor control system

6.5

6
,-,Z'
E = E '0 5.5
"-" Q.

]] 5

..:s E .~ 0 4.5
Q";:

"-" 4 LI __________________________ --------------~

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.14 0.16

Speed / (rad S·I)

FIGURE 4.19 REPEATABILITY ESTIMATES (AXIS 4)

With the maximum speed levels established, two further speed levels were defined (as with the

linear axes), and are summarised below. The angular velocities of both axes are shown, with

calculated end-point velocities. These correspond to the speed of movement in an arc at the end

of link B for axis 2, and link C for axis 4. i.e.

v= 0) B
4.3

for axis 2, where B is link length (375 mm), and 0) is angular speed in radians s·'. For axis 4,

v= 0) C
4.4

where C is 690 mm.

Axis Speed 0) / (rad s·l) V / (mm s·l)

2 slow 0.06 23

4 slow 0.08 55

2 med 0.08 30

4 med 0.11 76

2 fast 0.10 38

4 fast 0.14 97

Table 4.7 Speed levels axes 2 and 4

73

Chapter 4 Motor control system

4.3.4 Axes 2 and 4 - repeatability

A process as described for the linear axes was undertaken to estimate the levels of repeatability

for axes 2 and 4, the results of which are summarized below.

Speed Repeatability measure / (mm) Speed Repeatability measure / (mm)
maximum average maximum average

Slow 4.9 4.6 Slow 5.0 4.9

Med 4.0 4.8 Med 5.1 4.9

Fast 8.2 5.4 Fast 6.7 6.1

Table 4.8 Axis 2 (no load) Table 4.9 Axis 2 (load = 1 kg)

Speed Repeatability measure / (mm) Speed Repeatability measure / (mm)

maximum average
maximum average

Slow 4.5 4.1
Med 4.7 4.2 Slow 4.8 4.1

Fast 5.1 4.8 Med 4.7 4.6
Fast 5.4 5.1

Table 4.10 Axis 4 (no load)
Table 4.11 Axis 4 (load = 1 kg)

4.3.6 Axis 3 - velocity

The remaining axis allows for movement through the vertical plane, and provided characteristics

similar to axis 4, in that the friction remained fairly constant through the axis range, and thus

degradation of performance was more gradual than with axis 2.

74

Chapter 4 Motor control system

12.00 -" ------------------,
max eZ' e .; 10.00

'-' Q..
~:S! 8.00- ave
U e E e 6.00
.~ 0
Q';: 4.00-

'-'

2.00 .L.I --__ --,--_~-_-,__---------.J

0.060.07 0.080.09 0.100.11 0.12 0.140.16

Speed / (rad S·I)

FIGURE 4.20 REPEATABILITY ESTIMATES (AXIS 3)

However, as with axis 4, an operating speed was selected to be of a comparable level to the

remaining axes. A speed of 0.12 radians S·I was chosen. The two additional speed settings and

corresponding end-point speeds are summarized below (link C fully extended).

Axis

3
3
3

Speed

slow
med
fast

co / (rad s·l)

0.07
0.10
0.12

v / (mm s·l)

48
69
83

Table 4.12 Axis 3 speed levels

4.3.7 Axis 3 - repeatability

As with the previous axes, a number of measurements were taken to estimate levels of

repeatability. Again, measurements were taken at the end of link C, with the link fully extended

to provide a worst-case configuration.

Speed Repeatability measure / (mm)

Slow
Med
Fast

maximum average

7.5
7.7
8.1

6.1
6.2
6.4

Table 4.13 Axis 3 (no load)

75

Speed Repeatability measure / (mm)

Slow
Med
Fast

maximum average

7.5
7.5
7.9

6.2
6.2
6.3

Table 4.14 Axis 3 (load = 1 kg)

Chapter 4 Motor control system

4.4 Concluding remarks

To summarize, an embedded microcontroller-based motor control system has been implemented

at a one-off component cost of £440. Up to eight DC servo motors may be driven using PWM

closed-loop position and open-loop speed control. A modular approach to system design has been

taken, to allow for ease of maintenance through the replacement or servicing of system modules.

A communication protocol has been defined (JMCL), allowing full functionality ofthe system to

be controlled via a serial interface.

Initial tests provided estimates of the performance currently achievable by the manipulator. Table

4.15 summarises the largest estimates of repeatability for each of the axes, rounded up to the

nearest mm.

Axis Repeatability / (mm)

1 2
2 9
3 9
4 6
5 2

Table 4.15 Repeatability estimates

The target repeatability given by the requirements specification is 10 mm. As can be seen, control

of any individual joint can achieve this, however, the cumulative error of movement involving

more than one joint may exceed this.

The principal factor determining the magnitude of repeatability was mechanical, namely the

back-lash that exists in the gear mechanisms. As would be expected, repeatability is improved if a

target position is always approached from the same direction. Typical values for 'single

approach' repeatability are provided for axes 2 and 3 in tables 4.16 and 4.17.

Speed Repeatability measure / (mm) Speed Repeatability measure / (mm)
maximum average maximum average

Slow 2.2 1.9 Slow 2.3 1.6
Med 2.7 2.3 Med 2.5 1.7
Fast 4.8 3.7 Fast 3.3 2.9

Table 4.16 Axis 2 (no load) Table 4.17 Axis 3 (no load)

76

Chapter 4 Motor control system

Thus estimates of 'single-approach' repeatability for axes 2 and 3 are 5mm and 4mm

respectively, as compared to the 9mm estimate for 'actual' repeatability.

Future developments of the prototype should address the degree of back-lash within the gear

mechanisms, however, it was considered reasonable to expect that the current levels of

repeatability would suffice for initial evaluations. This approach may be justified considering that

the estimates are 'worst-case' in that they presume the arm to be fully extended, thus for much of

the working envelope, repeatability will be lower than the estimates. Additionally, 'sing1e

approach' repeatability can be exploited by pre-programmed routines, as well as by competent

users.

Selecting appropriate speed levels involved a trade-off between speed and repeatability for axes

2, 3, and 4, and speed and noise for axes 1 and 5. Thus improving the manipulator's speed

performance would also require mechanical modifications. The current maximum speed

attainable is less than that required, this is particularly evident for cartesian control with around

40 mms-1 possible through the horizontal plane, and 25 mms-1 through the vertical plane.

In summary, a number of short-comings have been identified whilst assessing the manipulator's

current performance capabilities. These are mainly mechanical in nature, and will therefore not

be addressed as part of the current phase of the project. Chapter 8 outlines a user evaluation of the

Middlesex Manipulator, allowing the impact of the manipulator's performance to be addressed in

subjective terms.

77

e 00
r:Il ~
~ ~
~ ~
~ 0

= = ~
~ ~

~
~

~
~

~
~

~
~
r:Il

(JQ
-.l
00 =

Chapter 5 HCI & Interactive System Design

Chapter 5

HCI and Interactive System Design

Chapter one provided an outline to the thesis and identified project objectives, including the

development of a user interface for the Middlesex Manipulator. Chapter 2 provided general

design criteria, which included the development of a system that is:

• easy to use;

• easy to learn how to use;

• efficient to use through the combination of different types of input and feedback

devices, and

• adaptable to the preferences, functional ability and experience of specific users.

The following chapter explores how techniques developed within the field of human-computer

interaction (HCI) may be applied to these objectives. The overlap between the fields of

Rehabilitation Robotics and HCI has previously been extremely limited. Consequently, this

chapter provides an overview of the field of HCI and a description of the most common HCI

evaluation techniques. The chapter concludes that most HCI techniques do not formally address

diversity, adaptability, multi-modality and device novelty to the extent required by

Rehabilitation Robotics (or Assistive Technology in general). However, within certain

constraints the techniques are applicable, as demonstrated during the user interface design

presented in Chapter 6, and the evaluation presented in Chapter 8. These ideas are then explored

further in Chapter 9, with the development of a novel evaluation methodology based on a

common HCI task analysis technique.

79

Chapter 5 HCI & Interactive System Design

5.1 Introduction

The field ofHCI has experienced rapid growth over the passed two decades. The ever-increasing

use of computing technology within home and working environments has considerably increased

the number and diversity of users, and the expectation that the usability of systems should be

high. In 1984, Smith and Mosier (1984) estimated that for a typical software project the user

interface accounted for 30-35% of the code written. A study undertaken just six years later,

estimated that this had grown to as high as 60% (MacIntyre, et. a1. 1990) - with the field of HCI

growing accordingly.

Nielson (1994) describes the objectives of HCI practitioners by exammmg the issues that

determine system acceptability:

System Acceptability

• cost;

• compatibility;

• reliability;

• usefulness;

Usefulness is defined as being the combination of usability and utility, where utility is the value

of that which can be achieved with the system. Finally, usable systems should be:

• efficient to use;

• easy to learn;

• easy to remember;

• subjectively pleasing, and

• preventative of errors.

As can be seen, a similarity exists between the objectives of rehabilitation robotics research, and

those of the field of HCI. However, until recently, the two fields have been fairly isolated from

each other, with few reports of the systematic application of HCI techniques to rehabilitation

robotic systems. A similar situation was recognised to exist within mainstream robotic research,

80

Chapter 5 HCI & Interactive System Design

as reported by Anzai (1994), who called for the recognition of a new research paradigm: human

robot-computer interaction. Within the field of assistive technology, there is now a growing

interest in the development of formal techniques to address usability issues (for example,

Edwards (1995); Poulson et. al. (1996)). A recent rehabilitation robotics conference in Bath

u.K., reflected this growing interest, containing three consecutive papers discussing the

application of HCI techniques to system design (Dowland et. al., (1997); Keates and Robinson

(1997); Parsons et. al. (1997)). This chapter provides a review ofHCI evaluation methodologies

that are common to interactive systems design, and examines how these may be applied to the

current project objectives.

5.2 The product design life-cycle

A number of techniques have been developed to promote system usability that may be employed

at various stages within an iterative design cycle. A typical design cycle begins with the

generation of a requirements specification. This usually involves the refinement of a brief

problem statement into a detailed specification of the functionality and performance that the

system is required to provide. Systems analysis techniques, and more recently Object Oriented

Analysis techniques (OOA), have been developed to model data and tasks within a problem

domain.

Problem
Statement

User Interviews
User Observation
Questionnaires

Project Budget
Target Users
Leaming Times
Execution Times
ElTor Rates

Data
Modeling Systems

Analysis Task Modeling
Functional
Requirements

OOA

Client Interview
Market Research

81

Draft
Requirements
Specification.

Requirements Specification

Chapter 5 HCI & Interactive System Design

FIGURE 5.1 GENERATING A REQUIREMENTS SPECIFICATION

The development of a design solution may take the initial fonn of a written design description, a

paper mock-up or a prototype. HCI evaluation methodologies may be used to evaluate the

system against the original requirements specification, allowing the design to progress towards a

solution acceptable to the client. Various methodologies have been designed to be used at

different stages of the product design life-cycle, focusing on different qualitative and quantitative

characteristics of the interface. Techniques also vary in the expertise, money and time required

for their implementation.

Investigation
Plan

Plan

Requirements
Specification

~_,·G
•

Activity
data

oto~~
00 ~
Activity
Model

•
Investigation
Report ,

. ~
Enhance

FIGURE 5.2 AN ITERATIVE SOFTWARE DESIGN CYCLE

To present an overview of HCI evaluation methodologies, this chapter uses the broad

classifications: Analytic, Usability Inspection and Experimental. Examples of each are provided.

5.3 Analytic techniques

Analytic techniques provide fonnal ways of describing a problem domain, fonns of user

interaction, and models of computing systems. As part of the design process, the teclmiques may

be employed to generate or verify requirement specifications or design specifications. Models of

interaction may be analysed to allow an assessment of the functionality, consistency and

82

Chapter 5 HCI & Interactive System Design

complexity of a user interface. In some cases, predictions of task completion times, task learning

times or error rates may be made. This section outlines a number of common techniques and

discusses their suitability for use in assistive technology design.

S.3.t Task Analysis

Task analysis is a method for providing an abstraction of tasks that users are required to

undertake. A common form of analysis, Hierarchical Task Analysis (HT A), is a systems analysis

tool that has been adapted for use in HeI (Annet and Duncan, 1967). The technique forces a

designer to focus on the details of an application, ordering the cognitive and physical processes

required to accomplish a goal.

Information concerning the task is first gathered using a data collection method such as activity

sampling, observation, documentation, structured interviews or questionnaires. The data is then

organised into a hierarchy of goals, sub-goals and operations. A goal is defined as something the

user wishes to achieve. Goals are decomposed into sub-goals, dependent on the level of detail

(granularity) appropriate to the analysis. Operations are defined as the activities that must be

undertaken to achieve the goals.

Goal

Sub-

Operation

FIGURE 5.3 HTA REPRESENTATION OF A PICK AND PLACE TASK

The original context for the application of HT A was training. As a result, the technique was

concerned with the empirical analysis of existing tasks. No infornlation necessarily results from

an analysis regarding the appropriateness of the structure of the tasks modeled, or possible

alternatives. Furthermore, HT A does not encapsulate procedures for generating or evaluating a

83

Chapter 5 HCI & Interactive System Design

design. Instead, the task model resulting from HT A would typically be used as an input to further

forms of analyses or design, as discussed below.

5.3.2 Grammar based analysis

Formal languages have been developed to allow the description of the structure of a user

interface, and models of interaction - an early example of which is Command Language

Grammar (CLG (Moran, 1981)). CLG was developed as a designer's model of interaction,

allowing for a description of the inputs to and outputs from a computing system. CLG separates

the conceptual components of a system (user's mental models) from the command language used

for interaction, and describes the relationships between these components.

CLG adopts a top-down approach to design, structured at the following levels of description:

Conceptual

Communication

Physical

Task level

Semantic level

Syntactic

Interaction

Spatial

Device

The task level is concerned with what the system is supposed to do, and may be described by a

task model such as that produced by HTA. The semantic level then defines the system's entities

(conceptual objects) and operations (actions that may be performed on objects). The sequences

of operations required to complete tasks are then described as methods using a form of pseudo

code. The pseudo-code used may be regarded as a grammatical representation of a semantic net 1.

The syntactic level is then concerned with describing the structure of the language used for

interaction. Within a given context (such as attempting to complete a particular conceptual

I A semantic net is fonnal graphical language for representing facts about entities within a domain of

interest, see Dym and Levitt, 1991.

84

Chapter 5 HCI & Interactive System Design

operation), there exists a set of commands, and state variables modified by those commands.

Figure 5.4 provides the context of arm movement within a manipulator controller application.

85

Chapter 5 HCI & Interactive System Design

ARM_MOVE_CONTEXT = (A COMMAND CONTEXT

STATE_VARIABLES = (SET:

DESCRIPTORS = (SET :

COMMANDS = (SET :

CURRENT POSITION

TARGET]OSITION)

XYZ_COORDINATES)

ARM

SHOULDER

ELBOW

HAND

IN

OUT

STOP

EXIT)

ENTRY_COMMANDS = (SET: MOVE))

FIGURE 5.4 CLG SYNTACTIC LEVEL DESCRIPTION

The interaction level of analysis then describes the actions of a user. These become specific to a

particular system as defined at the physical level of analysis. CLG allows for the description or

definition of the structure of a user interface for a particular system without requiring that the

entire system be defined. However, the method does not incorporate any metrics that would

allow for the usability of a design to be predicted or evaluated. This shortfall was addressed by

Reisner (1981), with the development of a production-rule based grammar referred to as Task

Action Language (TAL). TAL attempts to describe the cognitive factors of what a user has to

learn and remember to complete tasks. The rules governing interaction are described in terms of:

1. terminal symbols (the words in the language);
2. non-terminal symbols (constructs that show the structure of the language);
3. a starting symbol;
4. meta-symbols (+ (and) , I (0/), := (is composed of)
5. rules constructed from the above

The premise behind TAL is that well designed systems will require fewer and shorter rules and

terminal symbols to describe the system than complex or inconsistent systems. Hence evaluation

is possible by comparing the descriptions of alternative interface designs. However, a number

problems exist with this approach. A well-documented issue, as described by Johnson (1992), is

that TAL lacks a model of the user, and hence there can be no certainty that the rules and

terminal symbols match the cognitive aspects of behavior. However, this statement has

86

Chapter 5 HCI & Interactive System Design

additional connotations for assistive technology design. When designing a user interface for the

diverse user group addressed by assistive technology, it would be problematic to derive a

cognitive model representative of the entire user group. The statement also suggests that the

focus of the analysis is the cognitive complexity of tasks. However, for much of the user group

of assistive technology, the physical actions required to complete a task would be more

significant than the cognitive factors, and deriving a user model to represent the physical abilities

of the user group is not addressed.

1 joint movement"

2 select start:: =

select start I
change joint selection + select start I
change direction selection + select start I
change joint selection + change direction selection + select start

issue start gesture I issue voice command

3 issue start gesture::= move head forward + pause + move head back

FIGURE 5.5 EXAMPLE TAL RULE DESCRIPTIONS

The lack of a user model is partially addressed by Task Action Grammar (TAG), a development

of TAL (Payne & Green, 1986). TAG uses a formal grammar to assess usability based on the

syntactic and semantic complexity and consistency of rules used to describe interaction. TAG

introduces the notion of a dictionary of simple tasks. These are the fundamental components or

operations within a task description that define the granularity of the analysis (corresponding to

move head forward or pause in the TAL example of figure 5.5). Simple tasks are defined as

those that may be performed without problem solving or iteration. Thus the user model

underlying the analysis can be assumed to be correct if the selection of simple tasks is correct.

As discussed by Johnson (1992), identifYing simple tasks relies upon the intuition of the analyst.

This weakness increases in significance for the design of assistive technology, where the

simplicity or otherwise of a task will be highly dependent upon the functional ability of the user.

5.3.3 GOMS task analysis

Incorporating a user model within task analysis was more formally addressed by Card, Moran

and Newell (1983), with the development of GOMS analysis (Goals, Operators, Methods and

Selection Rules).

87

Chapter 5 HCI & Interactive System Design

The components of a GOMS analysis may be described as:

• A Goal

• Operators

• Methods

• Selection

something the user wishes to accomplish.

an action that the user executes

sequences of steps that accomplish a goal

selection rules that exist when more than one method may be

used to achieve the same goal.

The model resulting from a GOMS analysis combines user characteristics and interface

characteristics in the context of the task. The user characteristics are derived from the model

human processor (MHP). This views a user as consisting of three subsystems: the perceptual,

cognitive and motoric subsystems, with each subsystem having its own memory and processor.

Information is processed by each subsystem, and transferred to an adjacent subsystem within a

finite time referred to as cycle time. The memory of the perceptual subsystem is divided into

auditory and visual, each with a specific capacity and decay time for stored information.

Similarly, the cognitive subsystem is divided into working memory, which has a finite capacity

and decay time, and long-term memory, which has an infinite capacity and decay time2. Thus

information is encoded symbolically by the perceptual subsystem and then passed in to working

memory. Previously stored information is retrieved from long-term memory, allowing a decision

to be made about a response, which may then be executed by the motor subsystem. The

parameters of the MHP were derived from psychological theory, and empirically (Card et. al.,

1983), and include measurements of basic operations relevant to user interaction, such as mouse

moves, mouse clicks and locating items on a screen.

Similar to the grammar-based techniques described above, a GOMS analysis requires as an input

a model of the task to be analysed. This may then be described in a form similar to a procedural

programming language as described by Kieras (1988). The task or goal is divided into sub-goals,

which are described by the methods (procedures) required to complete each sub-goal. The

methods consist of a sequence of simple actions or operators which, dependent upon the

granularity of analysis, would relate to the perceptual, cognitive and motor activities of the MHP.

2 Infinite capacity for L TM is justified on the basis that the analysis is of learnt tasks, thus the procedural
knowledge required already exists.

88

Chapter 5 HCI & Interactive System Design

A GOMS analysis allows for the functionality of a system to be verified, and the consistency and

complexity of the interface to be assessed. An advantage of GOMS over the techniques

described above, is that approximate predictions of task completion times may be made. A

comparison of common HCI evaluation methodologies (Nielsen and Phillips, 1993),

demonstrates that GOMS provides the best alternative to experimental evaluation, when

estimating the relative usability of possible interface configurations. This is particularly the case

where task completion times, or ease of menu navigation, are critical to usability.

GOMS techniques may be implemented with a design description, or incomplete prototype, and

can therefore be used early on in the design process. However, the complexity of the techniques

has restricted their popularity: they are far more dominant in research environments than in

commercial environments. They are also unable to address a number of usability issues,

particularly subjective issues, which are better addressed by techniques outlined below.

As GOMS task analysis uses the MHP as a user model, its application to assistive technology

interface design is problematic. The notion of a 'typical user' is not applicable to the target user

population, and the development of novel and adaptable interfaces requires consideration of the

characteristics that make individuals different. However, the GOMS approach makes explicit

reference to the user characteristics relevant to user interaction. Chapter 9 provides a framework

whereby the characteristics of a specific user may be estimated and included within a GOMS

like analysis. An experiment is reported that uses this approach to predict the relative usability of

various interface configurations, based on variable user and device characteristics.

5.4 Usability Inspection Techniques

Usability inspection techniques have been developed to allow for more rapid and cheaper

evaluations than analytic or experimental approaches allow. These may be performed by

usability experts, or software designers, and allow for the assessment of an interface against

accepted usability guidelines. Two common forms of evaluation are Heuristic Evaluation and

Cognitive Walkthrough, as described below.

89

Chapter 5 HCI & Interactive System Design

5.4.1 Heuristic Evaluation

Heuristic Evaluation is a method for finding usability problems in a user interface design, by

having a small set of evaluators examine an interface and judge its compliance with recognised

usability principles, the "heuristics" (see Nielsen, 1992). Heuristic Evaluation may be viewed as

having evolved from Guideline Reviews. These were inspections where an interface is checked

for conformance with a comprehensive list of guidelines.

Typically, guidelines would be fairly specific, such as:

• Provide displayed feedback for all user actions during data entry; display keyed

entries stroke by stroke ...

• The computer should provide some indication of transaction status whenever the

complete response to a user entry has been delayed

Problems arise with the application of guidelines. Guideline lists can be up to 1000 in length, and

require significant expertise to apply. They can be vague, contradictory, or defined at an

inappropriate level of specificity. A form of usability inspection was therefore developed, that

involves the application of a far more general set of design guidelines referred to as heuristics.

Evaluators are trusted to use their experience and intuition to identify whether a guideline makes

sense or not in a particular context, and how to apply it. Heuristics focus the evaluator's

attention on aspects of an interface that are often sources of trouble, making detection of

problems more likely. The original set of usability Heuristics (Nielson, 1992) are:

use simple and natural dialogue

provide clearly marked exits

minimise user memory load

be consistent

provide feedback

speak the user's language

provide short cuts

provide good error messages

prevent errors

90

Chapter 5 HCI & Interactive System Design

Each heuristic summarizes concepts with which experienced designers should be familiar:

Simple and natural dialogue

• Simplify as far as possible, reduce items to be learnt and remembered.

• Provide as much information as is needed (and no more) when and where it is needed.

• Interface should match task: provide a natural mapping between user concepts and computer

system concepts.

• Sequence of operations should match the way users would naturally do things.

• Allow user control of sequences of events.

• Use appropriate graphics and colour.

Speak the user's language

• Stick to user's perspective.

• Avoid restricting naming conventions.

• Use metaphors where appropriate.

Provide clearly marked exits

• All dialogue boxes should have cancel/escape.

• Use undos.

• Allow interrupts.

Provide short cuts

• Allow frequently used operations to be performed rapidly.

• Use abbreviations, function keys etc ..

• Reuse interaction history.

• Use default values.

Minimise user memory load

• Recognition is easier than recall, exploit computer's ability to store.

• Use dialogue boxes to allow selection of options.

• Use default values to show typical values or formats.

• Provide hints as to valid input, i.e. ranges.

91

Chapter 5 HCI & Interactive System Design

• System should be based on a small number of pervasive rules.

Provide good error messages

• Should be phrased in clear language.

• Should be precise.

• Should be constructive.

• Should be polite.

• Use multiple levels.

Be consistent

• A specific command or action should always have the same effect.

• Format information consistently on all screens and dialogue boxes.

• Be consistent with other interfaces (where appropriate).

Prevent errors

• Use selection in preference to typing.

• Confirm commands.

• Avoid commands that are too similar.

Provide feedback

• System should continuously inform the user what it is doing, and how it is interpreting user

input.

• Don't wait for errors (positive feedback, partial feedback).

• A void abstract and general terms.

• Vary persistence appropriately.

• Warn of system response times where appropriate.

An Heuristic evaluation is typically undertaken by a team of 3-5 evaluators, including HCI

experts and software developers. A set of typical user tasks would be walked through, and

features of the interface examined. Heuristic Evaluation is less formal than most evaluation

techniques, and is quicker and cheaper to implement. It can be used with early prototypes or

paper mock-Ups, and is therefore valuable in early stages of the design process, or where time

and money are limited. However, research has shown the technique to be less comprehensive

92

Chapter 5 HCI & Interactive System Design

than experimental evaluation. A study by Desurvire et. al. (1993) showed that an application of

the Heuristic Evaluation technique identified only 44% of the problems found through user

observation.

Many, if not all, of the heuristics are appropriate to some forms of assistive technology.

However, the heuristics are derived from guidelines, most of which assume that an able-bodied

person is interacting with a graphical user interface or command-line system, using a keyboard

or mouse, whilst viewing a VDU. Interface design for assistive technology also has to consider

the diversity of the potential user group, combinations of possible input devices, various

feedback devices, and a system that may be adaptable. It is theoretically possible to generate a

comprehensive yet unified set of specific guidelines dealing with voice recognition, voice

synthesis, gesture recognition, scanning systems, multi-modality, adaptability, user diversity

e.t.c. However, research so far has typically addressed these issues separately.

A reasonable conclusion may be that standard heuristics provide a useful tool to help designers

of assistive technology, provided they are used with the understanding that they are not

sufficiently extensive to address issues that are unique to the field. This approach was tested

during the development of the interface for the Middlesex Manipulator. As described in Chapter

8, a group of 5 undergraduate Computer Science students undertook an heuristic evaluation of a

prototype of the interface. Potential usability problems identified were then compared with

problems that occurred during user observation.

5.4.2 Cognitive Walkthrough

Cognitive Walkthrough (Polson and Lewis, 1992), is an evaluation methodology that focuses on

'ease oflearning'. The technique is adapted from established software design walkthroughs, and

is based on the model of Learning by Exploration described below. The procedure consists of

stepping through actions and considering the behavior of the interface and its effect on the user.

Actions are identified that are difficult to choose or perform. The result is a list of claims, as to

why the given steps may be problematic. These are based on theoretical argument, empirical data

or common sense gained through experience.

93

Chapter 5 HCI & Interactive System Design

Polson & Lewis (1992) present a model of the cognitive processes involved in successful

exploration. This allows for evaluation criteria to be extracted from the model to allow a

designer to identify points during an interaction where a typical user is likely to fail. The model

of learning by exploration is based on two theories: the Theory of Actions (Norman, 1986), and

the Construction Integration Model (Kintsch, 1988). Norman (1988) presents a summary of the

processes involved in performing and evaluating a task:

A Theory of Actions:

• Establishing the goal

• Forming the intention

• Specifying the action sequence

• Executing the action

• Perceiving the system state

• Interpreting the system state

• Evaluating the system state with respect to the goals and intentions.

These seven stages may be viewed as an approximate model of user activity, not a complete

psychological theory. In reality the stages may not be discrete entities, and would be likely to

exist in parallel.

The Construction Integration Model, Kintsch (1988), describes how users integrate

representations of perceptual input with background knowledge to form a representation, which

will allow them to complete a task. A goal structure is constructed from a description of the

user's task. A goal structure is similar to a goal hierarchy used in task analysis, with a top goal

representing the overall task, intermediate goals defining a task decomposition, and lowest level

goals describing actions. Goals are represented by propositions. These are linked to: other goals,

propositions representing background knowledge, propositions representing objects in the

environment, and to actions. These links are associative, and may be regarded as allowing

activation to flow from top level goals through connecting links to lower level actions. When an

action becomes sufficiently activated it is executed. Any response by the system is observed,

deactivating any accomplished goals, and building new propositions. These propositions
94

Chapter 5 HCI & Interactive System Design

represent new goals, and changes in the environment caused by the last action. The new

propositions are linked to the existing network, allowing activation to continue to spread through

the network, until the top level goal is achieved. The goal structure is initially incomplete, and

fragments are generated through interaction. The method aims to establish whether cues and

background knowledge are sufficient to generate an appropriate goal structure.

The model of learning by exploration combines the ideas presented above to describe how a user

may learn to use a system by a process of exploration. As with construction integration, a

complete goal structure is initially unknown, but is discovered by repeating the following

sequence of steps:

Model of Learning by Exploration

• Goal setting: users start with a rough description of what they want to accomplish.

• Exploration: users explore the system's interface to discover actions useful in accomplishing

their current task.

• Selection: users select actions they think will accomplish their current task, often based on

a match between what they are trying to do and the interface's description of actions.

• Assessment: users assess progress by trying to understand system responses, thus deciding

whether the action they have just performed was the correct one, and to obtain clues for the

next correct action.

The cognitive walkthrough procedure simulates the user's cognitive processes as the user

interacts with an interface. In its original form, a printed set of specific questions is used,

designed to reflect the cognitive model outlined above. As this was perceived as being time

consuming by evaluators, a simplified version of the Cognitive walkthrough was developed. This

involves walking through typical user tasks with a detailed design description. At each stage of

interaction the following questions are asked, relating to the: goal setting, exploration, selection,

and assessment stages of the model of learning by exploration.

95

Chapter 5 HCI & Interactive System Design

• Will the user form the appropriate intention?

• Will the correct action be made sufficiently evident to the user?

• Will the user connect the correct action's description to what they are trying to do?

• Will the user interpret the system' response to the chosen action correctly, that is, will the user

know if he or she has made a right or wrong choice?

The Cognitive Walkthrough technique, like Heuristic Evaluation, may be used early on in the

design cycle, as only a design description is required. However, the technique has proved less

effective than Heuristic Evaluation (Desurvire, 1993). This is partly because the technique

focuses on 'ease of learning', and focuses on problems rather than solutions. These factors have

contributed to the technique being less popular as a usability inspection method, than Heuristic

Evaluation.

Whereas Heuristic Evaluation is derived from the experience of system designers, the Cognitive

Walkthrough technique is based on models of user cognition. However, as was the case with

designer experience, the models do not cater for the diversity of potential users of assistive

technology. In order to answer the questions that form the basis of the technique, it has to be

possible to think in terms of a 'typical' user. As discussed in the previous chapter, a need has

been demonstrated for assistive technology to cater for the differences between individual users.

However, it is feasible that the technique may be of value if systems are being designed or

configured for clearly defined sub-groups of the physically disabled population, for example,

those with recent high-level spinal cord injury.

96

Chapter 5 HCI & Interactive System Design

5.5 Experimental Evaluation

Experimental evaluation forms a valuable tool for interface design, but as it consists solely of the

application of scientific method to interface evaluation, it is discussed here in less detail than the

previous techniques. Formal experiments are undertaken where measures of usability can be

expressed in a quantitative form, such as: task success, task completion time or error rates.

Ideally, a hypothesis is tested within a controlled environment, with a suitable sample of the user

population, allowing for data analysis to test for statistical significance.

Experimental evaluation is a relatively expensive form of evaluation, and is typically reserved

for critical stages of product development, such as market analysis, feasibility testing or product

acceptance. Informal experimentation may be employed where more subjective user feedback is

required, such as perceptions of interface complexity. These typically take the form of user

observations, questionnaires or interviews. If the appropriate conditions are met, particularly in

questionnaire design, statistical analysis may be used to interpret the results obtained.

Informal experiments involving user observation, questionnaires and surveys have been used

extensively during the development of assistive technology, and form an important part of most

product design cycles. However, the use of formal experiments as is common in 'mainstream'

HCI is problematic. As with the previous techniques, this is partly due to the extreme diversity of

the potential user group. HCI experiments are often designed to quantify the effect of varying a

particular feature of the interface - the independent variable. For example, the feature's effect on

time, or error rates (dependent variables) would be measured. If the subject group consists of a

representative sample of the user population, and all extraneous variables are controlled, then the

result may hold validity for the user population as a whole.

The ability to vary features of an interface is of particular interest to designers of systems that are

required to be adaptable, or use novel input devices. For example: adjusting the number or order

of options on a menu, varying the speed of a scanning system, adjusting the size of a vocabulary

of gestures e.t.c. However, if the potential user group is too diverse, then an experiment cannot

97

Chapter 5 HCI & Interactive System Design

easily be designed around a representative sample of users, and therefore the general effects of

these variations can not be estimated. Again, an experiment could be designed to address a sub

group, or even better, to address a specific individual. However, the cost and time required to do

this for every individual, and for all possible combinations of interface features would be

inhibitive.

5.6 Summary

As discussed in section 5.4, the development of interactive systems for rehabilitation robotic

devices, and for assistive technology in general, requires the consideration of a number of factors

that are not formally addressed by established HeI evaluation methodologies. These may be

summersied as being:

• Diversity. If systems are to be developed for a significant proportion of the disabled

community, then the variation in user functional ability is vast. Most evaluation

methodologies are either based on the idea of the typical user, or require that representative

samples of the user population are available.

• Multimodality. Limitations in user's functional ability, as well as stringent safety concerns,

suggests that the development of systems that may employ more than one mode of

communication would be advantageous. Existing evaluation methodologies provide no

formal way of examining the effects of the simultaneous use oftwo or more input devices

• Adaptability. The design of systems that can be configured to match user's functional ability,

requires that an assessment of functional ability forms part of the evaluation process.

• Novel Input Devices. The employment of novel input devices, such as gesture recognition

systems and voice systems, introduce factors that are not catered for by standard evaluation

methodologies.

98

Chapter 5 HCI & Interactive System Design

Informal experimentation is a valuable tool for the design of assistive technology, and this

chapter has discussed how other evaluation methodologies may be applied to assistive

technology in a limited or modified form. An Example of applying a Heuristic evaluation is

provided in Chapter 8. The possibility of adapting GOMS task analysis into a form suitable for

use in configuring adaptable user interfaces was also discussed. This may be of particular use,

where device and user characteristics should form a part of the configuring process. The

methodology is outlined and tested in Chapter 9 of this thesis.

99

Chapter 6 The User Interface System

Chapter 6

The User Interface System

This chapter describes the development of the User Interface System (UIS) for the Middlesex

Manipulator. User tasks identified in Chapter 4 are modeled by providing descriptions of the

actions that constitute a task. The descriptions were then refined, and represented using

Hierarchical Task Analysis (HTA), a method for decomposing tasks into goals, sub-goals and

lower-level actions as described in Chapter 5. This allowed for the functionality required of the

UIS to be grouped into a number of modes of control, allowing for a modular approach to system

design.

In accordance with the design requirements specified in Chapter 4, the objective of the work

reported in this chapter, was to define a software architecture that allows specific system

implementations to be adapted for the user in terms of the modes of control selected, input

devices, feedback devices and style of interaction.

99

Chapter 6 The User Intelface System

6.1 Modelling User Tasks

The objective of modelling user tasks, was to define a set of modes of control that provide the

system functionality required. As there are a large number of robotic systems in existence, the

results of this approach to some extent may be anticipated. For example, systems typically

provide a combination of joint control, movement through cartesian space, pre-taught positions,

or pre-programmed routines. However, as shown below, the modelling provides:

• additional detail as to the appropriate structure of control modes;

• a fonnal description of system functionality which may be evolved into a design solution;

• a model against which actual system use may be compared, to allow design modification or

verification; and,

• a model that can be used to assist in configuring a system for a specific user (constituting a

novel use of task analysis as presented in Chapter 9).

As discussed in Chapter 5, Hierarchical Task Analysis (HTA) is a method for describing the

process of problem solving by decomposing a task into goals, sub-goals and lower-level actions.

HTA is used as a tool in software development, typically by describing how users undertake

tasks with existing systems, allowing for the systems to be updated or replaced. For the current

application, user tasks were first described infonnally by considering how an able-bodied person

may undertake the task, or how similar tasks are achieved with existing rehabilitation robotic

systems (video footage of the Manus, Handy-I, and RAID systems were employed for this

purpose).

Of the top eighteen tasks, three are expanded below, as these were found to be representative in

tenns of the lower level actions identified.

i) Pick and place - can be achieved through the combination of joint and cartesian control,

with pre-taught positions being used where appropriate.

ii) Painting - includes the use of pre-programmed routines that should be perfonned relative

to the current position of the end-effector.

iii) Feeding - includes the use of a pre-programmed routine that utilizes pre-taught absolute

positions.

100

Chapter 6 The User Intelface System

6.1.1 The pick and place task

Figure 6.1 provides a description of the components of a typical pick and place task.

Consideration of the constraints involved when undertaking the task with a robotic system,

allows for control modes to be associated with the various components of the task.

Separated into gross
and fine movement

Pick & Place

--------------get object place object ~ ~ ~
move to object pick up object move to target release object

~ ~ ~ ~
move near
object

move adjacent close lift move near move adjacent open move
to object gripper object target to target gripper away

~ ~ Typically moderate to fast speed is
used here, could employ a pre-taught
position if one exists near to object.

\
Joint
control

Lower speeds appropriate
for fine movement.

~
Cartesian movement
useful if lifting an
object up, or pulling an
object off of a shelf

~
Again, gross and fine movement
used. Appropriate speeds may be
slower with object held.

FIGURE 6.1 INITIAL PICK & PLACE TASK DESCRIPTION

The task may then be represented in HTA form, making reference to sub-goals that need to be

further defined.

Sub-goal descriptions

SG I - Select and move to a pre-taught position, at an appropriate speed
SG3 - Move in a specific direction at an appropriate speed

101

SG2 - Select and move a joint, at an appropriate speed

Chapter 6 The User Intelface System

FIGURE 6.2 TOP LEVEL HT A DESCRIPTION OF PICK AND PLACE TASK.

Definition of the sub-goals provides infonnation regarding their structure, and provides an

indication of the control commands that the UIS will be required to support, and the order in

which they may occur.

SO I : moving to a
pre~taught position

FIGURE 6.3 SUB-GOAL TO MOVE TO A PRE-TAUGHT POSITION

SG2 : loint movement

FIGURE 6.4 SUB-GOAL TO MOVE A JOINT

102

Chapter 6 The User Inteliace System

FIGURE 6.5

SG3 : movement in
cartesian space

SUB-GOAL TO MOVE IN A PARTICULAR DIRECTION

The model provides a description of one way of accomplishing a task. However, the analysis

cannot ensure that the structure identified will optimize the usability of an interface design based

on the model. This will be dependent on :

• how accurately the initial task description reflects tasks being undertaken with the Middlesex

Manipulator (unknown until the Manipulator has been used);

• how frequently and in what order the lower-level actions are performed (effects breadth v

depth and ordering of menu options);

• how many, and what type of input devices are employed;

• the form of user interaction employed; etc.

The model, along with those developed below, may act as a requirements specification to be

evolved into a design solution assisted by the evaluation methodologies outlined in Chapter 4.

However, as the system is to be designed to be adaptable to specific users, the objective is not to

resolve the issues listed above for the general case, but to allow them to be resolved for each

individual case. Hence, the model presents an appropriate level of modularity for system design,

i.e. the modes of control required, corresponding to the general subgoals used in each task

description.

103

Chapter 6 The User Intelface System

6.1.2 The painting task

A description of several of the prioritized user tasks, suggested that the system should allow for

pre-programmed routines that may be executed relative to the current position of the

manipulator's end-effector. This is the case where tasks require that a particular trajectory is

repeated at different absolute positions in the workspace, such as : shaving, combing hair,

gardening, and painting. A model is developed with reference to a painting task in figures 6.6 to

6.8 below.

Apply paint to brush

~
Move to paint Dip brush

~

Painting

Perform a number of paint strokes

Move to painting

~
Move near painting Move to

target area

~

Apply paint

~
Pre-taught trajectory or
fine movement

Move to palette Move to selected ~ Gross and fine movement
colour

~
Possibly a pre-taught trajectory
relative to current position

Gross and fine movement. Both stages could employ
pre-taught positions. Fine movement may be way of
joint or cartesian modes.

FIGURE 6.6 INITIAL DESCRIPTION OF P AINTING TASK.

104

Chapter 6 The User Intelface System

I
Move to palette

I I Sub-goal(s):
SGI

Painting

T
Perfonn paint
strokes

I I I

Apply paint Move to
Apply paint

to brush painting

I I I I I I I
Move near Move to target

Sub-goal(s) :

Move to paint Dip brush SG2, SG3, or SG4
painting area

I I I I 1
Move to selected Sub-goal(s) : Sub-goal(s) : Sub-goal(s) :

colour SG2, SG3 or SG4 SGI SG2 or SG3

I

I
r Sub-goal(s): 1

SGl, SG2 orSG3

FIGURE 6.7 TOP LEVEL HTA DESCRIPTION OF PAINTING TASK.

SG4 : Pre-programmed
routine relative to current
position

FIGURE 6.8 SUB-GOAL TO EXECUTE PRE-PROGRAMMED ROUTINE

105

Chapter 6 The User Intelface System

6.1.3 The feeding task

The following description of a feeding task is similar to that employed by the Handy - 1 feeding

aid.

Feeding Food arranged on a plate
coordinates of which are
known to task ~ ~

Retrieve food
from plate

/'
Receive food
from spoon

~ Select food item
Indicate food received

~
System waits for input
from which next target
area is derived

~
User has taken food from spoon,
and indicates manipulator can proceed.
This could be the same as the input to
select food item

FIGURE 6.9 INITIAL DESCRIPTION OF A FEEDING TASK

This may be achieved with a mode of control that accesses pre-taught absolute positions in a pre

determined order, can be programmed to wait for user input, and can accept user input to

determine next target position. An appropriate model is shown in figure 6.10.

FIGURE 6.10

SOS : Pre-programmed
task

SUB GOAL TO EXECUTE A PRE-PROGRAMMED TASK

106

Chapter 6 The User Intelface System

6.2 Modes of control

The task analysis described so far has identified the following possible modes of control:

• positional (movement to a pre-taught position)

• joint (movement of a specific joint)

• cartesian (movement of the end-effector in cartesian space)

• routine (performing a pre-taught trajectory relative to current position)

• task (executing a pre-taught task that accesses pre-taught absolute positions)

• speed (setting manipulator speed levels)

Further modes are required to allow the teaching of positions, routines or tasks:

• teach position (record the current position of the end-effector as a pre-taught position).

• teach routine (record a trajectory)

• teach task (record a task).

The recorded positions are grouped into zones to assist with ease of recall. Each zone contains a

number of positions. There are currently up to 8 zones, each containing up to 8 different

positions 1. A position is recorded by first moving the Manipulator to the target area using either

cartesian or joint modes. The angular settings for each of the Manipulator's axes is then written

to a file, using the teach position mode structured as shown in figure 6.11.

I The potential number is much greater, limited only by the available disk space and acceptable menu
depth.

107

Chapter 6 The User Intelface System

SG6 : Teach position

I I

Select zone
Selecet position

Confinn
number

I 2 1

I I
I I I

3.21
I Yes No

Zone I Zone n 1

I.J 1.2

Position I Position n

2.1 2.2

FIGURE 6.11 STRUCTURE OF TEACH POSITION MODE

Pre-programmed routines may be taught by selecting a routine number and recording the current

position as routine origin. The Manipulator is then moved using joint or cartesian modes, with

the offset from the origin for each axis recorded at points along the trajectory.

SG7 : Teach position

FIGURE 6.12 STRUCTURE OF TEACH ROUTINE MODE

Currently, the definition of pre-taught tasks is achieved using a text editor, as opposed to via

options presented by the UIS. A template may be used to create C code that can be compiled into

a Dynamic Link Library (DLL) and called by the UIS task control mode. The DLL coordinates

communication to the motor control system, in response to input from the user. Clearly this

108

Chapter 6 The User Intel/ace Svstem

approach does not allow for the easy recording of tasks by end users, and would be required to be

replaced by a more user-friendly approach during further system development. An example

template is provided in Appendix D.

6.3 The UIS software architecture

The review of rehabilitation robotic systems presented in Chapter 2 provided evidence to suggest

that systems should be designed to provide a limited amount of functionality for novice users,

and increased functionality for more experienced users. The number of different control modes

identified above, and their complexity (particularly of the teach modes), tends to suggest that a

system with all control modes present would be unsuitable for a large number of potential users.

This section describes a software architecture that allows for systems to employ an arbitrary

number of modes of control.

To allow systems to be configured to match specific individual requirements, adaptability must

allow selection of:

• The number and type of input and feedback devices.

• The number and type of modes of control.

• The number of selectable items within a mode of control (number of speed levels, pre-taught

positions, etc.).

• The ordering of options within a mode of control (to reflect user priorities).

The components of the user interface system may be described using an object oriented analysis

and modelling tool such as the Unified Modelling Language (UML). UML was chosen to

provide a high level description of the system, as it is rapidly becoming an industry standard (see

Booch et al. 1998).

109

Chapter 6 The User Intelface System

The principle system components identified during the task analysis and requirements

specification are:

• a motor control system;

• modes of control; and,

• interface components.

Figure 6.13 provides a UML diagram illustrating the relationships between these components2.

The model allows for multiple interface components, each of which may be responsible for

processing user input, dispatching an input command to a mode of control module, and

displaying the current set of possible input commands. Multiple modules may be present,

representing possible modes of control. These are responsible for receiving the input command,

maintaining the set of current possible input commands, dispatching motor control commands to

the motor control system and monitoring the status of the motor control system.

The model shows that many-to-many relationships are possible between interface components

and modes of control, and highlights the potential complexity of message routing between

modules.

2 The UML notation used is specified in appendix 1.
110

Chapter 6 The User Inteliace System

Motor control system

Motor control status

Receive motor command
Process motor command
Dispatch motor status

1..*

Interface component

Input command

Process user input
Dispatch input command
Display current command set

FIGURE 6.13 USER INTERFACE SYSTEM COMPONENTS REPRESENTED AS UML CLASSES

This issue was addressed by introducing an additional module referred to as the Dialogue

Manager as shown in figure 6.14. The dialogue manager is responsible for activating a control

module, in response to an interface component dispatching the first in a series of input

commands. The active control module will then determine the subsequent command sets, which

are forwarded by the dialogue manager to the interface components present. This sequence of

events is portrayed as a UML sequence diagram in figure 6.15.

III

Chapter 6 The User Interface System

User
I
I
I o
I
I
I
I
I
I
I
I
I
I
I

o
I
I
I
I
I
I
I
I
I
I
I o
I
I
I
I
I
I
I
I
I
I
I
I

Motor control system

Motor control status

Receive motor command
Process motor command
Dispatch motor status

~
I

Controls

1..*

Mode of control

Current command set

Process Input command
Dispatch motor command
Update current command set
Dispatch current command set
Monitor motor control status

Dialogue Manager

Active mode of control

Forward user input
Forward current command set

1..*/

I
I

I

I

I
I

I

I
I

I
I

I
I

I

/
I

I
I

I

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\

1..*

Interface component

Input command

Process user input
Dispatch input command
Display current command set

FIGURE 6.14 USER INTERFACE SYSTEM WITH DIALOGUE MANAGER CLASS

Interface Component Dialogue manager Mode of control
I
I
I
I
I
I

Initiate dialogue : .--• Dispatch input ,-L-

9ispatch command se

I
I
I
I
I
I
I
I
I
I

Activate control mo de :

. 0 •
Dispatch command se ...

Motor Control system

Display command set
....

-

Sel d •

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~isplay command set

FIGURE 6.15

Dispatch input • FOIward input

Dispatch command set
Dispatch command se ... [::=;:~:~: '0

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UML SEQUENCE DIAGRAM OF INTER-MODULE INTERACTION

112

Chapter 6 The User Interface System

As discussed in Chapter 4, a PC was selected as the platform for the user interface system This

allowed for the development of Windows applications that can run in a multi-tasking

environment. Modularity was achieved by developing modules as separate applications that will

be either present or absent within specific system implementations. Configuring a system would

simply be a process of loading and running the selected applications.

Modes of
control

[[

~l- =t - + -l- Motor Control
System

Device
drivers

Input Device(s) Feedback Device(s)

FIGURE 6.16 A MODULAR USER INTERFACE SYSTEM

Similar architectures have been developed for artificial intelligence applications, such as the

blackboard model (Erman et. aI., 1980), and the agent model (for example, Brown et. al. 1995).

The Blackboard model employs a number of separate processing modules referred to as

knowledge sources. Each knowledge source periodically examines the blackboard, a global data

structure, and is designed to react to a specific set of conditions, generating an output which

updates the blackboard. Collectively the knowledge sources contain all of the knowledge

required to solve a problem, and they cooperate in iterating the blackboard towards a solution

state. Processing that employs agents is similar, in that each agent has a specific responsibility,

and acts autonomously in accordance with its responsibility, but cooperates with other

processing agents within the problem domain.

113

Chapter 6 The User Intelface System

As shown if figure 6.17, a similar approach was taken for development of the UIS. Each mode of

control is regarded as a module with specific responsibilities, as are the device drivers that

communicate with input and feedback devices. A module referred to as a dialogue manager

coordinates communication throughout the system.

Dialogue Manager
~

1 ~ ~
IDM 1 - FDM 1 MLU 1 Motor Control

System

IDMN FDM N MLU N

User Input Device(s) User Feedback Device(s) Modes of Control

IDM

FDM

MLU

FIGURE 6.17 SYSTEM COMPONENTS

Input device module. Effectively a device driver for a particular type of input

device, but also determines style of interaction (i.e. scanning system, direct

menu selection etc).

Feedback device module (Device drivers for an LCD screen, voice synthesis

etc.).

Modal logic unit. Implements the logic required for a specific mode of control.

The system may be regarded as a single-client multiple-server environment, with the Dialogue

Manager acting as client. Communication between modules is achieved through the use of

dynamic data exchange (DDE). DDE is a method of inter-process communication, using shared

memory to pass data between applications, and a protocol to synchronize communication.

Message passing between the applications that represent the different modules of the UIS is

achieved using Window's Dynamic Data Exchange Management Library (DDEML). The

114

Chapter 6 The User Interface System

DDEML is a dynamic link library (DLL) provided with Windows to manage DDE conversations.

When the UIS is being configured, the Dialogue manager is registered with the DDEML as a

client, and may then initiate a conversation with any servers present with the system. The servers

also register with the DDEML, and provide details as to the types of conversations that they

support.

Data may be transferred from the client to a server (poked), and may be received from a server in

three ways:

• the client may request an item of data;

• the client may request to be advised of changes of state within the server (advise loop); and,

• the client may request to automatically be updated with data reflecting the server's change of

state.

When the Dialogue Manager is initially run it needs to establish a conversation with at least one

IDM and one FDM, and will report an error if not successful. Otherwise, the Dialogue Manger

then attempts to establish a conversation with any MLUs present within the system. The number

of conversations established will determine the functionality of the system, and the Dialogue

Manager is able to instruct the IDM and FDM of the menu options to be provided to the user.

115

Chapter 6 The User Interface System

The three initial stages in the process of configuration are therefore:

• Dialogue Manager registers with DDEML as a client;

• All UIS server applications register with DDEML, indicating the type of conversations they

support;

• Dialogue Manager establishes a conversation with at least one IDM and at least one FDM;

• Dialogue Manager determines system functionality by establishing conversations with all

other UIS server applications present;

• Dialogue Manager instructs FDM and IDM of menu options to be provided to user.

When the user then operates the system, one of the MLUs present will become active, depending

on the mode of control selected. The Dialogue manager is then responsible for receiving any user

input from the IDM, and dispatching this to the active MLU and the FDM. As each MLU is

responsible for implementing the logic corresponding to a particular mode of control, the MLU

will provide the Dialogue Manager with the appropriate set of commands for each stage of user

interaction. The MLU also provides the output to, or receives input from, the motor control

system. Each set of commands received from the MLU is dispatched by the Dialogue Manager to

the IDM and FDM.

The activity present within the UIS during system operation is therefore:

• Dialogue Manager receives input from IDM

• An MLU is activated.

• Dialogue Manager dispatches MLU response to IDM and FDM allowing for the next stage of

user interaction.

• Dialogue Manager passes new user input to MLD.

• MLU controls the content of user interaction, and establishes a JMCL dialogue with the

motor control system.

The task analysis described in section 6.1 identified appropriate modes of control, and provided

an outline of the structure of each mode. This allowed for a user command language to be

defined, with each command being associated with a specific stage of user interaction. This is

116

Chapter 6 Th e User Interrace System

referred to as JUCL (Juvo User Command Language) and is defined in Appendix E. JUCL

commands constitute the messages sent between the system modules in response to user input.

Appendix F provides code listings for a Dialogue Manager, IDM, FDM, and an example MLU.

6.4 UIS Implementation (Version 1)

Two methods for presenting the JUCL commands to the user were employed. The first was used

during initial development and evaluation of the Middlesex Manipulator, and involved

presenting the JUCL commands in the form of a flat menu system. Figure 6.18 illustrates a

typical interface configuration as presented to the user. The sequence of screens shown,

simulates the user moving one of the manipulator's joints. The Windows display is used here to

simulate the commands as would be presented on a custom feedback device such as an LCD

display unit.

_ "III -Inlxll
1 Mgve Ggto SQeed H~re is Pgwer

FIGURE 6.18A TOP LEVEL MENU

"; 10M 1 I!!lIiII3
Base Arm Shoulder Elbow Hand Wrist End

FIGURE 6.18B JOINT SUB-MENU

- @M -IDlxll
lOut In Wrong End

FIGURE 6.18C DIRECTION SUB-MENU

+..,:'
! Slop -IDlxll

117

Chapter 6 Th e User Interface System

FIGURE 6.18D STOP SUB-MENU

When a scanning system is in use, a bar moves across the display, pausing below each command

as illustrated in figure 6.19 below.

'; 10M 1 RIilI3
Base Arm Shoulder Elbow Hand Wrist End -

FIGURE 6.19 A SIMPLE SCANNING SYSTEM

As described above, the number of modules present within a specific system configuration would

determine which JUCL command options would be presented via the interface. Additionally the

mode of input (gesture, voice or trackball), would be determined by the type of modules present.

6.5 UIS Implementation (Version 2)

The second form of interface employed the Microsoft Windows dialog based graphical user

interface. This allowed all control options to be presented simultaneously, which would

potentially allow for faster task completion. However the interface required the user to be fairly

competent when using a mouse or trackball. This requirement led to the development of a 'Head

Mouse' as described below.

118

Chapter 6 Th e User Interface Systelll

~ m

Power r JOint

IMI Base Shldr Arm Elbow Hand Grip
Speed

In -.J -.J -.J -.J -.J -.J

I " l Out -.J -.J --.J -.J -.J -.J .j
Off I f ---_ .. __ =_ ... _-_ _ _-_ __ ... -_ _ _ .. -._.-._._-

Stop

Go to : Record Run Task :

1m iJ I '::B ~ IFeeding :0::1

FIGURE 6.20 DIALOG BASED USER INTERFACE

6.6 User interface input and output devices

For initial system evaluation a number of input device modules were developed to allow

comparison of various input and output devices.

Trackball or standard mouse input

A trackball may be used to directly select options from the interface when the user has sufficient

controlling ability to manipulate a pointing device. Alternatively, if a user is capable of making a

number of arbitrary but fairly consistent movements with a trackball, these may be interpreted as

gestures as described in Chapter 7.

Voice Recognition

A commercial voice recognition system was employed (Advance Research Technologies, UK),

allowing direct selection of items from the menu based user interface. This was achieved by

using the vendor's software to train the system to recognise the appropriate set of commands.

The system then automatically sends Windows Menu 10 messages to the active window when a

command is recognised.

119

Chapter 6 The User Interface System

Electrolytic Tilt Sensors

Chapter 7 describes the development of gesture recognition software capable of encoding signals

from electrolytic tilt sensors mounted on the head or limbs of the user. These were used for

either direct menu selection, or adding functionality to scanning systems.

The Head-Mouse

During the final stages of project development a two-axis solid-state tilt sensor was identified

(Crossbow Technologies, USA), providing greater operating range (±7S0) and a faster response

than electrolytic tilt sensors. These were connected to a personal computer via a general purpose

input output/card, allowing software to be developed to enable the sensor to be used as a head

mounted pointing device.

; . .,;':.~
l , \.~

.:::(C't

FIGURE 6.21 SILICON MICRO-MACHINED TILT SENSOR

6.7 Summary

This chapter discussed how task analysis may be used to provide a description of the

functionality required of the UIS. One of the weaknesses of the approach is that the tasks being

modeled may not be completely representative of how tasks will be undertaken with the target

system. However, the models provide a starting point for system design allowing for an

appropriate design solution to be evolved. The task analysis identified appropriate levels of

modularity within the system design. This allowed for the development of a highly modular

software architecture which may be configured to present varying levels of functionality,

different input and feedback devices, and different styles of interaction. The effect of this

adaptability on system usability was addressed during the initial system evaluations as discussed

in Chapter 8. The following chapter describes the development of a set of input device modules

based around gesture recognition.

120

Chapter 7 Gesture recognition for user input

Chapter 7

Gesture recognition for user input

Chapter 3 of this thesis identified design requirements for the Middlesex Manipulator, which

included support for a range of user input and feedback devices. This Chapter describes the

development of gesture recognition systems that may be used as input devices for the User

Interface System described in Chapter 6. Gestures are monitored by tilt-sensors mounted on

either the head or the limbs of the user. User gestures may also be generated from a standard

trackball or mouse device.

The chapter explores the suitability of pattern recognition algorithms for encoding user gestures.

A Dynamic Programming algorithm and various artificial neural networks were compared as

pattern classification systems.

The objectives of this chapter are therefore to:

• describe the development of circuitry that allows tilt-sensors to be used to encode gestures;

• compare a Dynamic Programming algorithm with various artificial neural network

configurations for pattern classification;

• describe a Windows application that allows a trackball to be used to encode gestures; and,

• describe how a gesture recognition system may be incorporated into the Manipulator's UIS.

121

Chapter 7 Gesture recognition for user input

7.1 Gesture encoding with tilt-sensors

Gestures offer an important form of user input for assistive technology. Most physically disabled

people are able to partially control at least one part of their body, and the encoding of simple

gestures allows for potentially greater signal bandwidth than is achievable with simple

switches 1. A significant amount of research has addressed the use of gestures as a means of

communication for assistive technology, for example McEachern et. al. (1994); Harwin and

Jackson (1990); and Keates et. al (1997). This research focused on the use of a sophisticated

transducer - the Polhemus Isotrack system (McDonnel Douglas Electronics, Colchester VT

USA). The Polhemus allows six degrees of freedom to be monitored: x,y,z, pitch, yaw and roll.

McEachern describes how data from the sensor may be processed to direct a manipulator

towards a target being pointed to by the user, or to follow a path being described by the user's

gestures. The major disadvantage of including the Polhemus within the design of a system is its

high cost at over £8000 per device.

An alternative and cheaper method of encoding gestures is reported by Harrington et. al. (1995).

The approach taken was to mount a set of accelerometers on an arm for the encoding of arm

gestures. Four accelerometers were successfully used to classify eight different gestures, these

could be assigned either semantic meaning or numeric values allowing for a user interface

system to be navigated. However, the cost of a set of accelerometers, though cheaper than a

Polhemous, could still be fairly inhibitive running in to several hundreds of pounds.

The use of electrolytic tilt-sensors allows for the encoding of gestures in 2 dimensions. The

sensors offer an attractive solution, as they are relatively cheap at £30 each, and are small (16mm

x 7mm) and light (4 g) . However, the sensors are designed for fairly slow moving bodies,

having a time constant just below one second (slow enough to allow the electrolytic fluid to

settle). This would be likely to effect the potential bandwidth of the system, though this would

also depend on the sophistication of the pattern classification algorithm employed.

Two sensors were purchased from The Fredricks Company (Huntingdon Valley, PA, USA). Each

sensor consists of a tubular glass envelope partially filled with an electrolytic fluid which

~QntacfS metal p1ectrodes. The imoerlance of the sensor. is rlenenrlent on thp angle of tilt allowiog
:SIgna bandWidTh IS used here to re1'er fo the numl5er or diS mctTytllfferent slgnaTs that may De generated

with a device.
122

Chapter 7 Gesture recognition/or user input

the sensor to be included in a circuit providing an output voltage proportional to tilt angle, as

shown in Figure 7.1 below.

Tl

Cl

Jl

D2

FIGURE 7.l TILT SENSOR CIRCUIT

Rl22k2, R2 - R5 2k2, R6 - R7 1k4 R8 lk C133nF C2 - C3 25uF

Dl - D4 IN4148 Jl J2N3819 TS 1 - Tilt Sensor

The circuit shown is adapted from the manufacture's product sheet. An FET is used to form a

tuned-drain oscillator to generate the 20 KHz AC signal required for the sensor. The sensor is

included in a bridge circuit. The diode configuration ensures that normally the voltages

generated across C2 and C3 are approximately equal, and hence the output voltage is

approximately zero. As the sensor is tilted, the impedances in series with R2 and R3 will vary,

causing a DC voltage to be generated across the output.

Initial tests employed a National Instruments general-purpose data acquisition card (the Lab PC+

card). However, cost constraints would necessitate the development of a purpose built card for

the sensor's inclusion within the Middlesex Manipulator control system. For encoding head

gestures, the senors were mounted on a baseball cap as illustrated in Figure 7.2.

123

Chapter 7 Gesture recognition for user input

FIGURE 7.2 TILT SENSORS MOUNTED ON A BASEBALL CAP

Initial tests produced a response to simple head gestures as shown in figures 7.3 and 7.4 below.

0.15

0.1

0.05

E 0

'$ -0.05
Q.

-0.1 ::s
0
o -0.15
III

-0.2 c
Q)
II)

-0.25

-0.3

-0.35

Time (5)

FIGURE 7.3 SET OF 3 GESTURES, PREDOMINATELY IN THE X PLANE

124

Chapter 7 Gesture recognition for user input

0.05 ,-_________________ ----,

O.l--- ". -I .ffi i ~ ~!-·l
en

z: -0.05

<Xl
ci ci

...
:::l
Co ...
:::l
o ...
o
f/)
c ...

CJ)

-0.2

-0.25 i-__________________ ---'

Time (5)

FIGURE 7.4 SET OF 3 GESTURES, PREDOMINATELY IN THE Y PLANE

Each graph shows the output from 2 sensors mounted along orthogonal planes on a baseball cap.

The first half of the graph records movement from left to right, and the second from front to

back. Each graph shows three attempts at repeating the same gesture. The sensors are designed to

provide output voltages of up to IV. The lower voltage levels of the peaks shown above are

mainly due to the slow time response of the sensors. However initial indications were that the

sensors could be used as simple switches, or applied to a pattern classification system as

described below.

7.2 Pattern Classification

Two approaches to pattern classification were investigated: Dynamic Programming (a template

matching algorithm) and artificial neural networks. Research by Tew and Gray (1993), showed

that a dynamic programming algorithm (DP A) can be used to successfully classify hand gestures

issued by a mouse. The principle advantage of the algorithm is its low computational

complexity, and unlike neural networks and Hidden Markov Models, no training of the system is

required. As discussed by Tew and Gray (1993), DPAs were popular in the 1970s for speech

recognition, and in the 1980s for handwriting recognition but have been superseded by more

powerful techniques such as neural networks for these fairly complex classification problems.

The objective of the work reported here was to assess their suitability to the classification of

125

Chapter 7 Gesture recognition for user input

gestures encoded by tilt sensors. This was done by comparing the performance of a DPA with a

single layer perceptron artificial neural network (SLP). As the name suggests, the SLP is a

network containing just one layer of neurons, and hence offers a level of computational

complexity similar to the DP A. The SLP offers fast and reliable convergence during training

(Hrycej, 1991), however, its application to pattern classification has been limited mainly due to

the SLP's requirement that pattern classes must be linearly separable in feature space

(Wasserman, 1989). The work reported here tested whether this constraint would render the SLP

inappropriate for the current application.

As discussed below, the performance of the SLP proved superior to the DP A. Tests were then

undertaken to compare the more popular multi-layer perceptron artificial neural network (MLP)

with the SLP. The backpropagation algorithm was employed for network training. The resulting

network was more computationally complex than the SLP, and can require lengthy training

times. The objective of this stage of the work was to assess the trade-off between computational

complexity and network performance. Finally, a Radial Basis Function training algorithm (RBF)

was employed. The RBF offers shorter training times than the MLP, and in certain circumstances

can provide similar or better performance (Bishop, 1995).

Part of the work reported below, including implementing and testing the SLP, was undertaken by

an MSc student under the supervision of the author (Gellrich, 1995).

7.2.1 The Dynamic Programming Algorithm

The following description of a dynamic programming algorithm is adapted from Tew and Gray

(1993). A template representing each gesture to be classified is produced by sampling the

gestures at regular intervals, producing a set of template vectors. This is then compared to any

subsequently sampled gestures by use of a matrix as described below.

Initially, the vector representing the template, and a vector representing the gesture sample to be

classified are applied to the sides of a matrix as shown in figure 7.5a.

126

Chapter 7 Gesture recognition/or user input

2 4 6 2 4 6

0 I 3 5

3 I 3 2 I I 3 I

4 I 4 3 2 0 2

5 I 5 4 3 I I
~~- - ----

FIGURE 7.SA VECTORS APPLIED TO MATRIX FIGURE 7.SB CELLS COMPUTED AS VECTOR
DIFFERENCE

Template vector

Sample vector

x = {l, 3, 4, 5} = {Xj} (0 < j <= 4)

y= {1,2,4,6} = {Yi} (O<i<=4)

(7.1)

(7.2)

Each cell of the matrix is then computed by calculating the modulus of the difference between

vector values corresponding to the column and row of the matrix, as shown in figure 7.5b.

Form matrix A as: ai,j = IYi - xjl (7.3)

The lowest values in the matrix lie closest to the leading diagonal, and for identical vectors, the

diagonal would contain only zeros. A new matrix is now formed applying a local constraint from

the top left cell of matrix A, to the bottom right cell. The constraint defines the set of processed

elements in the matrix that must be considered in order to determine the new value for the next

unprocessed element. To calculate a new value for location (i,j), the values in three locations are

inspected: (i-l,j), (i, j-l), (i-1, j-1). The lowest value amongst these is added to the value already

present in cell (i,j).

Form matrix Bas: Bi,j = Ai,j + min (Ai-l,j -1 ,Ai-l,j ,Ai,j-l) (7.4)

Boundary conditions shown in figure 7.5c must be applied to start the process. The local

constraint is then applied to each element from scanning from top left to bottom right.

127

Chapter 7 Gesture recognition for user input

co co CO CO

CO 0 1 4 9
0 I 3 5

CO 2 1 2 5
2 I I 3

CO 5 3 1 3 ,

3 2 0 2

CO 9 6 2 2 2
4 3 I I

FIGURE 7 .SC APPLYING LOCAL CONSTRAINT FIGURE 7.SD RESULTING COMPARISON

Finally the value in the bottom right cell of the matrix is used to determine the quality of match

between the vectors. If the value lies below some pre-determined threshold level, then the

sample vector is said to match the template.

7.2.2 The Single Layer Perceptron

An SLP neural network attempts to establish relationships between sets vector pairs. For a given

set of input vectors I a set of output vectors 0 are produced. For a network that provides the

required relationship (a trained network) the output vectors 0 are equivalent to a set of target

vectors T. The structure of an SLP is illustrated in figure 7.6.

0 1

O2

03

II 12 I) 14

FIGURE 7.6 SINGLE LAYER PERCEPTRON WITH 4 INPUTS AND 3 OUTPUTS

128

Chapter 7 Gesture recognition for user input

Four input neurons and four output neurons exist, and each output is connected to every input.

The strength of these connections are determined by a set of weights.

The value of each output is given as :

N;

0i = LWij xIj
j=l

(7.5)

Where Ni is the number of neurons in the input layer, W ij is the weight connecting the j th input

to i th output, and if No is the number of outputs then 1 j No

The values of the weights are determined during the process of network training, typically

employing the Delta-Rule. This uses the difference between the target and actual output to

estimate the required change of weight value:

OWij = r (Ti-Oi) Ij (7.6)

Where OWij is the estimated change in value for weight Wij , Ti and 0i are the target and actual

values of output i, Ij is the j th input, and r is a learning rate coefficient. A new weight value is

therefore computed as :

Wij (n+ 1)= Wij (n) + OWij (7.7)

Network training is accomplished by continually applying each of the input vectors to the

network, and adjusting the weight values to minimize the network error (difference between

outputs and targets for all vector pairs). Typically, a l-of-n coding scheme is used for the target

vectors. If there are 8 pattern classes and 8 outputs, successful gesture classification results in

one of the outputs having a value of one, with the remaining outputs at zero.

7.2.3 The DPA and SLP compared

A vocabulary of gestures was generated based on samples performed by 10 subjects (a group of

undergraduate students were recruited as subjects). A vocabulary size of 8 provides an

appropriate bandwidth for the Manipulator's interface system. The vectors generated from the

gesture samples were 40 data points in length. As there were to be 8 classes of gesture, the SLP

129

Chapter 7 Gesture recognition for user input

had 40 inputs with 8 neurons in the output layer. Figure 7.7, shows four examples of a typical

head gesture. As can be seen, variation between members of the same gesture class may be in

terms of amplitude or phase, or the presence of tremor superimposed on the signal. A

mathematical model was developed to simulate the variation of gestures within a class. This

allowed for a large set of gestures to be generated with a controlled degree of degradation. The

performance of each algorithm could then be plotted as a function of degradation.

20

10

0

>
.§.
~ -20 ~
~

~ -30 ..
Cl

E -40
"IV r:: -50!
Cl

en -60':'

-70 .

-80

I

. I
'\ v/ I
'.\ ' I
'\:' I
\'

\)
IJ

Time [5]

--- Sarrple 1 .

___ Sarrple 2 '

_ . _ _ _ _ _ Sarrple 3

____ Sarrple 4 !

FIGURE 7.7 FOUR MEMBERS OF A TYPICAL GESTURE CLASS

The gestures were modeled as :

y = 30 sin (cot -1t) 0< cot < 1t

y = 5 sin 2 cot 1t < cot < 21t

Allowing for degraded gestures to be generated using:

y = A sin (cot - 1t)(1 + ~) + C sin kcot 0 < cot < 1t

Y = B sin 2 cot (1 + ~) + C sin kcot 1t < cot < 21t

(7.8)

(7.9)

(7.10)

(7.11)

where A and B adjust signal magnitude, ~ adjusts frequency, and C provides magnitude of

tremor at a frequency proportional to k. Figure 7.8 shows the modeled gesture with varying

degrees of magnitude, phase shift and tremor.

130

Chapter 7

40 ..

20 .~

~ 0
Q)

"C

.a -20 'c
Cl
III

E -40.'.
iii
c
Cl

in -60 T

-80 ~

--;-

Gesture recognition for IIser input

Time [5]

1-
/

,I
I
I I rrodel

I\, ,) -_ .. magn.+shift'

{" , I ____ magn.+trm

'.I
FIGURE 7.8 MODELED GESTURE WITH VARYING DEGREES OF DEGRADATION

Figure 7.9 below provides a graph of percentage variation in signal magnitude up to which

gesture classification succeeded for varying degrees of shift in phase. Plots are provided for

different degrees of tremor for the DP A, but are not shown for the SLP as the latter proved

insensitive to tremor. Tests were performed up to magnitude variations of 200%, as this was

representative of the worst gestures sampled. It can be seen that with no tremor or shift in phase

the DPA failed at 18% magnitude variation. The SLP succeeded in classifying all gestures (up to

200% magnitude variation) for which the shift in phase was less than 16%.

'cF- 20o..l- - - - - - - - - - - - - - -SLP~ - \ - ~J..
c

___ trm=O
____ trm=25%
_____ trm=50%
_______ trm=75%

SLP . ~
~

'i: 2
~
>
Q)

"0 =
'= ell
~ :;;
;.<
~ :;; o

\ --

-..;::.....
....

"
"'"

DPA
. --
• - •. -~.~- - - -:- -=--- ---.~--~.~
2 4 6 8 10 12 14 16 18

Phase shift at failure [%]

FIGURE 7.9 MAXIMUM VARIATION FOR SUCCESSFUL CLASSIFICATION

The SLP provided significantly greater classification performance than the DPA, when presented

with typical levels of variation in user gestures. The linear separability constraint of the SLP did

not restrict it successfully differentiating between user gestures. Hence, the results show that as

131

Chapter 7 Gesture recognition for user input

the two algorithms have comparable levels of computational complexity, the SLP would be

considered the more appropriate of the two for the current application.

The following section describes the development of a more powerful pattern classification

system using a multi-layered perceptron (MLP). This allowed the performance of the SLP to be

compared with the MLP, and the advantage ofthe SLP's simplicity to be assessed.

7.2.4 The multi-layered perceptron

Figure 7.10 below shows the structure of an MLP that has two layers of neurons.

r--

0 1
~ -

~

O2

....--

FIGURE 7.10 STRUCTURE OF A 2 LAYERED MLP

Each of the network inputs is connected to every neuron in the first layer via a set of weights.

Similarly, each of the outputs of the first layer is connected to every input of the second layer.

The actual number of neurons in each layer, and indeed the number of layers, is arbitrary, and is

usually determined by comparing the performance of different network structures for a given

application.

132

Chapter 7 Gesture recognition for user input

The output of each neuron is partially detennined by the weighted sum of its inputs. This value is

then applied to an activation (or squashing) function to detennine the actual neuron output. The

activation function is chosen to be easily differentiable, as the derivative is used in network

training. The sigmoid function is typical used, given as :

0i = (1 + e -Sl r 1

Where 0i is the output of the i th neuron and Si is the weighted sum value for i th neuron.

Si is given as :

N j

Si = LWij xlj
j=l

(7.12)

(7.13)

Where Ni is the number of neurons in the input layer, Wij is the weight connecting the j th input

to i th output, and if No is the number of outputs then 1 j No

Network training is achieved with a set of input vectors representing the gestures to be learnt,

and a set of target vectors representing the desired outputs. Wassennan (1989) describes the

process of training as consisting of the following steps:

1. select an input-output pair of training vectors and apply to the input vector to the network;

2. calculate the output of the network;

3. calculate the difference (error) between the network output and the desired output;

4. adjust the weights of the network to minimize error; and,

5. repeat steps 1 to 4 with each training vector pair until the network error is acceptably low.

Steps 1 and 2 can be described in vector fonn. An input vector I is applied, and an output vector

o is produced. The weights for each layer of the network may be considered as being a matrix,

thus:

O=F(IW) (7.14)

where W is the weight matrix and F(x) represents the sigmoid activation function. Weight

adjustments for neurons in the output layer is achieved using a modification of the delta-rule.

The output of a neuron is subtracted from its target value to provide an error signal. This is then

multiplied by the derivative of the activation function:

133

Chapter 7 Gesture recognition for user input

1
If F(x)=I+e-x then F' (x) = 1 +le_x (1- 1 +le_x) (7.15)

A delta value for a single neuron is therefore calculated using:

8 = Out (1 - Out) (Target - Out) (7.16)

To calculate the change required of a weight connecting neuron p in the first layer to neuron q in

the second layer, the 8 value for neuron q is multiplied by the output of neuron p and a training

rate coefficient II typically between 0.01 and 1.0.

~Wpq = 17 Oq Out p (7.17)

The weight change for connections to neurons in the first layer (or any hidden layers) may not be

determined in the same way, as no target vectors exist for the layer. Instead, the 8 value for

neuron p in the first layer is calculated by propagating back the 8 value calculated for the output

layer, using:

(

Nq J
Op = Outp (l- Outp) ~Oq Wpq . (7.l8)

Where Nq is the number of neurons in the output layer.

Training time and network stability may be improved by adding a term to weight adjustment

proportional to the previous weight change (Rumelhart et. al. 1986).

134

Chapter 7 Gesture recognition/or user input

This tenn is referred to as momentum, and is denoted as u. The weight change for connection

between neuron p and neuron q is therefore given as :

LlWpq (n+ 1) = 11(8q Outp) + U [Llwpq(n)] (7.19)

7.2.5 The MLP and SLP compared

The vocabulary of gestures described above was used to compare the classification perfonnances

of the MLP and SLP networks. The gestures were used to train the 2 networks, allowing for

frequency of subsequent classifications to be detennined. The structure of the SLP was as above.

Similarly, the MLP had 40 inputs and 8 outputs. The number of neurons in the MLP's hidden

layer was detennined by recording classification perfonnance as the number of neurons was

varied from an initial value of 6 to a final value of 30. The perfonnance improved as the layer

size was increased to 18, and then leveled off. The size of the hidden layer was therefore set at

18.

Once trained, both networks proved capable of successfully classifying all eight gestures. Here, a

miss-classification is defined as the wrong output neuron having the highest value for a given

input. Using this fonn of calculation, initial tests produced classification rates of 84% for the

SLP and 91 % for the MLP (an average from three subjects attempting to perfonn a total of 90

gestures). However, it is useful to estimate the certainty with which a classification has been

made, as it is this, combined with the set threshold level, that would detennine whether the

network output should be interpreted as a positive recognition of one of the defined gestures.

This was approximated by expressing the difference between the highest output and the second

highest as a percentage:

o -0
C = p q x 100

Op
(7.20)

where Op is the output of the winning neuron, Oq is the second highest output and C is the level

of certainty.

135

Chapter 7 Gesture recognition for lIser input

The results of the classifications for both networks would then be 69% (SLP) and 82% (MLP).

As would be expected, better perfonnance was achieved with the MLP. The cost of this

improved perfonnance is the training time required of the MLP. However, with the ever

increasing processing power of personal computers, training times are decreasing in significance.

With the moderate size of the MLP described above, and the fairly small set of sample gestures,

network training typically lasted approximately 6 minutes with a processor running at 100 MHz.

7.2.6 The Radial Basis Function

As described by Hush and Home (1993), a Radial Basis Function (RBF) network is a 2 layer

network, whose output neurons fonn a linear combination of the basis (kernel) functions

computed by the neurons in the input layer. Bishop (1995), argues that the classification

perfonnance of the RBF is comparable to an MLP employing the backpropagation algorithm.

However, training times are typically lower than the MLP, as the learning processes is broken

into 2 separate stages, the algorithms for which are fairly efficient. An RBF was therefore

implemented as described below, to allow for its comparison with the MLP.

The basis functions used for the input layer produce a localized response to the input vectors, i.e.

each neuron provides a significant non-zero response if the input vector falls within a small

localized region of the input space. The basis function typically employed is a Gaussian kernel of

the fonn:

U
j

= ex} _ (x-C)T(X-C j) l
'L 2eY] J j=I,2, ,Nl (7.21)

where U j is the output of the jth node of the first layer, X is the input pattern and C j is the weight

pattern of the jth node of the first layer, eY] is the nonnalization parameter for the jth node, and

N 1 is the number of nodes in the first layer.

The output layer node equations are given by :

136

Chapter 7 Gesture recognition for user input

Yk=W~U k= 1,2, N2 (7.22)

Where Yk is the output of the kth node, W ~ is the transpose of the weight vector for this node,

U is the vector of outputs from the first layer. N2 is the number of nodes in the output layer.

Training the RBF network was achieved in two stages : an unsupervised training process for the

first layer, followed by a supervised training process for the output layer.

procedure K Means
Initialize the cluster centers (weight vectors of the first layer) C j j = l,2, ,N J

repeat
/* group all patterns with the closest cluster center */
for all Xi do

Assign Xi to e j *' where C j * = mini Ix i - C j II
}

endloop
/* Compute sample means */

for all C j do

endloop

c. =_1 Lx.
i m ... I

} .r..jE)

until there is no change in cluster assignments from one iteration to the next.
end.

FIGURE 7.11 K-MEANS CLUSTERING ALGORITHM

A K-Means clustering algorithm was used for the unsupervised training phase, this is outlined in

figure 7.11 (adapted from Hush and Home, 1993), where, m j is the number of input patterns

associated with cluster C j' Grouping input patterns with cluster centers forms a set of training

patterns e j . This is done on the basis of the minimum Euclidean distance between a given input

pattern and the cluster centers. The normalization parameters aJ, were obtained once the

clustering algorithm was complete. These represent a spread of the data associated with each

node, and were calculated as the average distance between the cluster centers and the training

patterns, given by :

2 1" T a j = - L.. (x - C j) (x - C j)
M j XE8

j

(7.23)

137

Chapter 7 Gesture recognition for user input

where 8 j is the set of training patterns grouped with cluster C j' and M j is the number of

patterns in 8 j .

Learning in the output layer was performed after the parameters of the basis functions had been

determined, this was accomplished using a Least Means Squared algorithm, (LMS) similar to

that employed by the SLP mentioned above. The LMS is summarized in figure 7.12.

procedure LMS

end

Initialize weights W j to small random valuesj = 1,2, ,N2

repeat
Choose next training pair (u,d)
/* Compute Outputs */
for all j do

Y j = W jU

endloop
/* Compute Errors */
for all j do

ej=Yj-dj
endloop
/* Update Weights */
for all j do

wj (k+l)=wj (k)-JI eju

endloop
until acceptable error

FIGURE 7.12 LEAST MEAN SQUARE ALGORITHM

The vectors constituting a training pair are the output of the first layer u, and the desired output

of the second layer d. The actual output of the second layer is represented by y, with e being the

error or the difference between actual and desired outputs. The weight vector for the second layer

is w, and fl represents the network learning rate.

7.2.7 The MLP and RBF compared

An REF was implemented with the structure employed for the MLP described above, i.e. 40

inputs, 18 neurons in the first layer, and 8 neurons in the output layer. The gestures generated for

section 7.2.5 were used to train the REF, allowing for the frequency of classification of

138

Chapter 7 Gesture recognition for user input

subsequently formed gestures to be recorded. As was anticipated, the training times for the REF

were lower than the MLP at approximately 2 minutes. However, the classification performance

was far poorer at 52%. This may be explained by the fact that the training set used was small,

with only 5 samples for each gesture to be recognised. The kernels computed by the neurons in

the input layer are therefore less representative of a gesture class than would be achieved by a far

richer training set. Bishop (1995) points out that the relative performance of the REF is far

greater when a rich training set is available. However, for the current application, any benefits

gained over the MLP in terms of reduced training times would be lost due to the time that would

be required to capture a larger number of training gestures from a user.

7.3 Configuring the Tilt-sensor for use with the UIS

The tests described above indicate that an SLP provides significantly better classification

perfornlance than a DPA, with a similar level of computational complexity. The MLP improved

on the performance of the SLP, incurring training times that appear to be of a moderate level,

and capable of being incorporated into the process of configuring the VIS. The user acceptance

of the device and the classification system's performance would need to be determined by user

testing. However, the initial results indicated that the sensor would not be appropriate for use in a

direct-menu selection system. The slow time response of the sensors resulted in gesture lengths

of up to 2 seconds. This length of time was required to ensure that each gesture in a set of 8 was

adequately different from the remaining gestures. The result of this would be that a system

employing direct-menu selection would provide slower user interaction than a scanning system,

and since the cognitive demands of direct-menu selection are greater, the scanning system would

appear to be the preferable style of interaction iftilt sensors are employed.

A scanning system requires a minimum of one gesture for operation, and can therefore be

operated with the tilt sensor acting as a switch - tending to suggest that a pattern classification

algorithm is not required. However, the use of such an algorithm has potential for recognizing

involuntary movement, and can allow for added functionality. For example, one gesture may be

used to select the current option, another to return to the previous stage of interaction, another to

cancel dialogue and stop any movement of the arm. Consequently, increasing the bandwidth of

an input device being used with a scanning system, reduces the number of options that the

139

Chapter 7 Gesture recognition for lIser inpllt

scanning system needs to manage, and therefore can allow for more rapid user interaction. This

latter approach was adopted for the development of a scanning system, the initial trials of which

are reported in Chapter 8.

7.4 Gesture Encoding with a trackball

Trackballs have been used successfully as input devices for rehabilitation systems for those who

have partial hand movement (for example, Verburg et. al. 1995). A program was therefore

developed to allow the application of an artificial neural network to the encoding of hand

gestures issued by a trackball. As shown below, this form of input docs not suffer from the poor

time response exhibited by the tilt sensors. This would allow for larger vocabularies of gestures

to be more easily generated, and hence direct menu selection to be a feasible form of interaction.

7.4.1 Outline of a Gesture-Recognition Windows Application

A Windows application was developed to allow for the encoding of gestures in 2 dimensions.

Windows applications generate 'mouse move' messages when an input device is being moved,

these contain the x and y coordinates of the current position of the input device. A function was

written to store a set of x and y coordinates as a vector, that act as an input to an MLP neural

network. A description of simplified versions of the application's principal functions is provided

below, for full code listings see Appendix H.

The EvLButtonDown function in figure 7.13 is a member function of the application's main

Window class. The function is called in response to the generation of a Windows message

indicating that the trackball has been depressed.

void TGestWindow::EvLButtonDown(uint, TPoint& point)

START_REC = TRUE;

StartX = point.x;

StatiY = point.y;

FIGURE 7.13 FUNCTION TO INITIATE GESTURE RECORDING

140

Chapter 7 Gesture recognition for user input

This is used to initiate the recording of a gesture. The function is passed a reference to a point

structure containing the current coordinates of the input device. Two variables are initialised to

record the position of the beginning of the gesture, and a flag is set to true to indicate to

associated functions that gesture recording has been initiated.

void TGestWindow::EvMouseMove(uint, TPoint& point)
{

if(START_REC)
{

II trace element counts coordinates already recorded
I I restricted by size of network
if(TraceElement<(InputNodes))
{

x = point.x;
y = point.y;

x -= StartX;
y -= StartY;

II Adjust relative to start

II Add coords to gesture structure
Gesture.x[TraceElement] = x;
Gesture.y[TraceElement] = y;
TraceElement++;

else II End of Template Record

START_REC = FALSE;
Result = Classify(Gesture);

FIGURE 7.14 FUNCTION TO RECORD GESTURE

The EvMouseMove function is called in response to the generation of a Windows message

indicating that the trackball is being moved. If the START_REC flag has been set the

coordinates passed as function arguments are added to a gesture structure which contains an

array of x and y coordinates. This is repeated a number of times controlled by the TraceElement

variable, and dependent on the size of the network. The Classify function is then passed the

gesture structure, and returns an integer corresponding to the winning output node (the function

provided in Appendix H has as a function argument a reference to an array of floats containing

141

Chapter 7 Gesture recognition for user input

all network outputs). As shown below, the classify function creates a vector X for input to the

network from the gesture structure. Two functions are then called, the first calculating the output

of the input (hidden) layer, and the second computing the output neuron values. The output

neurons are then each inspected in tum, to determine whether their values are greater than any

previously inspected. A variable Winning node is then assigned a value dependent on which

neuron has the largest value.

int Classify(TGesture &Gesture)
{

float MaxOutVal = -9999; II largest output so far
int WinningNode = -1;
int g = 0;

I I Create X from gesture
for(int k =0; k<VectorLengthl2; k++)

X[k] = (float)Gesture.x[k];

for(k = VectorLengthl2; k<K; k++)
{

X[k] = (float)Gesture.y[g];
g++;

ComputeHiddenOutO;
ComputeNetOutO;

I I find maximum output
for(int i = 0; i<I; i++)
{

}

NetOut[i] = Y[i];
if(Y[i] > MaxOutVal)
{

MaxOutVal = Y[i];
WinningNode = i;

return WinningNode + 1;

FIGURE 7.15 FUNCTION TO CLASSIFY GESTURE

142

Chapter 7 Gesture recognition for user input

void ComputeHiddenOutO
{

II J = number of neurons in 1 st layer
forU=O; j<J; j++)
{

U[j] = VectorMult(&WH[j][O], X);
Temp = expl((1ong double)(-1 *U[j)));
U[j] = l/(1+ (float)Temp);

U = output of hidden layer
X = input to hidden layer
WH = weight matrix for hidden layer

FIGURE 7.16 COMPUTES OUTPUT OF HIDDEN LAYER

void ComputeNetOutO
{

for(i=O; i<I; i++)
{

Y[i] = VectorMult(&WO[i][O], U);
Y[i] = 1/(1+(exp(-1 *Y[i))));

Y = network output
U = Hidden layer output
WO = weight matrix for output layer

FIGURE 7.17 COMPUTES NETWORK OUTPUT

7.4.2 Trackball gesture-recognition: Initial Results

Initial tests of the perfonnance of the MLP were undertaken by the author, classifying sampled

gestures against a training set containing eight gesture classes. An application (shown in

appendix H) was written, that requests the user to perfonn one of . eight the gestures. The gesture

number is selected at random, a classification attempted and the result recorded, this is repeated

40 times. The initial results were encouraging, with recognition rates between 95% and 100%

regularly achievable. Additionally, unlike the gestures encoded with tilt sensors, the gestures can

be perfonned in under 1 s.

143

Chapter 7 Gesture recognition for user input

As mentioned in section 7.18, the implications of gesture-recognition performance on the

usability of an interface system would need to be determined through user testing. Chapter 9

describes an experiment designed to determine usability levels offered by an interface employing

gesture recognition. Subjects include able-bodied and physically disabled people, allowing for

the implications of the diversity of controlling ability within the subject group to addressed.

7.5 Conclusions

This chapter described how tilt sensors may be used as a form of input for the Manipulator's user

interface, allowing for greater signal bandwidth than provided by a simple switch system. The

slow time response of the sensors was found to limit the signal bandwidth for practical purposes,

suggesting that the sensors would be more appropriately applied to a scanning system or

keyboard emulation, rather than direct menu selection.

The SLP neural network was found to have significantly greater gesture classification

performance than a DP A, at a similar level of computational complexity. However, an MLP

improved on this performance with a moderate network size, and hence fairly low training times

were incurred. An RBF was unable to offer similar performance levels, as the training set

consisted of a small set of training samples which seemed to offer particularly poor training

conditions for the RBF. The MLP algorithm was therefore adopted for the classification systems.

A Windows application was developed to allow gestures to be encoded with a trackball. An MLP

was shown to be capable of achieving recognition rates of between 95% and 100% for a user

without a physical impairment, repeatedly issuing a random selection of one of eight gestures.

However, the initial tests performed did not allow for any general conclusions as to the

suitability of either the tilt sensors or the trackball as a form of user input. Chapter 8 presents

some preliminary findings from an initial user evaluation of the Manipulator system, where

gesture recognition is one of the modes of input employed. Chapter 9 discusses an approach that

would allow the controlling ability of specific users and input device characteristics to be

assessed, allowing predictions of the relative usability of different interface configurations to be

made.

144

Chapter 8 System evaluation

Chapter 8

System Evaluation

This chapter summarizes two evaluations of the Middlesex Manipulator that were undertaken as

part of an iterative design-cycle. The first, a heuristic evaluation of the user interface system, was

undertaken by a group of computing science students, to identify potential problems relating to

user interaction. This allowed for an assessment of the appropriateness of heuristic evaluation to

user interface design for assistive technology. The chapter shows that the heuristic evaluation

provided an appropriate framework for the identification of a number of usability issues, some of

which were then verified empirically.

An individual with spinal-cord injury was invited to undertake an evaluation of the manipulator

and input devices while performing tasks from the prioritized task list. This chapter provides an

analysis of the resulting usage data, and a discussion of the user's subjective feedback. This is

compared with the design requirements provided in Chapter 3, and the general design criteria

outlined in Chapter 2. The chapter concludes that two of the design criteria are not met, the

consequences of which are discussed further in Chapter 10.

146

Chapter 8 System evaluation

8.1 A Heuristic Evaluation

This section presents the results of a Heuristic Evaluation of an initial configuration of the

Manipulator's user interface system. Two objectives were central to the work reported here.

Firstly, to assess the efficacy of Heuristic Evaluation within the current design scenario, and

secondly, to highlight potential improvements in system design. The evaluation was undertaken

by the author and four undergraduate students undertaking a computing science module at

Middlesex University (Human-Computer Interaction Evaluation Methodologies, COM3240

1996/1997) .

8.1.1 Method

The students were provided with information regarding the background and objectives of the

project. They were each then provided with a copy of the interface software. A configuration was

provided in a form to match that used during the user evaluation as described in section 8.2

below. The commands presented by the interface constitute a subset of the command language

defined in appendix E. Commands presented by the menu system are illustrated by the examples

provided below. Figure 8.1 illustrates the sequence of menu selections required to switch the

system power on. Initially the 'Power' command is selected from the top-level menu, activating a

sub-menu containing three items. The 'On' command is then selected, returning the system to the

top-level. Similar sequences of interaction are illustrated below for speed selection, moving to a

pre-taught position, and moving a joint.

Move Goto Speed Herels [.·.·.·.·.·.~i.i~·~.~.·.·.· .. J
[........... ?.~ :::::: .. :J Off End

Move Goto Speed HereIs Power

FIGURE 8.1 INTERFACE MENU SEQUENCE - SELECTING 'POWER ON'

Slow

Goto

[.............. ~.~.~ J
L ~.p. .. ~.~.~· J

Fast

Herels Power Move

Move Goto Speed Herels Power

FIGURE 8.2 INTERFACE MENU SEQUENCE - SELECTING 'SPEED MEDIUM'

147

Chapter 8 System evaluation

Move

Front

I'''''''o~~'''''''''''! Two

L. ~~~~J
Move Goto

Speed

Home

Three

Speed

HereIs Power

End

Four

HereIs Power

FIGURE 8.3 INTERFACE MENU SEQUENCE - MOVING TO A PRE-TAUGHT POSITION

[........... ~ .. ?.~.<~~~.J
Base

In
:·······St·~·p··········)
L

Move

Goto

Ann

[.............. .?.~ .. ~]

Goto

FIGURE 8.4

Speed

[.·~.~·i.~.I§i·~]
Wrong

Speed

HereIs

Elbow

End

HereIs

Power

Hand Wrist End

Power

INTERFACE MENU SEQUENCE - SELECTING JOINT MOVEMENT

Each evaluator was provided with a description of a typical user task, employing each of the

control modes presented by the interface.

Pick and Place task description

Switch on the power to the system, and set the speed to medium. Move to a pre-taught position

near the target object. Set the speed to slow, and adjust the elbow and hand joints to approach

the target. Close the gripper, and at medium speed move to a pre-taught position near the

destination. Adjust the base and shoulderjoints, then release the object.

Evaluators independently simulated undertaking the user task by walking through appropriate

command sequences with the interface. Aspects of user interaction were recorded that could be

deemed as conflicting with the usability heuristics outlined in Chapter 4. A meeting was then

convened to allow the separate findings to be pooled and discussed. Where appropriate, a possible

solution was suggested, and an attempt was made to estimate both the severity of the problem,

and how difficult the problem would be to address. This allowed for decisions as to whether

design modifications should be made, and if so, at which stage of the project's design cycle.

As discussed by Neilson (1994), problem severity may be estimated along two dimensions:

impact and frequency. The approach taken here was to construct a Likert scale corresponding to

148

Chapter 8 System evaluation

each dimension, allowing for problem severity to be estimated using the product of the average

scores given by evaluators.

minor
nUIsance

non- 5
recoverable
error

FIGURE 8.5

seldom
I

always

5

x~
severity = impact X frequency

ESTIMATING PROBLEM SEVERITY

Estimating the difficulty that may be involved in providing a solution, was done by discussing the

amount and type of work involved, ranging from code-editing, and code-development, to

researching a novel solution. An estimation was arrived at collectively in man-hours.

8.1.2 Results

Each usability issue identified includes a reference to the relevant heuristic, the estimation of

problem severity (PS) and solution cost (SC) in man-hours.

1. Simple and natural dialogue. PS = 12, SC = 4. The Stop command returns the user to the top

level menu. However, the user task as modeled suggests it may be more appropriate to be

returned to joint selection, allowing a number of joints to be more easily moved in quick

succession. A possible solution would be:

!······ .. i\1'~·~~······l
i

Base

In
r·······St·~p·········l
t

Base
r·······"1~· .. ············l

L~~~~~.~~·p.~~~~~J
Base

Move

Goto

Ann

[.............. ?.~.~]

Ann

Out

Arm

Goto

FIGURE 8.6

Speed

f···Sh·~·~~ld~~·!
L :

Wrong

Herels

Elbow

End

Shoulde~··Elb~~~········!
~l

Wrong End

Shoulder Elbow

Speed Herels

Hand

Hand

Power

Hand Wrist

Wrist End

Wrist [.............. ~.~.~]
Power

MOVING SHOULDER AND ELBOW JOINTS

149

End

Chapter 8 System evaluation

2. Simple and natural dialogue. PS = 4, SC = 4. The 'Wrong' option provides an undo facility

whereby the user may return to the previous level of interaction. However, the interface repeats

the same set of options, even though it may be inferred that the item previously selected is not

required. It would be useful to remove the item, particularly if a recognition system is frequently

confusing two commands. An alternative approach would be

r· iyi~;~ ·l
L :

Base

In

Base

t.·.·.·.·.·.·.·.·.~.~·.·.·.·~~~~.·.·.·.·.·]
t.·.·.·.························,

Move

Goto

Ann

Out

Ann

Out

Goto

Speed

[.:§~.i~.~:~:i..i.E.]
i Wrong i
i;"'Eib~~;'m""r
L :

Wrong

Speed

HereJs

Elbow

End

Hand

End

HereJs

Power

Hand Wrist

Wrist End

Power

FIGURE 8.7 MOVING ELBOW, WITH INCORRECT SELECTION OF SHOULDER

End

3. Prevent errors. PS = 5, SC = 1. Currently no confirm is required before movement of the

manipulator commences. However, the trade-off would be a larger number of commands being

issued for each move. The current system does not include a confirm command. However, it

would be appropriate to include this as an option when configuring systems.

[.~ ~.~~.~ J
Base

L:::.!!::.::~:::.:~.:.:.:.J
r=:::::s~~~:::::::::·l
L

Move

Goto

Ann

Out

End

Goto

Speed
.............................. \
! Shoulder!
~:

Wrong

Speed

Herels

Elbow

End

Herels

Power

Hand Wrist

Power

FIGURE 8.8 MOVE SELECTION WITH 'GO' TO CONFIRM

End

4. (Provide short-cuts). PS = 9, SC = 8. For experienced users, it may be appropriate to allow

movement of a second j oint to be initiated whilst a first is already in motion, or to allow the speed

of movement to be changed whilst a joint is already in motion. This could be achieved by adding

an 'AND' option to the system as shown below:

150

Chapter 8 System evaluation

L.·.·~Hi.~.~·~~~.·.·]
Base

In

Stop

Base

In

Stop

r.::.:.:.:.:~.!.i..~:.:.:.:.::.:.:.J

Move

Goto

Ann

L~~~~·.·.·.·.?'.~·~.·.·.·.·.·.·.·.J
[~.'~.'~~~.~~.~~~~~.'.'.'~J

Ann

L~~~·.~·.?'.~·~.·.·.·.·.·.·.~·J
And

Med

And

Goto

Speed HereIs Power

[.'~.'~.~.~'!.~~'~.'] Elbow Hand

Wrong End

Speed

Shoulder Elbow !""·······Hand······] Wrist
i ,!

Wrong End

[~~~~~~.~.~.~.~]
Fast

Speed

Speed Herels Power

FIGURE 8.9 INCLUSION OF 'AND' OPTION

Wrist End

End

This would be inappropriate for novice users, or users unlikely to develop a high degree of

controlling skill. However, greater controlling flexibility and efficiency would be provided for

skilled users. The option was therefore built into the interface for inclusion in the later stages of

user trials.

5. Speak the user's language. PS = 3, SC = 4. The system presents three speed levels: slow,

medium and fast. The actual joint speeds corresponding to these levels may be configured for

individual systems. This brings into question whether the word 'fast' would always be

appropriate. Enumerated speed settings would be an alternative, provided it was made clear to the

user which number corresponded to the slowest option. Enumeration would also allow for more

natural inclusion of a larger number of speed settings where appropriate.

6. Simple and Natural Dialogue. PS = 5, SC = 1. An 'End' option exists as part of the 'Power'

sub-menu, however the option is redundant as either of the alternatives returns the user to the top

level.

7. Provide Feedback. PS = 20, SC = 30. The feedback presented by the interface includes the list

of commands that may be selected, and the previously selected command. Consequently, the

appearance of the screen would be the same at certain points during the 'Teach' and 'HereIs'

modes. This could be resolved by providing a display of interaction history, though this may

clutter a relatively small LCD display. Alternatively, a symbol or icon could be developed for

each mode of control, and made to appear in a comer of the display whilst the mode is active.

151

Chapter 8 System evaluation

8. Provide Feedback. PS = 10 for novice users, SC = 8. When the manipulator is in motion, the

interface does not explicitly state that the aml is moving, though movement can be inferred from

the currently active menu options. As with mode status discussed above, an icon could be

developed for this purpose.

9. Provide Feedback. PS = 8, SC = 8. When an axis limit is encountered, no feedback is provided

to indicate that this has happened, and which of the manipulator's limits has been reached.

10. Simple and Natural dialogue. PS = 6, SC = 8. When an axis limit is encountered, the menu

option that would allow the user to attempt to move the manipulator further beyond its limit is

still present.

11. Provide feedback. PS = 20. SC = 4. When selecting a pre-taught position, or recording a

position, the response time of the system is slightly slower than when issuing any other command

(due to the fact that the positional settings for each of the axes is transmitted). The system should

warn of response time by letting the user know that it is busy, thereby preventing the user from

attempting to re-select the option.

12. Prevent Errors. PS = 25, SC = 4. When recording a position, the user may inadvertently

overwrite existing data. A confirm option should be used to reduce the probability of this

occurrmg.

Move

Front

r······O·~·~···········l

1 y·~; .. "' .. "' .. 1
~l

Move

Goto

L.·~~~.·.·~.~.~~~~~~~~.·.·.·.·.l
Two

No

Goto

Speed

Home

Three

Speed

L.·.·.·.·.·~~~·~.~~.~.·.·] Power

End

Four

HereIs Power

FIGURE 8.10 TEACH POSITION SIDE-ONE, WITH CONFIRM

l3. Minimise user memOI)! load. PS = 20, SC = 8. The interface provides no information within

the 'Herels' mode regarding which of the pre-taught positions remain unallocated. This could be

achieved by greying menu-items, or varying text size.

152

Chapter 8 System evaluation

14. Prevent Errors. PS = 25, SC = 8. The interface provides the option of moving to a pre-taught

position, even if the position is currently un-allocated.

15. Prevent Errors. PS = 3, SC = 4. The use of the term 'HereIs' for the teach mode may be

problematic. If a voice recognition system is employed, the user may be inclined to pronounce the

two syllables separately, presenting problems for the recognition system. The mode name could

be changed to 'Here'.

16. Simple and Natural dialogue. PS = 5, SC = 4. The option 'HereIs' appears before the 'Power'

option, but is likely to be used less frequently.

17. Speak the user's language & minimize user's mem01J! load. PS = 15, SC = 30. The system

provides no opportunity for the user to provide names for the pre-taught positions.

18. Provide feedback. PS = 15, SC = 100. The interface provides no feedback as to how well the

commands are being classified (relevant for voice and gesture recognition). A graphical device

could be employed for this purpose.

19. Prevent errors. PS = 4, SC = 20. The system could request a confirm if the user attempts to

set the speed to fast whilst the manipulator end-effector is in or near a zone normally occupied by

the user.

Move

Slow
.............................. ~
i Yes i
t:

Move

Goto

Med

No

Goto

[::.·.·.·.·~.~·i.~.~·.·.·.·.·]
L:::::~:~·~.t:::::::::]

Speed

Herels Power

Herels Power

FIGURE 8.11 SET SPEED TO FAST WITH CONFIRM

20. Provide good error messages. PS = 5, SC = 4. An error message would occur during the

evaluation, as the interface was not connected to the motor control system. The message provided

was simply , Communication error' which provides no information to the user (or personnel

configuring the system) as to the nature of the problem, or how to solve the problem.

153

Chapter 8 System evaluation

8.1.3 Conclusions

Undertaking an heuristic evaluation of the user interface provided the opportunity for a group of

computer scientists to individually and collectively critique a system prototype. By applying

accepted usability heuristics, a considerable number of design issues were highlighted (20), in

spite of the limited experience of the evaluators. The validity of a number of the usability issues

raised, requires to be verified through further analysis or user-testing. However, by highlighting

the issues, they necessarily fonn a part of the design process. Design decisions resulting from the

evaluation are aided by the inclusion of rough estimates ofthe problem severity and solution cost.

Following the evaluation, a number of modifications were made to the interface, corresponding to

issues where the argument for design change is convincing and the solution cost is low. These

correspond to the issues numbered: 6, 11, 12, 14, 15, 16 and 20.

In order to assess the impact of the design issues relating to user efficiency, two versions of a

new prototype were developed. The first contained only those modifications mentioned above,

and a second, which included modifications corresponding to design issues 1, 2 and 4. This

allowed the user-testing as described below, to include an assessment of any increased

efficiency in manipulator control resulting from the suggested design changes.

8.2 User evaluation overview

8.2.1 Background

This section summarizes the results of a user evaluation undertaken by an individual with spinal

cord injury within a laboratory environment. At the time of the evaluation the manipulator system

was at the prototype stage, as opposed to the product stage. A number of required design

modifications had already been highlighted, some of which are described in section 8.l, and the

remainder are included below. Additionally, the manipulator employed a temporary single-axis

gripper, in place of the incomplete three-axis end-effector. Consequently, the user evaluation was

not designed as a product acceptance exercise, but as part of the design process. An individual

(referred to below as the evaluator), was identified with a C4 incomplete spinal-cord injury. The

evaluator had wide exposure to disability issues through employment as a counselor, and an

154

Chapter 8 System evaluation

appreciation of technical design issues through pre-accident employment and education. The

objectives ofthe evaluation were to:

• gain subjective feedback from a potential end-user regarding the appearance and performance

of the system;

• determine whether user tasks from the prioritized task list could be successfully undertaken;

• quantify usability by examining the nature and frequency of user errors, learning times, and

task completion times.

• determine the validity of the usability problems predicted by the heuristic evaluation

described in section 8.1.

8.2.2 Method

The user evaluation consisted of the following four stages. Each stage was carried out on separate

occasions, with separating intervals of up to one month. This allowed feedback to be incorporated

into design modifications during the evaluation period.

Stage 1 - Familiarization.

The evaluator was provided with background information regarding the Middlesex manipulator,

outlining the project's objectives and status. A description of the field of Rehabilitation Robotics

was also provided, including videos of the MANUS and HANDY-l systems. A demonstration of

the interface system was given, during which the evaluator navigated the menu system using a

trackball as an input device. The manipulator system was then connected to the interface,

allowing the user to experiment with the system's basic operation Uoint and pre-taught position

modes). The voice and gesture recognition systems were introduced, and user data was recorded,

allowing for the recognition systems to be configured for use during subsequent stages.

Stage 2 - The Feeding task
The feeding task was selected from the prioritised task list for the next stage of evaluation as the

complexity of control demanded of the user is fairly low. A semi-structured environment was

created, containing pre-taught positions around the food and user areas. The evaluator was

required to retrieve food by accessing the pre-taught positions, and if necessary, utilizing joint

155

Chapter 8 System evaluation

control I. The task was demonstrated using the voice, trackball and head-gesture input devices.

The voice and trackball employed direct menu selection, whereas head-gestures were used with a

scanning system. A video recording was made of the evaluator undertaking tasks with each of

these input modes, providing comments on performance and usability as appropriate.

Stage 3 - Drinking/Pick & Place tasks

The next stage of the evaluation combined the slightly more complex Drinking and Pick & Place

tasks. The user was required to:

Pick up a plastic straw, and place the straw in a cup. Turn a tap on and off, filling the cup. Pick

up the cup, and cany it to an accessible position. Finally, replace the cup on the adjacent

sUI/ace.

The task objects existed in an environment modified to allow ease of manipulation, however pre

taught positions were not provided. A video recording of the session was made for data analysis.

Stage 4 - Interview

Although feedback from the evaluator had been elicited throughout the evaluation, the final stage

used a semi-structured interview to allow a more formal recording of user impressions.

Questionnaires are of limited value for single-user studies, however, the approach provided

structure to the interview, ensuring that issues addressed by similar studies were included. The

approach would also facilitate the development of an appropriate interview or questionnaire

format for use in subsequent product-acceptance evaluations.

8.3 Usage data summary and analysis

This section provides an analysis and summary of usage data collected from stages 2 and 3 of the

user evaluation. A discussion of the subjective feedback is provided in section 8.2.5. Footage of

sections of the evaluation is provided on a video which accompanies the thesis. Appendix J

I As initial evaluations employed a 6-axis manipulator, orientation of the end-effector for cartesian mode was not

possible. Hence, evaluation of this mode of control is not included.

156

Chapter 8 System evaluation

provides a listing of the prominent issues that may be observed in the video, along with timing

information that allows the relevant events to be easily located.

8.3.1 Task duration

As described in Chapter 2, the subjective feedback from users of assistive technology ultimately

determines the usability of that technology. However objective measurements such as task

completion times, or times required to complete components of a task, are useful when comparing

different systems, or highlighting problematic aspects of a particular system. The objectives of

the work reported in this section of the thesis was to :

• estimate the times associated with the operations that constitute the feeding and drinking

tasks;

• quantify the effects that design changes would have on task completion times; and,

• compare task completion times with those achieved by the HANDY I and MANUS systems.

The overall task completion time for the feeding task undertaken as stage 2 of the evaluation is

difficult to quantify, as there is no clear end-point for the task (the plate was never completely

cleared). Additionally, the time required to complete a feeding task would be strongly dependent

upon the type and amount of food used, food preparation, whether an appropriately adapted plate

and spoon were available, and the positioning of the plate with respect to the user. Addressing

these factors would require a design exercise, which was not undertaken for the purposes of the

initial evaluation. Consequently, the analysis focused on the time required to retrieve a single

spoonful of food from the plate.

During the feeding task, the plate was placed approximately 1 m away from the evaluator, and the

manipulator's speed was set at medium. After an initial familiarization period of approximately

half an hour, the time required to retrieve a spoon of food by the evaluator was measured as 81

seconds (taken as an average of 10 runs). For comparison, the typical time required to retrieve

food by the HANDY I feeding aid is around 8 seconds (measured from a promotional video:

Handy I an aid to feeding, Rehab Robotics). Although there are a number of differences between

the tasks undertaken by the two systems, an analysis of the evaluation video highlights a number

of factors that contribute to the slower performance of the Middlesex manipulator. Firstly, the

HANDY 1 is designed to undertake feeding by performing a pre-programmed task or routine.

157

Chapter 8 System evaluation

Consequently, considerably fewer commands are required to be issued by the user than is the case

with alternative modes of control. The Middlesex manipulator allows for pre-programmed

routines to be executed, but for the purpose of the current evaluation, this feature was not

exploited2
.

Figure 8.12 below, shows how the feeding task may be decomposed into four components :

approaching the plate, scooping food, approaching the user, and stationary (waiting for next

command to be completed). The results of the Heuristic evaluation discussed in section 8.1.2,

suggested a number of improvements to the interface, including the use of an 'AND' option that

would allow a command to be issued before a previously issued command was completed.

Task component Duration

Approach plate 14 s

Scoop 34 s

Approach user 15 s Approach V ~ Scoop

~~~: 42% 
Stationary 18 s 

Total 81 s 

FIGURE 8.12 FEEDING TASK COMPONENTS 

Within the feeding task, this allowed the evaluator to begin a dialogue to move to a pre-taught 

position before the previously selected position had been reached. This feature was implemented 

towards the end of stage 2 of the evaluation, and resulted in the task component times listed in 

figure 8.13 below. 

2 Control using pre-taught positions was employed, allowing more to be ascertained form the 
evaluation in terms of user interaction. 

158 



Chapter 8 System evaluation 

Task component Duration 

Approach plate 14 s 

Scoop 31 S 

Approach user 15 s 

Stationary 5 s 

Total 65 s 

Stationary Approach 

8% plate 

App""h a D2

% user 
23% . -,-

-""'" 

Scoop 

47% 

FIGURE 8.13 FEEDING TASK COMPONENTS (WITH MODIFIED USER INTERFACE) 

Figure 8.13 shows the time required to retrieve food reduced from 81 s to 65 s, with the time that 

the manipulator is stationary reduced to 8% of the total3
. This exercise provides evidence in 

support of the predictions made during the Heuristic evaluation, and suggests that the principal 

advantage of using the task mode as opposed to pre-taught positions, is the reduction in the 

cognitive demands placed upon the user. 

Figures 8.12 and 8.13 show that a considerable proportion of the task is spent scooping food from 

the plate. The principal axis being operated to perform this action is the linear axis, axis 5. As 

described in section 8.1, the maximum speed of axis 5 was limited to 30 mm s-'. Consequently, a 

medium speed had been set at around 24 mm s-'. An alternative design decision would have been 

to provide one speed setting for the linear axes at 30 mm s-'. This reduces the task duration by 

approximately 7 s. However, movement of the linear axis would still account for 41 % of the total 

duration, suggesting that more significant design changes would be required to improve 

performance. 

Task completion times for the drinking task were measured after a familiarization period of 

approximately halfan hour, at which point a time of 7 minutes and 18 seconds was achieved. For 

the purpose of the following comparison, this is regarded as being representative of a novice user. 

Task completion times were also measured for an experienced or 'expert user' (the author), with 

the fastest run recorded as 4 minutes and 55 seconds. To allow these figures to be placed in a 

3 This figure is greater where voice control is employed, as interaction errors are far more 
frequent (see section 8.2.3.2). 

159 



Chapter 8 System evaluation 

wider context, two additional estimates were made : the time required for a PUMA 260 industrial 

robot to undertake the same task (operated by the author with a teach pendent), and the time 

required for the MANUS arm to undertake a similar drinking task, as shown in a promotional 

video (EEN EERSTE Experiment, December 1988). These values are compared in figure 8.14 

below. The value of these comparisons is limited by the fact that different input devices are used 

by the different systems, and the controlling experience and functional ability of the operators 

varies. Additionally, the task undertaken by the MANUS is similar but not identical to that 

undertaken during the evaluation4
• However, tele-operated control of a PUMA by an experienced 

operator may be regarded as representative of a limit achievable for the given task. 

500 

_ 400_1 A38 
II) 
"C 

g 300 
0 

~271 Q) 
II) 

/ -; 200 
E 
i= 100 

103 

0 
PUrv1A rv1ANUS Middlesex Middlesex 

( expert) (novice) 

FIGURE 8.14 COMPARING DRINKING TASK COMPLETION TIMES 

The time demonstrated by the MANUS represents performance acceptable to potential users (see 

Chapter 2). The times recorded of the Middlesex manipulator may also be acceptable, however, 

as part of an ongoing design cycle, it is valuable to examine how these times may be reduced. 

For reference, Figure 8.15 below indicates the motor positioning for the first 5 manipulator axes. 

The speed levels employed for the angular axes (axes 2,3 and 4) were limited by the user's 

controlling ability, and were less than the maximum possible speeds for the axes. 

However for the two linear axes (axes 1 and 5), the maximum speeds were employed. As 

discussed in section 8.l.l.l., these fall short of the original design targets. 

4 A straw is placed in a cup, which is then filled and presented to the user. However the tap is 
significantly different, as are the distances between objects. 

160 



Chapter 8 System evaluation 

I 4 

FIGURE 8.15 MANIPULATOR AXES 1 - 5 

Consequently, as shown in figure 8.16, typically 47% of the total task completion time 

attributable to movement of the manipulator, corresponds to the linear axes. 

Axis 6 

Axis 
37% 

Axis 1 

10% Axis 2 

~A';'3 ~ 21% 
\2;,4 I 

13%~ 

FIGURE 8.16 PROPORTION OF DRINKING TASK ATTRIBUTABLE TO EACH AXIS 

The values shown in figure 8.16 are taken from a task undertaken by the author, with total task 

completion time of 271 seconds. This time is divided between movement, user interaction, and 

liquid being poured as illustrated by figure 8.17. 

161 



Chapter 8 System evaluation 

tv10ving 
70% 

Interaction D% 
Pouring 

7% 

FIGURE 8.17 RELATIVE DURATION OF COMPONENTS OF THE DRINKING TASK 

The total time attributed to movement is 190 seconds, of which 89 seconds is attributed to 

movement of the linear axes. If design modifications were implemented, allowing for the 

maximum speeds to be doubled to 60 mm S-I, the resulting task completion time would be 

reduced to 226 seconds - a value previously deemed acceptable by MANUS users for such a task. 

8.3.2 User interaction 

The task completion times listed in the previous section relate to the manipulator being controlled 

by direct menu selection with a mouse as input device. The following section summarizes 

performance relating to the use of various input devices, namely : switch input , gesture 

recognition, and voice recognition. 

Switch control 
An electrolytic tilt sensor was employed as a switch, mounted on the evaluator's finger. This 

allowed for finger movement to select the currently highlighted option from a scanning system 

Head Gestures 
The head gesture recognition system described in Chapter 7 was used in conjunction with a 

scanning system. A vocabulary of 4 gestures was employed as follows : 

Gesture 1 

Gesture 2 

Used to select the currently highlighted option from the scanning system. 

Signifies STOP 

162 



Chapter 8 System evaluation 

Gesture 3 

Gesture 4 

Short-cut to the MOVE sub-menu 

Short-cut to the GOTO sub-menu 

Hand gestures (trackball) 

A trackball was employed to allow encoding of simple hand gestures. A vocabulary of eight user

defined gestures allowed direct menu selection of enumerated menu commands. 

Voice Control 
A commercial voice recognition (Voice Server) was used to allow voice controlled direct-menu 

selection. 

The evaluator used each of the forms of input to undertake a feeding task. Table 8.1 summarizes 

measurements made of the time required to retrieve food averaged over 5 runs. The percentage of 

time attributed to user interaction, and the times attributed to errors in interaction were also 

recorded. 

Mouse 

Switch 

Head 

Voice 

Trackball 
- -

Food retrieval % User interaction 
time (s) 

65 8 

109 40 

101 38 

95 35 

> 300 -
-

Errors 

0 

1 

2 

5 

-

Table 8.1 Comparing input devices 

Recovery time (s) 

0 

9 

15 

24 

-

It became clear during the evaluation that the trackball gesture recognition system required a 

longer period of familiarization than was provided during the evaluation, if the device were to be 

used efficiently. Without appropriate familiarization, the trackball system results in slow user 

interaction, and places unacceptably high cognitive demands on the user. An approach to training 

an individual to use the trackball, and assess their performance is presented in Chapter 9. The 

following discussion focuses on a comparison of the remaining four modes of input. 

163 



Chapter 8 System evaluation 

As would be expected, directly selecting commands from a menu system provided the fastest 

form of interaction, and as the user had an appropriate degree of experience and functional 

ability, no errors in interaction occurred5
. 

The switch input provided the slowest form of interaction, as a standard scanning system was 

employed (i.e. with a vocabulary size of 1, no short-cuts were available). Additionally, the' AND' 

option discussed above could not be employed, as it is inappropriate to have any commands other 

than the 'STOP' command selectable whilst the manipulator is in motion. Interaction errors 

occurred corresponding to miss timing a selection. Errors occurred less frequently than with the 

more complex head gesture scanning system, but took longer to recover from. 

The head gesture based system provided a moderate speed advantage over the switch input. 

Errors occurred corresponding to miss timing selections, either on the part of the evaluator, or as 

a result of the system failing to recognize a gesture with sufficient certainty (see Chapter 7 for a 

more comprehensive discussion of the recognition performance). 

The Voice recognition system formed the second fastest method of control, though the frequency 

of errors was high. Typically, 24 commands would be issued during the retrieval of food from the 

plate. The error rate for voice input was measured at an average of 21 %. 

8.3.3. Learning effects 

Task completion times for the drinking task are listed below, for 10 runs undertaken by the 

evaluator during stage 3 of the evaluation. The times were recorded after a familiarization period 

of approximately half an hour, and correspond to the time measured between commencing an 

approach to the straw, and presenting the cup to the user. The variation within the sample of 10 

readings is fairly large (s.d. = 112.6) as there are a large number of variables that may effect the 

time measured. The principal cause for delay within a task was an overshoot of one of the 

manipulator's axes by the evaluator. 

5 Examples of interaction errors are: intending to select a specific command from the menu, and 
accidentally selecting another, or missing a command from a scanning system. 

164 



Chapter 8 System evaluation 

900 

800 . 
U) 
-g 700. 
0 
g 600 I • 

.!!1 
Q) 500 
E 
i= 400 

.----. 

300 . 

2 3 4 5 6 7 8 9 10 

Run number 

FIGURE 8.18 DRINKING TASK COMPLETION TIMES 

The average task completion time measured was 569 s (9 minutes 29 seconds). However, figure 

8.18 illustrates a downward trend, with times towards the end of the session approaching 438 s 

(seven minutes 18 seconds). 

8.3.4 Conclusion 

Analysis of the usage data captured during the user evaluation allowed for the predictions made 

during the Heuristic evaluation to be quantified, and for the performance of the various 

components of the system to be measured and compared. 

The linear axes were identified as components of the system requiring improved performance in 

terms of speed. It was demonstrated that doubling the speed of the linear axes to 60 mm s-' 

would allow the drinking task to be completed in a time comparable to that achieved by the 

MANUS system undertaking a similar task. It was argued that this is a useful yard-stick as user 

evaluations of the Manus have indicated acceptable levels of speed (see Chapter 2). 

The benefits of direct menu-selection over scanning system in terms of menu-navigation were 

demonstrated, however it was shown that where a vocabulary exists greater than one, providing a 

scanning system with short-cuts increases menu navigation speeds for those unable to employ 

direct-menu selection. 

165 



Chapter 8 System evaluation 

Significant learning effects were demonstrated, with the evaluator achieving a final task 

completion time over a run of 10 trials, 23% faster than the average task completion time. 

8.4 User feedback 

8.4.1. Questionnaire design 

Batavia and Hammer (1990) identified a number of consumer-based criteria for the evaluation of 

assistive devices. A modified Delphi Method was used to allow a panel of consumer experts to 

prioritise the issues in order of importance. The ordering was dependent upon the type of device 

under consideration, and is shown below for a robotic arm. 

Effectiveness Operability Dependability 

Affordability Flexibility Compatibility 

Personal acceptance Durability Physical security 

Learnability Ease of maintenance Supplier repair 

Physical comfort Consumer repair Ease of assembly 

As the current evaluation involves the use of a prototype, those issues regarding maintenance, 

repair and assembly were not included for questionnaire design. Additionally, assessments of 

durability and dependability would require a more prolonged evaluation within a home 

environment, and were therefore not addressed. The remaining topic areas were therefore: 

Effectiveness 

Flexibility 

Physical security 

Operability 

Compatibility 

Learnability 

Afforda bili ty 

Personal acceptance 

Physical comfort 

A second study was examined (Demers et. aI., 1996) that highlights a number of satisfaction 

variables. A number of these were extracted that emphasize issues not explicitly referred to 

above, and are listed below. 

Expertise 

Dimensions 

Weight 

Accommodation by others 

Appearance 

Transportability 

166 

Safety 

Effort 



Chapter 8 System evaluation 

A number of closed questions were then formulated as listed below. These allowed an initial 

response to be recorded on a 5 point scale. During the interview, a richer response would be 

drawn from the evaluator, by discussing each of the initial answers provided. 

8.4.2 Questionnaire Responses 

This section lists the closed questions used within the interview, and the evaluator's initial 

responses. The preferred form of input for the user was a mouse device, hence questions 1 to 18 

refer to a manipulator system with a mouse used as input. Questions 19 to 26 address the relative 

usability of the different input devices available. These were repeated for each input device type, 

with the responses summarized in table form. Where the evaluator deemed a question 

inappropriate, no response is shown. 

i) Effectiveness/Flexibility 

1. Were user tasks successfully completed? 

never often always 

CJ CJ CJ CJ 4b 
2. Can tasks be undertaken in an efficient manner? 

not 
efficiently 

CJ CJ 

fairly 

CJ CJ 

very 
efficiently 

CJ 

3. Is the manipulator flexible in the way that tasks may be performed? 

not 
flexible 

CJ CJ 

fairly 

uh 

ii) Expertise/Learnability 

CJ 

very 
flexible 

CJ 

4. Was it easy or difficult to learn how to control the manipulator? 

very (difficult) neither 

CJ CJ CJ ch 

167 

very (easy) 

CJ 



Chapter 8 System evaluation 

5. Did there appear to be a large, or a small amount of information to be learnt? 

a very 
small amount 

c:::::J uh 
neither 

c:::::J 

iii) Operability/Effort/Comfort 

c:::::J 

a very 
large amount 

c:::::J 

6. Once you were familiar with the system, was the system easy or difficult to control? 

very 
difficult 

c:::::J c:::::J 

neither 

c:::::J uh 

very 
easy 

c:::::J 

7. Did use of the system require any mental effort ? 

none 

c:::::J c:::::J 

some 

c:::::J uh 
a great deal 

CJ 

8. Did use ofthe system require any physical effort ? 

none 

uh CJ 

some 

c:::::J c:::::J 

a great deal 

CJ 

9. Did use of the system cause any physical discomfort? 

none 

uh CJ 

some 

c:::::J c:::::J 

a great deal 

CJ 

iv) Appearance/Dimensions/Transportability 

10. How would you describe the appearance of the system? 

un
acceptable 

c:::::J CJ 

fairly 
acceptable 

c:::::J c:::::J 

completely 
acceptable 

CJ 

11. How would you describe the size of the arm ? 

un
acceptable 

c:::::J CJ 

fairly 

a~cJ~able 
c:::::J 

completely 
acceptable 

CJ 

168 



Chapter 8 System evaluation 

12. Using a system mounted on a mobile platfonn would be? 

un
acceptable 

CJ CJ 

fairly 
acceptable 

CJ uh 
completely 
acceptable 

CJ 

13. Using a system mounted on a wheelchair would be? 

un
acceptable 

CJ rsb 
fairly 

acceptable 

CJ CJ 

completely 
acceptable 

CJ 

v) Acceptance, Compatibility, Affordability 

14. Would you consider using a robotic ann for assistance at home? 

definitely 
not 

CJ CJ 

not 
sure 

CJ 

definitely 

rsb CJ 

15. Would you consider using a robotic ann for assistance outside of the home? 

definitely 
not 

CJ uh 
not 
sure 

CJ 

definitely 

CJ CJ 

16. Do you think the use of a robotic device would be acceptable to others around you? 

definitely 
not 

CJ CJ 

not 
sure 

CJ 

definitely 

ub CJ 

17. Do you currently use fonns of technology that you imagine would be incompatible with a 
robotic device? 

definitely 
not 

CJ rrb 

not 
sure 

CJ 

definitely 

CJ CJ 

169 



Chapter 8 System evaluation 

vi) Safety 

18. Did you feel safe while using of the manipulator? 

definitely 
not 

c::=J c::=J 

not 
sure 

c::=J 

vii) Input device comparisons 

definitely 

rsb c::=J 

The following questions were repeated for each of the input device types used: Switch (scanning 

system), Head gesture (scanning system with short-cuts) Voice (direct menu selection), Mouse 

device (direct menu selection), Trackball (direct menu selection) 

19. Was it easy or difficult to learn how to use the device? 

very 
difficult 

neither very 
easy 

20. Once you were familiar with the device, was it easy or difficult to use? 

very 
difficult 

neither very 
easy 

21. Did use of the device require any mental effort ? 

none some a great deal 

22. Did use of the device require any physical effort ? 

none some a great deal 

23. Did use of the system cause any physical discomfort ? 

none some a great deal 

24. The number of errors that occurred while using the device seemed: 

un
acceptable 

fairly 
acceptable 

completely 
acceptable 

170 



Chapter 8 System evaluation 

25. The speed of communication the device allowed seemed: 

completely 
unacceptable 

fairly 
acceptable 

completely 
acceptable 

26. The physical appearance of the device is: 

completely 
unacceptable 

fairly 
acceptable 

completely 
acceptable 

Table 8.2 summarizes the results of the input device comparisons as follows: 

Score = 5 for most positive response (i.e. no mental effort, completely acceptable appearance etc). 

Score = 1 for least positive response. 

Score = 0 if question deemed inappropriate and not answered. 

Mouse Switch Head Voice Trackball 

Easy to learn 5 5 4 2 

Easy to use 5 5 4 3 0 

Mental effort 5 3 2 2 

Physical effort 5 5 3 5 5 

Discomfort 5 5 3 5 5 

Error frequency 5 2 3 2 

Speed 3 2 2 3 0 

Appearance 5 5 3 3 5 

Table 8.2 input device comparisons 

171 



Chapter 8 System evaluation 

8.4.3. Interview summary 

The following section provides a discussion of the questionnaire results provided above, and a 

summary of the additional feedback provided by the evaluator. 

Having seen but before using the manipulator, the evaluator expressed the expectation that the 

manipulator would 'probably not' be capable of undertaking feeding and drinking tasks. 

However, he felt that it was likely that the system would be useful for personal hygiene tasks. 

This latter prediction was based on personal experience of devices such as electric toothbrushes 

and electric razors, and the fact that many people with physical disabilities have a good range and 

control of head movement (specifically people with spinal-cord injuries). The evaluator's 

prediction that the arm would be unable to perform feeding and drinking tasks has to be 

interpreted in the context of the evaluator being unfamiliar with the idea of adapting an 

environment for a manipulator. This suggests that tasks should be defined in an appropriate form, 

and that task descriptions include a description of the operating environment. 

The evaluator felt that the question regarding the manipulator's appearance were not of 

paramount importance, as the manipulator was at the prototype stage. However, he felt that 

aspects of the arm's appearance would need to be improved, such as: 

• replacing the square edges and sharp comers with a more rounded feel; 

• paying more attention to the use of colour (particularly brighter colours); 

• using softer materials (i.e plastics); and, 

• hiding all motors and cables. 

The evaluator felt that the size of the arm was acceptable, provided that an appropriate park 

position existed. However, the evaluator felt that a system mounted on a mobile platform would 

be more popular than a wheelchair-mounted system, as the mobility of the wheelchair would be 

effected. The evaluator therefore felt that the manipulator would be of most use within semi

structured environments around the home. At the time of the evaluation, the evaluator was 

employed in an environment where the majority of people have physical disabilities, and felt that 

other forms of assistive technology (voice recognition for word processors) are of far greater 

importance than robotic technology. 

172 



Chapter 8 System evaluation 

The quality of movement of the manipulator was deemed as 'fairly good' and 'not jerky', though 

the level of responsiveness of the system often resulted in the evaluator overshooting a target (this 

effect reduced as the evaluator became more familiar with the system). The perceived accuracy of 

the system when moving to pre-taught positions was regarded as 'fairly good'. 

When the manipulator was operated at elevated speeds (higher than those eventually adopted as 

the three speed settings) the level of noise generated by the manipulator was regarded as 

unacceptable. This was partly due to the varying pitch of the noise having a significant impact on 

the evaluator's confidence in the system. 

The evaluator felt that it was extremely important that a command can be issued at any point 

during user interaction to stop the arm if it is moving. When presented with a scanning system 

that did not conform to this at certain points during interaction, the evaluator felt that use of the 

system was 'scary'. 

The evaluator's overall impression of a scanning system was that it was often frustrating waiting 

for the required command to be selectable. Though this was regarded as less of a problem where a 

vocabulary of gestures allowed short-cuts to be employed. The favored form of direct menu 

selection was the use of mouse or trackball, as voice recognition suffered higher recognition error 

rates. Additionally, it was considered advantageous that use of the mouse draws less attention 

than the use of voice. 

The system was regarded by the evaluator as being easy to learn, and easy to use. This may be 

attributable to the fact that the system's adaptability allowed for an interface of limited 

complexity to be provided to the evaluator. Options such as the number of pre-taught positions, 

and the number of speed levels available, were limited to the minimum required for the tasks of 

interest. Additionally, the modes of control corresponding to teaching and executing pre-taught 

tasks were not provided. However, the functionality provided ensured that tasks were always 

completed (i.e it was possible to recover from any errors committed). The evaluator felt that the 

system allowed flexibility in the way that tasks were achieved, as illustrated by the improved 

efficiency in controlling the manipulator (see figure 8.18). 

173 



Chapter 8 System evaluation 

8.4 Assessment against general design criteria 

Chapter 2 of this thesis presented a review of the field of rehabilitation robotics, from which a set 

of general design criteria were defined. The following section provides a discussion of the 

manipulator evaluation results in the context of these criteria, estimating the degree to which each 

criteria has been conformed with or violated. 

8.4.1 Criteria conformance 

Cost 

The design specification outlined in Chapter 3 included a target cost of £5000, a figure influenced 

by the current retail price of HANDY 1. Adopting purpose built motor control circuitry and low

cost embedded micro controllers resulted in a one-off component cost £440 for the motor control 

system. The DC motors incur the largest cost at £1380. Materials for the manipulator were 

calculated at approximately £400 (Heide & Roorda 1993, Buter & Veltman, 1996). Embedded PC 

platforms for the user interface system are available at £260 (RS Components). The gesture 

recognition system, along with an LCD feedback display may be included at £280. 

The total component and materials cost for the current prototype is therefore £27606
• A cost for 

system design is not included, as the design has resulted from the research program of the author. 

The prototype cost is therefore comfortably within the target of £5000. 

If a future prototype were to lead to a commercial product, a cost of production would need to be 

included. This may be partially offset by a reduction in component costs for bulk purchases. 

Functionality 

Design criteria specified that the system should be general purpose, providing functionality that 

addresses a range of user needs. The user evaluation demonstrated that feeding, drinking and 

'pick and place' tasks can be successfully undertaken with the current prototype. The functionality 

of the system is likely to increase with the completion of the three-axis end-effector. This will 

increase the degrees of freedom of the manipulator, and allow for the inclusion of the cartesian 

mode of control. 

6 This cost excludes parts for the planned three axis end-effector 

174 



Chapter 8 System evaluation 

Performance 

The design criteria required that the base-line performance characteristics should match the 

requirements of the user tasks addressed. The accuracy of the manipulator is reported in some 

detail above, however the success of the evaluator repeatedly completing tasks, demonstrates 

conformance with this criteria in terms of accuracy. Additionally, the system's payload was 

demonstrated as being ample for a range of user tasks. However, the limited velocity of the 

manipulator's linear axes suggests that this criteria may not be met in terms of speed. The 

evaluation demonstrated significantly slower task completion times than the MANUS system 

undertaking a similar task. 

Mobility 

The manipulator was originally designed for wheel-chair mounting. However, its dimensions 

suggest that problems with wheelchair mobility would result, as was the case with the MANUS 

system. The user evaluation suggests that for many users, a preferable option would be to mount 

the manipulator on a mobile platform. This was demonstrated as feasible during the evaluation. 

The resulting weight ofthe prototype was 8kg, thereby conforming with the weight target. 

Input devices 

The user interface system's modular design allows for the use of a variety of different input and 

feedback devices. Any new device may be used with the system by developing an appropriate 

device driver module. 

Variety of control modes 

Similarly, the modular interface design provides a variety of control modes including tele

operation, pre-taught positions and pre-taught routines. 

Adaptability 

The design criteria required that ease of use should be enhanced by allowing systems to be 

configured to match individual user needs. Again, the modularity inherent in the interface design 

allowed for this. Additionally, the user evaluation confirmed the benefits of this approach. 

175 



Chapter 8 System evaluation 

Appearance 

Whilst it should be recognised that the manipulator is at the prototype stage, it must be noted that 

significant modifications to the design are required to improve appearance. This includes : the 

removal of sharp edges, hiding the motors, leads and feedback sensors, and possibly a reduction 

in the manipulator's size. No design effort has previously been directed at addressing these issues, 

and the magnitude of the modifications required suggests that these issues should have been 

addressed at a far earlier stage in the manipulator's design process. As this has not been done, it 

can not be claimed that this criteria is in any way conformed to. 

Safety 

Safety was partially addressed by the inclusion of software limits, processor redundancy, and 

hardware stops. Subjective feedback from the evaluation suggested that the evaluator felt safe 

when operating the arm. However, it would be essential for future work to include a more 

thorough approach to ensuring system safety. This should include a formal assessment of the 

manipulator's impact on associated standards, such as ISO 7176 (wheelchair stability), and IEe 

529 (degree of protection offered by enclosures). 

Design modifications 

The remaining design criteria stated that the design should facilitate future modifications to 

system performance and functionality, and to enhance user acceptance of the device. As, 

mentioned above, an area of concern in terms of performance is the velocity of the linear axes. 

This was limited by the noise generated by the bearings at elevated speeds. The manipulator's 

construction does not prevent the replacement of the bearing material with a more appropriate 

substitute, and the potential application of a lubricant. Thus the design would facilitate an 

investigation to this end. 

The modular design of the user interface system would allow for rapid modifications to be 

implemented to the modes of control, and hence the manipulator's functionality. This is also true 

of the manipulator's end-effector, which is designed to have replaceable gripper attachments 

The most problematic issue with regards to design modification is likely to be the system's 

appearance. As mentioned above, aesthetics has not been comprehensively addressed by the 

existing design. The manipulator's construction was not designed to house leads and motors, and 

employing additional casing would increase the manipulator's bulkiness, potentially detracting 

176 



Chapter 8 System evaluation 

from user acceptance. It should therefore be concluded that the current design does not facilitate 

modifications to improve appearance. 

8.5 Summary 

This chapter began with a heuristic evaluation of the manipulator's user interface system. The 

results demonstrated that although conventional HCI evaluation methodologies do not address all 

of the issues relevant to the design of assistive technology, they may still be of use within the 

early stages of the design process. Applying usability heuristics resulted in a number of design 

issues being addressed that had been overlooked during the initial design stages. The process also 

allowed for an estimation of the severity of each design problem, and the solution cost. The 

validity of a number of the issues raised was then shown by further evaluation. 

The user evaluation demonstrated repeated successful task completion by a potential end-user. 

The evaluator was generally satisfied that the system was easy to use, and provided evidence to 

support the use of multiple forms of interaction. 

The evaluation highlighted a number of required design modifications, relating to the speed of 

two of the manipulator's axes, and the system's appearance. The results of the evaluation were 

presented in the context of the design criteria identified in Chapter 2. It was shown that the 

manipulator conforms to all but two of these criteria. The consequence of this analysis is 

discussed further in Chapter 10. 

177 





>
 

00
-

~
 

Q
. 

~
 

~
 

~
 

~
 

.....
. 

0 
~
 

=
 

.....
. =
 

<
 

(J
Q

 

~
 =- ~ =
 

r:I
J. 
~
 
~
 .....
. =
 

~
 

~
 

-
~
 

-.
l 

\0
 

~
 

~
 

~
 



Chapter 9 Task Analysis for User Interface Configuration 

Chapter 9 

Using Task Analysis to Configure an Adaptable User 
Interface 

Chapter 6 presented the design of an adaptable user interface that may be configured to employ a 

number of different input devices and interaction styles, and to provide varying levels of functionality. 

The design allows systems to be configured to match the requirements and controlling ability of 

specific users. The configuration process can be based predominately on user preferences and the 

experience of the clinician. However, a procedure or technique is required to allow objective 

measurements of a user's controlling ability to be included. 

This chapter describes the development and testing of a novel methodology that allows the relative 

usability of possible interface configurations to be predicted, based on individual user and device 

characteristics. An experiment was undertaken, assessing task completion time predictions, generated 

by an analysis based on GOMS Task Analysis (Goals, Operators, Methods and Selection). 

The form of Task Analysis developed and applied within this chapter is unique, and was shown to 

consistently predict the relative usability of interface configurations. 

180 



Chapter 9 Task Analysis [or User Interface Configuration 

9.1. Introduction 

Clinical evaluations of rehabilitation robotic systems have indicated that a greater degree of 

acceptability may be achieved by developing systems that can be adapted to match user requirements, 

preferences, and functional ability (Kwee and Duimel, 1988; Topping, 1995). Motivated by this, 

Chapter 6 of this thesis presented the design of a novel interface and control system that may be 

configured for a specific user in terms of: 

- Functionality 

System functionality is determined by the number and type of software modules (referred to as 

modes of control) that are present within the system. Functionality may vary from that of a 

simple feeding-aide, to a fully user-programmable robot. The former requiring only one 

control command for operation, whereas the latter requires an extensive vocabulary of 

commands. 

- Input Modality 

The system supports a number of possible input modalities including a commercial voice 

recognition system, gesture recognition, and a variety of on-off switches. 

- Interaction Style 

Control commands are organised into a menu system displayed by an LCD screen. This may 

be navigated using either command encoding, direct menu selection, keyboard emulation, or 

various forms of scanning system. 

The system's adaptability necessitates a methodology that may be employed to assist with the 

installation and configuration of the system. Typically, clinicians involved in the selection and 

installation of assistive technology attempt to match devices with user requirements employing an 

approach that may be described as "pseudo-systematic and subjective" (Kondraske, 1988). A similar 

approach may be required here to attempt to match system functionality with the tasks the user wishes 

to undertake, and to match input modality with user preferences and functional ability. However, for a 

given level of interface complexity and input device type, a more objective approach to selecting an 

appropriate interaction style may be possible. 

181 



Chapter 9 Task Analysis for User Interface Configuration 

For a given user, the appropriate style of interaction is likely to be that which allows for faster menu 

navigation and command selection, as well as conforming to user preferences (a hypothesis supported 

by the user evaluation reported in Chapter 8). 

For a specific user, speed of interaction will be dependent upon how many distinctly different signals 

may be reliably issued with the device, and how long it takes to select a command with an encoded 

signal. As an example, direct menu selection is typically a faster form of interaction than a scanning 

system. However, where gesture recognition is being used, direct menu selection requires a larger 

vocabulary of gestures, which are typically more complex, taking longer to recall and issue. This may 

mean that for a specific individual, the combination of : input device, interface complexity and 

controlling ability, would result in negligible gain in interaction speed from direct menu-selection. 

Clearly, selecting the appropriate form of interaction based on this combination of variables would be 

difficult to optimise by purely subjective means. 

In general terms, the variables of interest are therefore: 

• the user's controlling ability (i.e. those aspects of general functional ability relevant to the control 

of the selected input device(s)); 

• the characteristics of the available or selected input device(s); 

• the style of interaction selected; 

• the nature and number of user tasks addressed; and, 

• the number of available or selected control modes. 

The variables that would typically be required to be minimised are: 

• task completion time, and 

• error rates. 

182 



Chapter 9 Task Analysis [or User Intelface Configuration 

The following analysis categorises these variables as follows: 

• Controlling ability - fixed 1 

• Device characteristics - fixed 

• User tasks- fixed 

• Control modes - fixed 

• Style of interaction - independent variable 

• Task completion time - dependent variable. 

Error rates are excluded, as it may be reasonably assumed that interface configurations that minimise 

error rates are likely to be those that allow for faster task completion times. Thus for a selected input 

device, set of user tasks and control mode, the analysis is required to determine the style of interaction 

that minimises task completion time. 

9.2 Task Analysis for Interface configuration 

GOMS task analysis techniques have been successfully applied to predicting task completion times, 

and have proved particularly successful at predicting the relative task completion times for different 

interface designs (Nielsen, Phillips, 1993). Based upon user models, the techniques avoid the 

overheads of user testing, and may be employed early on in the design cycle, to yield both qualitative 

and quantitative estimates of design options, such as task completion times, task learning times, 

interface consistency and functionality. 

The objective of the experiment described below, is to determine whether the principles underlying 

Task Analysis may be extended and applied to configuring an adaptable system, if the appropriate 

individual user and device characteristics are included. These are used in place of the standard 

parameters derived from the Model Human Processor developed by Card, Moran and Newell (1983). 

I A user's controlling ability may vary as a result of increasing experience, or variable states of health, or may 

remain constant if the user is already familiar with the input device in question. The analysis includes no facility 

for predicting variations in controlling ability and therefore assumes a degree of constancy in controlling ability. 

183 



Chapter 9 Task Analysis for User Interface Configuration 

The approach taken was to estimate these characteristics empirically, while subjects were trained to use 

a particular form of input device. User interaction was then modelled for typical user tasks, by 

decomposing task goals into sub-goals and lower-level actions, described in a format similar to Natural 

GOMS Language (NGOMSL), as outlined by Kierass (1988). This process is easily automated in the 

current context, as there is a limited set of interactions to be described. 

9.3. Experimental Objectives 

The principal objective was to quantifY any correlation between predicted task completion times and 

measured task completion times for two configurations of the Middlesex Manipulator user interface. 

The particular configurations of interest were: 

• A direct menu selection system. This employed a trackball as an input device allowing simple 

gestures to be issued by hand, and encoded. Vocabularies of enumerated gestures were used, with 

each gesture corresponding to a single menu option. 

• A scanning system with short-cuts. As above, a trackball formed the input device, with the issuing 

of a particular gesture causing the currently highlighted menu option to be selected. Three further 

gestures were available that allowed the following short-cuts to be taken: i) jumping to the 'Goto' 

sub-menu, ii) jumping to the 'Move' sub-menu, and iii) immediately selecting the 'Stop' 

command. 

The experiment required the development of an appropriate format for modelling user interaction, 

based on NGOMSL Task Analysis. A method was also required for. obtaining estimates of user 

characteristics, once performance with a particular input device had become asymptotic. 

The experiment's objectives may therefore be summarised as follows: 

• To develop a novel form of task analysis based on NGOMSL task analysis that incorporates 

estimates of individual user and specific device characteristics in task modelling; 

• To develop an appropriate method of estimating user and device characteristics; and, 

184 



Chapter 9 Task Analysis [or User Interface Configuration 

• To quantify the correlation between task completion times predicted by task analysis, and 

measured task completion times. 

185 



Chapter 9 Task Analysis [or User Interface Configuration 

9.4. Method 

It was not the author's intention to create a homogeneous group of subjects, or to discount user 

differences through experiment design, as is typically the case where experiments compare interface 

designs. Rather, the current investigation involved measuring and using user differences within the 

analysis. 

The concept of homogeneity may only be applied, and to a limited extent, to sub-groups within the 

disabled community, such as those with a certain level of spinal cord injury. However the Middlesex 

Manipulator is not geared towards anyone sub-group exclusively. Additionally, standard 

classifications of disability are not likely to provide adequate descriptions of individuals where the use 

of assistive technology is concerned. A physical impairment that disables an individual from walking, 

may not result in an inability to use a head gesture recognition device. It is appropriate therefore to 

focus on the match between the user and device, expressed as controlling ability, rather than just the 

user's general functional ability. 

It was preferable to create a situation where user differences were significant, to produce a range of 

predictions that could be correlated with a range of measurements. Ideally, this would have been 

achieved by selecting a subject group consisting of people with varying physical impairments. 

However, due to the time constraints for the current phase the project, only one of the subject group 

was physically disabled (the evaluator used in the evaluation described in Chapter 8). As a result, the 

practicalities of including Task Analysis within a clinical environment are not addressed here. Rather, 

the experiment focuses on the ability of a novel form of task analysis to capture user differences 

(whatever their origin) within the modelling process. 

Students and members of staff within Middlesex University were recruited to form a subject group of 6 

people in total. To increase the diversity of performance levels the subjects were not allowed to select 

their own gestures, but were required to use a pre-determined vocabulary of gestures. Three such 

vocabularies were created, containing gestures with varying levels of complexity. 

186 



Chapter 9 Task Analysis for User Interface Configuration 

9.4.1 Modelling Tasks and User Interaction 

Chapter 6 discussed how hierarchical task analysis can be used to define components of user tasks. The 

results may be described in written fonn as shown in figure 9.1 

To pick up an object that is fairly close to a pre-taught position, and move it to 

another pre-taught position: 

• First, set a speed appropriate for gross movement, 

• then, use the control mode that allows you to move to a pre-taught position, 

• then, set a speed appropriate for fine movement, 

• then, adjust the Manipulator's joints as necessary, 

• then, close the gripper, 

• finally, use the control mode that allows you to move to a pre-taught 

position. 

FIGURE 9.1 USER TASK DESCRIPTION 

Typically, an NGOMSL analysis would be used to model user interaction, capturing details of the 

interface and task descriptions. At the highest level, this may appear as shown in Figure 9.2. 

Method to accomplish goal <Pick & Place> 

Step 1. Accomplish goal <Set Speed Medium> 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Step 8. 

Step 9. 

Accomplish goal <Goto Position 1> 

Accomplish goal <Set Speed Slow> 

Accomplish goal <Move Joint Base, Out> 

Accomplish goal <Move Joint Shoulder, In> 

Accomplish goal <Move Joint Hand, Out> 

Accomplish goal <Close Gripper> 

Accomplish goal <Goto Position 2> 

Report goal accomplished. 

FIGURE 9.2 NGOMSL TASK DESCRIPTION 

Each of the methods for the sub-goals referred to would then be defined as in figure 9.3 below. For 

typical user interaction, this would include the use of primitive mental operators, reflecting cognitive 

187 



Chapter 9 Task Analysis for User Interface Configuration 

processing, and external operators such as mouse moves and mouse clicks (see Card Moran and 

Newell, 1983). 

Method to accomplish goal <Set Speed to Speed_Level> 

Step 1. Retrieve from L TM< menu option Speed, and retain in WMt. 

Step 2. Recall menu option and move mouse. 

Step 3. Click left mouse button. 

Step 4. Retrieve from L TM< menu item Speed Level, and retain in WMt. 

Step 5. Recall menu item and move mouse. 

Step 6. Verify result 

Step 7. Forget menu item, forget menu option. 

Step 8 Report goal accomplished. 

Long Term Memory 

t Working Memory 

FIGURE 9.3 NGOMSL SUB-GOAL DESCRIPTION 

As the approach adopted here requires a set of operators that quantify a specific individual's 

characteristics, these must be easily observable for specific users during training. The four operators 

employed are : 

i) Prepare 

The Prepare operator corresponds to the time measured between fonning an intention to issue a 

command, and beginning to issue a command. This would be catered for in NGOMSL analysis 

with the combination of primitive operators such as retrieve, retain and recall. 

ii) Issue 

This corresponds to the time taken to issue a command. Examples would be physically 

perfonning a gesture, or completing an utterance. 

iii) Verify 

As with the analyst defined operator common in NGOMSL, this corresponds to the user 

verifying that the action taken has had the desired effect. 

188 



Chapter 9 Task Analysis for User Inteliace Configuration 

iv) System Delay 

Similar to system response time in NGOMSL. System delay time is required to account for the 

time the user would wait for an option to be selectable by a scanning system. As the same goal 

description is used to model both scanning systems and direct menu selection, System Delay 

can be set to zero for the latter. Similarly, the Prepare and Verify operators can be set to zero 

for a scanning system, as this would occur in parallel with System delay. 

The model may then be expressed as : 

Method to accomplish goal <Set Speed to Speed Level> 

Step 1. System Delay 

Step 2. Prepare to select Speed option 

Step 3. Issue command corresponding to Speed 

Step 4. Verify 

Step 5. System Delay 

Step 6. Prepare to select Speed Level 

Step 7. Issue command corresponding to Speed Level 

Step 8. Verify 

Step 9. Report goal accomplished 

FIGURE 9.4 TASK DESCRIPTION WITH NEW OPERATOR SET 

9.4.2. Predicting Task Completion Time 

A typical pick and place task was modelled as described in 9.4.1, with the values of the primitive 

operators dependent upon the user, the input device and the style of interaction. Two styles of 

interaction were considered : direct menu selection and a basic scanning system. The Task Analysis 

process was automated using a spreadsheet to contain task descriptions and operator values, and a 

module containing Visual Basic functions to perform the associated calculations. Figure 9.S below 

shows an example visual basic subroutine that sets variables corresponding to user characteristics from 

cells within a worksheet. 

189 



Chapter 9 Task Analysis for User Interface Configuration 

Sub MainRoutineO 
For CellValue = 2 To 13 Step I 

Resolve = Cells(CellValue, 7).Value 
Issue = Cells(CellValue, 8).Value 
Verify = Cells(CellValue, 9).Value 
ScanRate = Cells(CellValue, lO).Value 
Cells(CellValue, 11).Value = CalcTO 

Next CellValue 
End Sub 

FIGURE 9.5 EXAMPLE SPREADSHEET SUBROUTINE 

A function is then called to calculate the estimated task completion to for a specific task (a full listing 

of the set of visual basic functions is provided in appendix I). This approach allows any task to be 

described as part of a spreadsheet, allowing the time calculation function (CalcT) to extract the names 

of menu commands from the spreadsheet, and estimate the time required to select the command with 

the given user characteristics. The task described for the purpose of the experiment is illustrated in 

figure 9.6 below. 

M. <Pick & Place> 
<Set Speed> 'Med 
<Goto> Side Two 

I <Move> Shoulder ,111-

<Move> Base lOut 
<Move> Elbow In 
<Move> Wrist Out 
<Move> Hand 'Out 

<Goto> Front :Mid-

<Move> Hand ·Out 
<Move> Hand In 
<Goto> Home 'One 

Report <> Accompilshed 

FIGURE 9.6 SPREADSHEET TASK DESCRIPTION 

190 



Chapter 9 Task Analysis [or User Interface Configuration 

9.4.3 Estimating user characteristics 

An application was developed for the purpose of familiarising users with input devices, and measuring 

characteristics corresponding to the operators outlined above. For familiarisation with gesture 

recognition, the application provides a menu of commands and a number associated with each 

command, allowing for direct menu selection. The user is then provided a cue to select a particular 

command. The gesture corresponding to the number associated with the command is performed, and 

classified by the gesture recognition system. Feedback is then provided, informing the user of either 

successful command selection or the occurrence of an error. The user is required to verify whether the 

result is correct or not with either a short movement to the left or right of the input device. 

Users would undertake training sessions with the program, allowing the mean and standard deviation 

of the last n command selections (typically 40) to be used to calculate task completion time 

predictions. 

As the values for primitive operators are point estimates, it was interesting to see how the task 

completion time predictions may vary as a result of error on the primitive operator estimates. This was 

achieved by constructing confidence intervals for each estimate at a level of a = 0.05. The values at the 

extremes of the confidence intervals were used to allow each task completion time prediction to be 

represented as a range. 

9.4.4 Measuring Task Completion Time 

For comparison with the predicted task completion times, subjects were timed undertaking the pick and 

place task. Six values were measured for each user, from which an average was calculated. As the 

experiment focused on navigating the interface, the manipulator was disconnected during the trial. 

9.4.5 Experiment design. 

Subjects were assigned interface configurations and gesture vocabularies as shown in figure 9.7 below: 

Measurements were taken during two separate phases. Within each phase each subject undertook the 

pick and place task 6 times with each interface configuration, from which the average task completion 

191 



Chapter 9 Task Analysis for User Interface Configuration 

time for the subject was calculated. A familiarisation period of half an hour was undertaken before 

phase 1 (using the program described in section 9.4.3.). A second familiarisation period of half an hour 

was undertaken by each subject between phase 1 and phase 2. 

Phase 1 Subject Interface Vocabulary set 

A scanning followed by direct 
B direct followed by scanning 
C scanning followed by direct 2 
D direct followed by scanning 2 
E scanning followed by direct 3 
F direct followed by scanning 3 

Phase 2 Subject Interface Vocabulary set 

A direct followed by scanning 
B scanning followed by direct 
C direct followed by scanning 2 
D scanning followed by direct 2 
E direct followed by scanning 3 
F scanning followed by direct 3 

FIGURE 9.7 EXPERIMENT DESIGN 

9.5 Results 

Figure 9.8 shows the predicted and measured task completion times for each subject using the scanning 

system during phase 1. The maximum difference between the predicted and measured values is 9%, 

with the average difference being 6%. Error bars are used to show the predicted values as a range, 

computed as the limits of a 95% confidence interval (based on a sample of measured user 

characteristics n = 40). The measured values fall within the predicted range for each of the six subjects. 

The average measured value is 214s, with a standard deviation of 5.8. 

192 



Chapter 9 Task Analysis for User Interface Configuration 

350r--------------------------------------
330 
310 
290 

~ 270 
g 250 

~ J~ ~ r I i u Jl 230 
210 
190 
170 
150 

A B c D F 

---+--- Predicted ...•... Measured 

E 

Subject 

FIGURE 9.8 SCANNING SYSTEM - PHASE 1 

Figure 9.9 shows the predicted and measured task completion times for subjects using the direct menu 

selection system during phase 1. The maximum difference between the predicted and 

350 • -~~+cc=?-I 1 ...•. I 

300 ..... ,.! 
~ ... - ... - .... I 

~ 250 f· 1········· I 
en 200 i 

150 I I 
A B c D E F 

---+--- Predicted ...•... Measured 
Subject 

FIGURE 9.9 DIRECT MENU SELECTION - PHASE 1 

measured values is 6%, with the average difference being 4%. As above, the measured values fall 

within the predicted range for each of the six subjects. The average measured value is 283s, with a 

standard deviation of 42.7. Greater evidence of a difference between gesture vocabularies is shown 

than with the scanning system. The average measured task completion times for vocabularies 2 and 3 

are greater than measurements for vocabulary 1 by 11 % and 37% respectively. 

Figure 9.10 shows the predicted and measured task completion times for the scanning system during 

phase 2. The maximum difference between the predicted and measured values is 7%, with the average 

193 



Chapter 9 Task Analysis [or User Interface Configuration 

difference being 4%. Again, the measured values fall within the predicted ranges. The average 

measured value is 215s, with a standard deviation of6.8. 

350 

300 
II) 
'0 

g 250 -

q--·-l .. ·-· .. - 1 -q-q·· l ·~ 
(,) 

~f 
Q) 

(/) 

200 

150 
A B C 0 E F 

--Predicted _ .. • _. Measured I Subject 

FIGURE 9.10 SCANNING SYSTEM-PHASE 2 

Task completion times for the direct menu selection during phase 2 are illustrated in figure 9.1l. The 

maximum difference between predicted and measured values is 6%, with the average difference being 

3%. Measured values fall within the predicted range, with the average measured value 197s, and 

standard deviation of 36.4. As with phase 1, greater evidence of a difference between gesture 

vocabularies is shown than with the scanning system. The average measured task completion times for 

vocabularies 2 and 3 are greater than measurements for vocabulary 1 by 14% and 47% respectively. 

350 .---------------------------------------~ 

II) 
"0 

300 

g 250 
(,) 
Q) 

CI) 
200 -

150 I .~. 

A B c o E F 

----+-- Predicted __ .• . _ . Measured 
Subject 

FIGURE 9.11 DIRECT MENU SELECTION PHASE 2 

The results show that during phase 1 the scanning system was faster than the direct menu selection 

system for all six subjects, whereas during phase 2 the direct menu system was measured as being 

194 



Chapter 9 Task Analvsis for User Interface Configuration 

faster for four of the subjects. The benefit of using a direct menu system in preference to the scanning 

system in terms of task completion time may be expressed as the difference between the task 

completion times for the two systems. This value, referred to here as gain, is illustrated for each of the 

subjects in figures 9.12 and 9.13 below. Predicted and measured gains are shown for both phases. 

Subject 
0 

-20 . A B C D 
• . .. ~ E F 

-40 

:E .' -60 . .,. 
r:: 
'iii -80 
(!) 

-100 
W •• 

-120 ". -140 

----+--- Predicetd ...•... Measured. 

FIGURE 9.12 PREDICTED GAIN -PHASE 1 

80~-·--------·--···--·-- ------·---···-·-------····----1 

60 

40 

~20 
r:: 
'iii 0 
(!) 

-20 

-40 

II· 

B c 
- --- --I-~----

D F ... ." . 

-60 I . ______ .......... _________ J 

----+--- Series 1 ...•... SerieS2 
Subject 

FIGURE 9.13 PREDICTED GAIN - PHASE 2 

195 



Chapter 9 Task Analysis for User Interface Configuration 

9.6 Conclusions 

The variance recorded for the scanning system is less than that for direct menu selection, indicating 

that the former is less sensitive to user characteristics. The scanning system provided the faster form of 

interaction in the initial phase, however four of the subjects (those using the simpler gesture 

vocabularies) achieved faster interaction with direct selection during the second phase. 

Over the two phases of the experiment, the average differences between predicted and measured values 

for the scanning and direct selection systems were 5% and 4% respectively. These figures suggest that 

the form of task analysis employed provided an accurate model of user interaction. Additionally, the 

measured variance in user characteristics, used to express predicted values as a range, are adequate to 

account for measured and predicted differences. Furthermore, the measured and predicted gains for all 

subjects over both phases are of the same sign, hence consistently correct predictions of the faster form 

of interaction were made. 

The results demonstrate that user and device characteristics may be captured during a process of user 

training, and used to form an accurate model of user interaction. Successful predictions of the relative 

usability of interface configurations were made consistently. The results show that task analysis may 

be used during the process of configuring an adaptable interface for a specific user, providing objective 

measures to complement the subjective preferences of the individual. 

As discussed in Chapter 5, a factor that has limited the application of task analysis to interface 

evaluation in commercial environments, is the complexity involved in providing a formal description 

of interaction for each interface design of interest. An advantage that results from the application of 

task analysis as described in this chapter, is that much of the process may be automated. The 

description of interaction for each interface configuration is provided once, following which any 

number of usability predictions may be generated with the appropriate insertion of specific user and 

device characteristics. 

196 





Chapter 10 Conclusions and further work 

Chapter 10 

Conclusions and further work 

The work reported in this thesis has made a number of practical and theoretical contributions to 

the field of rehabilitation robotics. These have centered around the development of an adaptable 

user interface and control system for a novel rehabilitation robotic arm: 

• Requirements Analysis 

This work identified general design criteria. It was shown that existing systems did not 

adequately conform to these criteria, and that levels of conformance could be used to 

predict or explain the relative levels of success of existing projects. 

• Novel Design 

The construction of the Middlesex Manipulator: a prototype implementation of the novel 

Scariculated Kinematic configuration. This work focused on the design of a highly modular 

and adaptable low-cost user interface and control system, and included the integration of 

novel forms of gesture recognition. 

• Evaluation 

An extensive user evaluation of the manipulator identified areas of non-conformance with 

design criteria, and allowed for the prioritization of areas for future work. 

• Configuration 

The development and evaluation of a novel form of Task Analysis, that may be used to 

configure an adaptable user interface based on user's controlling ability. 

This chapter discusses these contributions, and outlines possible areas for future work. 

198 



Chapter 10 Conclusions and further work 

10.1 Contributions to research 

The initial research objective was to assess whether a prototype implementation of the 

Scariculated kinematic configuration would conform to design criteria appropriate for 

rehabilitation robot design. This was addressed through the development of the 'Middlesex 

Manipulator', which began with a review of the field of rehabilitation robotics, focusing on extant 

systems and the user feedback that these had elicited. Chapter 2 of this thesis examines a number 

of systems that are representative of the successes and failures of the field, and argues that a 

cohesive picture may be drawn from an analysis of user evaluations, and the relative levels of 

user-acceptance that these systems have achieved. This analysis allowed for a set of ten general 

design criteria to be specified. 

The variety of proj ects that exists within rehabilitation robotics has allowed for a range of lessons 

to be learnt. Universally accepted design criteria would help prevent these lessons from being 

repeated. As discussed in Chapter 2, general design criteria should be expected to evolve in line 

with technological change and evolving user expectations. However their definition, as attempted 

within this thesis, will assist the field of rehabilitation robotics in progressing towards the 

delivery and wide-spread user acceptance of general-purpose robotic devices. 

The design criteria identified provided a framework for the development of a control system and 

user interface for the Middlesex Manipulator. A multi-disciplinary approach was adopted, in 

which techniques developed within the fields of human-computer interaction, software 

engineering and artificial intelligence, were adapted and applied. This work was novel, due to the 

limited formal application of HCI and AI to rehabilitation robot design. The applicability of 

techniques such as Task Analysis and Heuristic evaluation were assessed, showing that within 

certain constraints, these techniques could be successfully applied to the design of assistive 

technology. 

The resulting design provided a level of adaptability beyond that of comparable systems, allowing 

for the use of novel input devices, and prioritising low-cost. The system was evaluated by an 

individual with spinal-cord injury, and the results were used to assess the Manipulator against the 

design criteria. 

199 



Chapter 10 Conclusions and fitrther work 

Chapter 8 provides a discussion of the results of the evaluation, detailing which design criteria are 

conformed to by the manipulator prototype. Figure 10.1 below summarises these findings, and 

compares the results with the analyses of the HANDY 1 and MANUS systems presented in 

Chapter i. 

MANUS HANDY 1 Middlesex 

Cost No Yes Yes 

Functionality Yes No Yes 

Perfonnance Yes Yes Yes 

Mobility Yes Yes Yes 

Input devices ? No Yes 

Variety of control modes ? No Yes 

Adaptability ? No Yes 

Appearance Yes Yes No 

Safety Yes Yes Yes 

Design modifications 
No No No 

FIGURE 10.1 DESIGN CRITERIA CONFORMANCE COMPARISONS 

Work is currently being undertaken to increase the control modes and adaptability of the MANUS 

arm, though as discussed in Chapter 2, this has on occasion reduced system functionality. The 

prominent issue with the MANUS arm is its high cost, and significant design changes would be 

required to address this. As the current design does not facilitate these modifications, the 

MANUS arm fails on both the cost and design modifications criteria. The HANDY 1 system is 

unlikely to achieve success as a general-purpose manipulator comparable to its success as a 

feeding aide. Without fundamental modifications to the HANDY l's construction and kinematic 

configuration, its flexibility will not match that required by systems designed to be general-

purpose. 

I The two systems were selected as they have achieved levels user acceptance greater than most 
rehabilitation systems, and evaluations are widely reported. 

200 



Chapter 10 Conclusions andfurther work 

The evaluation of the Middlesex Manipulator prototype demonstrated that functionality required 

of a general-purpose manipulator was provided. The research reported in this thesis resulted in a 

system design allowing adaptability at the user interface, and a low-cost control system. The 

prominent negative issue with the current prototype is poor physical appearance. Whilst the 

significance of this is reduced for a prototype, it is important that the design allows for the system 

to be evolved into a product capable of achieving user acceptance. This is not provided by the 

current design, and consequently the manipulator fails to confonn with both the appearance and 

design modifications criteria. 

Figure 10.1 shows a unique profile for each of the manipulators. Researchers within the field 

would dispute the exact contents of the table, however this thesis argues that the criteria that is 

clearly not confonned to by all three is the design modifications criteria. This tends to suggest 

that the design solutions adopted by the three projects, collectively demonstrate the feasibility of 

successful general-purpose rehabilitation robot design. However, as discussed in Chapter 1, the 

potential market for a rehabilitation robot is orders of magnitude greater than that currently 

tapped. It may therefore be concluded from Figure 1O.l, that an indispensable attribute of any 

rehabilitation robotic system, is that it may be easily evolved to meet user requirements as both 

technology and user expectations progress. 

The second objective of the thesis related to the process of configuring an adaptable user

interface to match specific user and device characteristics. As discussed in Chapter 9, the 

selection and installation of assistive technology relies predominantly on the subjective 

assessments of clinicians. It was argued that this process may be supported by the inclusion of 

objective measures, and that the measures of interest should be a combination of user's functional 

ability with the characteristics of the device of interest. This combination was defined within this 

thesis as the user's controlling ability. A methodology based on a fonn of task analysis was 

developed, that allows estimates of the relevant user characteristics to be included within a model 

of user interaction. 

An experiment was undertaken, to detennine the accuracy of usability predictions resulting from 

the model. Whilst task analysis can address error frequency, interface complexity and the 

functional completeness of a system, the experiment focused on predicting the speed with which 

an interface may be navigated. It was demonstrated that the model could consistently predict the 

relative usability of interface configurations for varying interaction styles and levels of 

controlling ability. 
201 



Chapter 10 Conclusions and further work 

It was demonstrated that the process of producing usability predictions could be easily automated, 

and that the results could be used to assist clinicians and end users in selecting input devices and 

interaction styles for a specific user interface. 

10.2 Future work 

10.2.1 The manipulator and motor control system 

A number of design modifications were identified in Chapter 8 as being necessary for user 

acceptance of the manipulator. Principal amongst these are the use of 'softer' materials where 

possible, and a softer or more rounded appearance. This would include covering all motors, gears 

and leads. An analysis of user tasks indicated a required increase in the speed of the two linear 

axes. The speed is currently limited by the unacceptable levels of noise generated, a problem that 

may be resolved if the use of alternative materials was investigated. 

The user evaluation described in Chapter 8 employed semi-structured environments, in which 

objects were adapted to match the functionality of the manipulator. Increasing the manipulator's 

functionality, as required to undertake the entire set of user tasks identified, would require the 

inclusion of an appropriate three degree-of-freedom end-effector. A prototype end-effector was 

developed by an undergraduate student under the supervision of the author (Reynolds B., 1997). 

The project was successful in achieving the three degrees of freedom, and provides a detachable 

gripper unit, allowing for grippers to be changed to match task requirements. However, the 

weight of the prototype end-effector is excessive at around 1 kg, and requires to be reduced 

through the use of lighter motors than are currently employed, and perhaps alternative materials. 

Work towards a modified design is planned within the School of Engineering Systems at 

Middlesex University. 

202 



Chapter 10 Conclusions andjurther work 

10.2.2 The user interface system 

The adaptability inherent in the system's design allows and encourages the development of new 

forms of interaction. The evaluation reported in Chapter 8 employed a user interface in which 

control commands were organised into a menu-based system. This is referred to in Chapter 6 as 

version one of the user interface system. A second version has been developed that employs a 

Dialog-based graphical user interface. Investigations are required to allow a comparison between 

the two approaches for the various forms of user input available. A purpose-built LCD display 

unit has been developed by Donate (1996) under the supervision of the author, and remains to be 

tested. 

Tele-operated control of the Middlesex Manipulator provides a natural interface for those users 

possessing an appropriate level of controlling ability. The current design of the user interface and 

control system allows for tele-operation, with the use of an 'intelligent' joystick that can convert 

joystick movement into the appropriate mCL commands. A design that adopts this approach was 

implemented by (Silverio, 1996) under the author's supervision. 

The tilt-sensors used for gesture classification exhibit a slow time response, limiting the number 

of gestures that can be easily generated. During the final stages of project development a two-axis 

solid-state tilt sensor was identified (Crossbow Technologies, USA), providing greater operating 

range (±7S0) and a faster response than electrolytic tilt sensors. Use of the solid-state tilt sensor as 

a 'head - mouse' is currently being investigated by the author. 

10.2.3 Choice of user interface and control system platform 

Recent years have seen a significant reduction in the cost of processors and peripheral 

equipment as well as improvements in operating systems and software development 

tools. A continual re-assessment of the state and cost of technology is required to ensure 

that design solutions employ the appropriate platform for implementation. The user 

interface for version 1 was developed on a PC running Windows 3.11 at 100MHz. 

However, the intention was to port the system to an embedded platform, such as an 

embedded 486. The reduced cost of Pentium machines (industrial or desktop) suggests 

203 



Chapter 10 Conclusions andfurther work 

that these would now be the appropriate platfonn for future work. This would allow for 

the use of the Windows NT or Windows 2000 operating system. These offer a true multi

tasking environment, which may be exploited to increase system safety. Separate 

processes or threads within an NT system may be used to replicate or replace tasks 

currently perfonned by the embedded micro controllers. 

10.2.4 User Evaluation 

A fundamental requirement for the development of any fonn of assistive technology is the 

involvement of potential users throughout the design process. To date, this has been achieved for 

the Middlesex Manipulator through user surveys, an analysis of the evaluations of existing 

systems, and a single-user case study of the current prototype. An important component of future 

work will be the resolution of issues raised within this thesis, and the exposure of a modified 

prototype to a wider number of potential end-users. 

10.3 Concluding remarks 

The main practical contribution of the work reported in this thesis, is the production of a working 

and testable manipulator prototype, from an inherited novel robot design. The lessons learnt from 

the evaluation will contribute to the pool of collective findings within the field of rehabilitation 

robotics, from which the original design objectives were drawn, and from which a successful 

production model will emerge. 

Whilst modifications to the manipulator's appearance are required, it has been demonstrated that 

a purpose built control system based around a low-cost embedded microcontroller, provides 

adequate functionality for the perfonnance of tasks prioritized by potential end-users. The 

necessity and benefits of providing an adaptable system was demonstrated, as was the ability to 

achieve this at low cost. 

204 



Chapter 10 Conclusions and jilrther work 

This thesis has demonstrated that the field of human-computer interaction has remained too 

isolated from assistive technology, and that techniques from the field can be adapted and 

successfully applied. It is hoped that such an approach will influence the development of future 

systems. 

205 



References 

Anzai Y. (1994) "Human-robot-computer interaction: a new paradigm of research in robotics", 

Advanced Robotics, Vol. 8, No.4, pp. 357 - 369. 

Batavia A.I., Hammer G.S. (1990) "Toward the development of consumer-based criteria for the 

evaluation of assistive devices", Journal of Rehabilitation Research and Development, Vol. 27, 

No 4, pp. 425 - 436. 

Birch, G.E. (1993) "Development and methodology for the formal evaluation of the Neil Squire 

Foundation robotic assistive appliance", Robotica, Vol. 11, pp. 529 - 534. 

Birch G.E. Fengler M. Gosine R.G. Schroeder K. Schroeder M., Johnson D.L. (1996). An 

assessment methodology and its application to a vocational robotic assistive device, Technology 

and Disability, Vol. 5, No 2, pp. 151 - 165. 

Bishop C. M. (1995) "Neural Networks for Pattern Recognition", Oxford University Press, 1995. 

ISBN 0-19-853864-2. 

Bolmsjo, G., Topping M., Heck, H., Hedenborn, P., Olsson, M. (1997) "RAIL - Project status 

and technical developments", Advancement of Assistive Technology, Assistive Technology 

Research Series 3, Eds Anogianakis G., Buhler C., Soede M., IOS press, pp. 24 - 28. ISBN 90-

5199-3617. 

206 



Brelivet, L. (1992) Telemanipulateur MANUS: Rapport d'evaluation, Association Francaise 

contre les Myopathies (AFM). 

Buter S.P., Veltman R.J. (1996) "Modifications of the prototype of a robotic manipulator for 

disabled wheelchair users", ERASMUS Project Report, Middlesex University. 

Card S. K., Moran T. P., Newell A. L. (1983), The Psychology of Human Computer 

Interaction, Hillsdale, NJ: Erlbaum. ISBN 0898592 437. 

Clay T.P., Hillman M.R. Orpwood R.D., Clarke AK., (1987) "A survey of the potential 

disabled users of a robotic aid system", Royal National Hospital for Rheumatic diseases and Bath 

Institute for Medical Engineering. 

Dallaway, J. Timmers P. (1995) "Rehabilitation robotics in Europe", IEEE Transactions on 

Rehabilitation Engineering. Vol. 3, pp. 35 - 45. 

Danielson C., Holmberg L. (1994) "Evaluation of the RAID workstation", International 

Conference of Rehabilitation Robotics, Wilmington, Delaware, pp. 7 - 11. 

Dario P., Guglielmelli E., Allotta B. (1995) "Mobile robots aid the disabled", Service Robot, 

Vol. 1, Nl 1995, pp 14 - 18. 

Demers L., Weiss-Lambrou R., Ska B. (1996) "Development of the Quebec user evaluation of 

satisfaction with assistive technology", Assistive Technology. Vol. 8, No 1, pp. 3 - 15. 

Desurvire H. W., Kondziela J.M., Atwood M.E. (1993) "What is gained and lost when using 

evaluation methods other than empirical testing", NYNEX Science & Technology AI Laboratory, 

New York, pp. 90 - 10 l. 

Dijkstra N., Fennema A. (1994) "Developing and manufacturing an electrical robot arm", 

ERASMUS Project Report, Middlesex University. 

207 



Donate, A., C. (1996) "Development of an LCD feedback device for use within a robotic 

manipulator control system", B.Eng. Honours degree in Electronic Engineering project report, 

Middlesex University, London. 

Dowland B., Cipolla R., Clarkson J. (1997) "A prototype for interactive robotics application 

development", International Conference of Rehabilitation Robotics, Bath University, UK, pp. 71 -

74. 

Driessen, B.J.F., Woerden, J.A., Nelisse, M.W., Overboom, G.R. (1997) "Rehabilitation 

Robotic Concepts - integrating Manus on a mobile platfornl", Advancement of Assistive 

Technology, Assistive Technology Research Series 3, Eds Anogianakis G., Buhler C., Soede M., 

lOS press, pp. 15 - 19. ISBN 905199361 7. 

Dym C.L., Levitt R. E. (1991) "Knowledge based systems in Engineering", McGraw-Hill 

International Editions, ISBN 0-07-100850 - 0 

Edwards A.D.N. (1995) "Extra-ordinary human-computer interaction", Cambridge senes on 

human-computer interaction, Ed Edwards A.D.N., Cambridge Univ. Press. ISBN 0521 434 130. 

Eftring H., Boschian K., (1999) "Technical Results from MANUS User Trials", ICORR '99: 

International Conference on Rehabilitation Robotics, Stanford, CA. 

Erlandson, R. F., Sant, D., Wiadnyana, K., Rippy, J. Nizio, P. (1995) "Instrumentation of the 

Handy 1 for Oral-Motor Therapy", Rehabilitation Engineering Society of North America, 1995 

conference proceedings. 

Finlay P.A. (1988) Applications for Advanced Robotics in Medicine and Healthcare, Feasibility 

study report, No. RI175/1, January. 

Franklin G.F., Powell J.D., (1981) Digital Control of Dynamic Systems, Addison-Wesley, 

ISBN 0-201-02891-3 

Gellrich L., (1995) "Development of a control system for a wheelchair mounted robot ann", 

ERASMUS project report, Middlesex University, London. 

208 



Gelrich L. (1996) "Development of a gesture recognition system", A dissertation in partial 

fulfillment of the requirement for a Master of Science, Middlesex University, June 1996. 

Guittet J., Kwee, H.H. Quetin, N., Yclon J. (1979), The Spartacus telethesis: manipulator 

control studies. Bull. Prosth. Res., BPR 10-13, 69-105. 

Hagen, K., Hagan, S., Hillman, M., Jepson, J. "Design of a wheelchair-mounted robot", 

International Conference of Rehabilitation Robotics, Bath University, UK, pp. 27 - 30. 

Hammel M., Van der Loos, H.F.M. (1992) "Evaluation of a vocational robot with a 

quadriplegic employee", Arch Phys Med Rehabil. Vol. 73, pp. 683 - 693. 

Harwin W.S., Jackson R.D. (1990) "Analysis of intentional head gestures to assist computer 

access by physically disabled people", J. Biomed Eng, pp. 193 - 198. 

Heide K.D., Roorda G.J. (1993) "Design of an electrical robot ann", ERASMUS Project Report, 

Middlesex University, 1993. 

Hillman, M. (1992), "Rehabilitation Robotics", Critical Reviews in Physical & Rehabilitation 

Medicine, Vol. 4, No.1, pp. 79 - 103. 

Hillman, M., Jepson, J. (1992) "Evaluation ofa robotic workstation for the disabled", Journal of 

Biomedical Engineering, Vol. 14, pp. 187 - 192. 

Hillman, M., Jepson, J. (1997) "Evaluation of a trolley mounted robot - a case study", 

International Conference of Rehabilitation Robotics, Bath University, UK. pp. 95 - 98 

Hrycej T. (1991) "Back to Single layer learning principles", International Joint Conference on 

Neural Networks, Seattle, 1991. 

Hush D.R., Horne B.G. (1993) "Progress in supervised neural networks", IEEE Signal 

Processing Magazine, January 1993, pp. 8 - 39. 

209 



Johnson P., (1992) "Human Computer Interaction - Psychology, Task Analysis and Software 

Engineering", McGraw-Hill, ISBN 0-07-707235-9 

Kassler, M. (1993) "Introduction to the special issue on robotics for health care", Robotica, Vol. 

11, pp. 493 - 494. 

Keates S., Potter R., Perricos C., Robinson P. (1997) "Gesture recognition - research and 

clinical perspectives", RESNA 97, pp. 333 - 335. 

Keates S., Robinson P. (1997) "The role of user modelling in rehabilitation robotics", 

International Conference of Rehabilitation Robotics, Bath University, UK pp. 75 - 78. 

Kieras D.E., and Polson P. (1985) "An approach to the formal analyses of user complexity", 

International Journal of Man-Machine Studies, Vol. 22, pp. 365 - 394. 

Kieras D.E. (1988) "Towards a practical GOMS model methodology for user interface design", 

Handbook of Human Computer Interaction, Amsterdam: Elsevier. ISBN 0444 705 368. 

Kintsch W. (1988) "The use of knowledge in discourse processing: a construction integration 

model", Psychological review, Vol. 95. 

Kwee H. H., Duimel J. J. (1988) The MANUS Wheelchair-Bourne Manipulator: Developments 

Towards a Production Model, Proceedings of the International Conference of the Association for 

the Advancement of Rehabilitation Technology. Pp. 440 - 461. 

Kwee H.H., Duimel J.J. (1989), The Manus Wheelchair-Borne Manipulator: System Review 

and First Results, The 2nd Workshop on Medical and Healthcare Robotics, Newcastle Upon 

Tyne, UK, pp. 1 -11. 

Kwee H.H., Cremers G.B., van der Pijl D.J., Aartsen H.A. (1994) "User evaluation of an M3S 

demonstration platform", International Conference of Rehabilitation Robotics, Wilmington, 

Delaware, pp. 3 - 5. 

210 



MacIntyre, F., Estep K. W., Siebert, J. M. (1990) Cost of User Friendly Programming, 

Journal of Forth Application and Research, Vol. 6, No.2, pp. 103 - 115. 

Mahoney R., M., Dalloway J. L., Jackson R. D. (1992) "Development of the robot control 

language - CURL", International Conference of Rehabilitation Robotics, Keele University, 

Staffordshire, UK, September 1992. 

Mahoney, R. M. (1997) "Robotic products for rehabilitation: status and strategy", International 

Conference of Rehabilitation Robotics, Bath University, UK, pp. 12 - 17. 

Makino, H. and Furuya, N. (1982) "SCARA robot and its family", Proceedings of the 3rd 

International Conference on Assembly Automation, IFS Publications Ltd, pp. 433 - 444. 

Martin, J. Meltzer, H. and Elliot, D. (1988) 'The Prevalence of Disability amongst Adults', 

Office of Population Censuses and Surveys, Social Survey Division, H.M.S.O. 

Mattie J., Hannah R. (1994) "Evaluation of the Inventaid Manipulator Arm for a youth with 

muscular dystrophy", International Conference of Rehabilitation Robotics, Wilmington, 

Delaware, pp. 13 - 17. 

Mattie J., Hannah R. (1995) " Development of an evaluation procedure for wheelchair-mounted 

manipulator arms", Conference of the Rehabilitation Engineering Society of North America, pp. 

499 - 501. 

McEachern W., Perricos C. Jackson R., (1994) "Head gesture assisted direct control of a 

rehabilitation manipulation system", ICORR 94, pp. 49 - 54. 

Middendorf, W.H. (1986) "Decisions", Design of Devices and Systems, New York, Dekker, 

pp.198 - 230. 

Milner, M., Naumann, S., King, A. and Verburg, G. (1992) Evaluation of Manus Manipulator 

Arm in ADL, Vocational and School Settings. Final report to National Health Research and 

Development Program, Project #6606-4198-59. 

211 



Moran T.P. (1981) "The Command Language Grammar: a representation for the user interface 

of interactive computing systems", International Journal of Man-Machine Studies, Vol. 15, pp. 3 -

50. 

Nielsen J. (1992). "Finding usability problems through heuristic evaluation", Human Factors in 

Computing Systems, CHI 92, pp. 373 - 378. 

Nielsen J., Phillips V. (1993) "Estimating the Relative Usability of Two Interfaces: Heuristic, 

Fonnal, and Empirical Methods Compared", Human Factors in Computing Systems, Conference 

Proceedings, pp. 214 - 221. 

Neilson J. (1994) "Usability Inspection Methods", John Wiley & sons, 1994, pp 5 -6. ISBN 

04710 18775. 

Newell A., Simon H. (1972) "Human Problem Solving", Englewood Cliffs, NJ, Prentice Hall. 

Norman D., Draper S., (1986) "User centered system design", Lawrence Erlbaum Associates 

Inc. ISBN 0898 597 811. 

Oderud, T., Bastiansen, J.E. (1992) Integrating a Manus manipulator and an electric 

Wheelchair. Practical experiences. Proc 15th RESNA Conference, Toronto, pp. 595 - 597. 

Oderud, T. (1997) "Experiences from the Evaluation of a Manus Wheelchair-mounted 

Manipulator", Advancement of Assistive Technology, Assistive Technology Research Series 3, 

Eds Anogianakis G., Buhler c., Soede M. lOS press, pp. 20 - 23. ISBN 90 5199 361 7. 

Overboom G., Nelisse M., van Woerden K. (1997) "Focus on the Central position of Users in 

integrated Systems", Advancement of Assistive Technology, Assistive Technology Research 

Series 3, Eds Anogianakis G., Buhler c., Soede M., lOS press, pp. 303 - 313. ISBN 90 5199 361 

7. 

212 



Parsons B.N., Gellrich L., Warner P.R., Gill R., White A.S. (1996) "Application of a Gesture 

Classification System to the Control of a Rehabilitation Robotic Manipulator", IEEE Conference 

on Engineering in Medicine and Biology, Amsterdam. ISBN 90 9010005 9 (CD ROM). 

Parsons B., Warner P.R., White A.S., Gill R. (1997a) "An Adaptable User Interface and 

Controller for a Rehabilitation Robotic Arm", International Conference on Advanced Robotics, 

California, pp. 919 - 923. 

Parsons B.N., Warner P.R., White A., Gill R. (1997b) "Initial Evaluation of the Middlesex 

Rehabilitation Robotic Arm", RESNA Conference, Pittsburgh, pp. 411 - 413. 

Parsons B., Warner P., White A.S., Gill R. (1997c) "An approach to the development of 

adaptable manipulator controller software", International Conference of Rehabilitation Robotics, 

Bath University, UK. pp. 67 - 70. 

Payne S.J., Green T.R.G., (1986) "Task-Action Grammars: A model of the Mental 

Representation of Task Languages", Human Computer Interaction, Vol. 2, pp. 93 - 133. 

Payne S. J., and Green T.R.G. (1989) "The structure of command languages: An experiment on 

Task Action Grammar, International Journal of Man-Machine Studies, Vol. 30, pp.213-234. 

Polson P., Lewis C. "Cognitive Walkthroughs: a method for theory based evaluation of user 

interfaces", Int. J. Man-Machine Studies, Vol. 36, pp. 741 - 773. 

Poulson D., Ashby M., Richardson S. (1996) "User fit : a practical handbook on user-centred 

design for assistive technology", TIDE, ECSC-EC-EAEC, 1995. 

Prior S.D. (1989) "A review of world rehabilitation research", Internal Report, Middlesex 

University, London. 

Prior S.D. (1990) "An electric wheelchair-mounted robotic arm - a survey of potential users", 

Journal of Medical Engineering & Technology, Vol. 14, No 4, pp. 143 - 154. 

213 



Prior S.D., Warner P.R., Parsons J.T., White A.S., Oettinger P. (1992) "A hybrid 

rehabilitation robotic ann for the physically disabled electric wheelchair user", International 

Conference of Rehabilitation Robotics, Keele University, Staffordshire, UK, September 1992. 

Prior S.D. (1993) "Investigations into the design of a wheelchair-mounted rehabilitation robotic 

manipulator", PhD thesis, Middlesex University, 1993. 

Reisner P., (1981) "Fonnal grammars and Human Factors design of an interactive graphics 

system", IEEE Transactions of Software Engineering Systems, Vol. 5, pp. 229 -240. 

Reynolds B. (1997) " The design of a three degree of freedom end-effector for the Middlesex 

Manipulator", B.Eng. Honours degree in mechanical engineering project report, Middlesex 

University, London. 

Rubio M., M., (1996) " Development of a microcontroller-based control system for a wheelchair 

mounted robot ann", B.Eng. Honours degree in electronic engineering project report, Middlesex 

University, 1996. 

Silverio, J. P. (1996) "Intelligent Joystick for a robotic manipulator", B.Eng. Honours degree in 

electronic engineering project report, Middlesex University, London. 

Sheredos S. J., Taylor B., Cobb c., Dann E. E. (1996) "Preliminary evaluation of the helping 

hand electro-mechanical ann", Technology and Disability, Vol. 5, pp. 229 - 232 

Sheredos S. J., Taylor B. (1997) "Clinical evaluation of the helping hand electro-mechanical 

ann", RESNA 97, Pittsburgh, USA, pp. 378 - 380. 

Smith S.L. Mosier J.N. (1984) Design guidelin~s for the user interface for computer based 

infonnation systems. Bedford MA: The Mitre Corp. 

Smith, J., Topping, M. (1997) "Study to detennine the main factors leading to the overall 

success of the Handy 1 robotic system", International Conference of Rehabilitation Robotics, 

Bath University, UK, pp. 147 - 150. 

214 



Stanger C.A., Annezio C. P., Cawley M.F. (1996) I"Range of Head Motion and Force of High 

Cervical Spinal Cord Injured Individuals for the Design of a Test-bed Robotic System", 

ICORR'94 Proceedings of the International Conference on Rehabilitation Robotics, Wilmington, 

Delaware, USA, pp. 37 - 42. 

Stuyt, H. J. A. (1997) "Manus in Europe", International Conference of Rehabilitation Robotics, 

Bath University, UK, pp. 111 - 115. 

Tew A.I., Gray C. J., "A real-time gesture recognizer", Journal of Biomedical Engineering, Vol. 

15, pp. 181 - 187. 

Topping, M. (1993) "Early experiences in the use of the Handy 1 robotic aid to eating", 

Robotica, Vol. 11, pp. 525 - 527. 

Topping M. (1995) "The Development of HANDY 1 a robotic aid to independence for the 

severely disabled", IEE Colloquium on Mechatronic Aids for the Disabled, University of 

Dundee, UK, pp. 1 - 6. Digest No 1995/107. 

Topping, M. (1996) "Handy 1, a robotic aid to independence for severely disabled people", 

Technology and Disability, Vol. 5, pp. 233 - 234. 

Topping, M., Heck H., Bolmsjo G. (1997) "An overview of the BlOMED 2 RAIL project", 

International Conference of Rehabilitation Robotics, Bath University, UK, pp. 23 - 26. 

Van der Loos, H.F.M., Hammel J., M. (1990), "Designing rehabilitation robots as office and 

household equipment", International Conference of Rehabilitation Robotics, Wilmington, 

Delaware, USA, pp. 121 - l35. 

Verburg G., Kwee H., Wisaksana A., Cheetham A., va Woerden J. (1995) "Manus: The 

evolution of an assistive technology", Technology and Disability, Vol. 5, pp. 217 - 228. 

Wasserman P.D. (1989) "Neural computing - theory and practice", Van Nostrand Reinhold, 

New York. ISBN 0 442 207433. 

215 



List of media included with thesis 

The following items have been produced to supplement the written thesis: 

Software (CD ROM) 

Source code for motor control software. 

Source code for user interface system. 

Video 

Video footage of the initial evaluation of the Middlesex Manipulator. 

216 

Supporting materials 



Appendix A JMCL Opcodes 

Appendix A 

Juvo Motor Control Language Opcode Summary 

This appendix provides a summary of the Juvo Motor Control Language (JMCL) v 1.0. Opcodes. 

JMCL defines the command set between a user interface system and a motor control system used 

to control the Middlesex manipulator. 

BRK - sets motor brake for all axes 

ERM - indicates motor brake set 

ACK - acknowledge 

CAN - cancel dialogue 

ER T - error in transmission 

HL T - stop all axes 

Hn - stop axis n 

Sk - set max speed for axis k 

Vn - set speed of axis n to value passed in next byte 

Mnd - move axis n in direction d 

Pn - move axis n to absolute position specified by next 2 bytes 

WIn - transmit 2 bytes containing position of axis n 

RST - reset motor brakes 

NXT - request next byte 

Lnd - limit of axis n in direction d encountered. 

where : 0 ::::; n ::::; 7, 0::::; d ::::; I, and 0::::; k::::; 31. 

Ai 



Appendix B JMCL 

Appendix B 

Juvo Motor Control Language Protocol 

This appendix provides a summary of the Juvo Motor Control Language (JMCL) v 1.0. JMCL 

defines the communication protocol between a user interface system and a motor control system 

used to control the Middlesex manipulator. The protocol defines communication over a serial link 

between a personal computer (PC) and an embedded microcontroller (uC), at a level above 

RS232. Thus RS232 handshaking, baud rate and data formats are not defined. 

Command descriptions 

BRK 

The break command (BRK) is used to bring the manipulator's motors to an immediate stop, 

causing all motor drive signals to be set to zero. As the Halt command defined below allows the 

motors to be stopped less abruptly, the break command should be reserved for emergency 

scenarios. The motor control system responds to successful execution of the Brk command with 

an acknowledge command (ACK). 

• ~ ACK 
~~ 

BRK 

~ 

Bl 



Appendix B JMCL 

ERM 

The motor error command (ERM) is issued by the motor control system to indicate that an error 

occurred causing motor drive circuitry to be disabled. Typically caused by current limits being 

exceeded. 

ERM 

~~ ACK • ~ 
HLT 

The halt command (HL T) brings all motors that are currently in motion to a halt, by setting the 

axes' target positions as the current positions plus a pre-defined constant value. 

HLT 

~ 
~ 

PC ACK 
... ~ 

Hn 

The halt axis n command (Hn) brings axis n to a halt by setting the target position as described 

above. As n may have a value from I to 8, Hn actually represents a set of command with 8 

consecutively numbered opcodes (see opcode listing at end of appendix). 

Hn 

~ 
~ 

PC ACK ... 2 
Sn 

The Sn command (Sn) sets all axes to speed level n. Eight speed levels are selectable, with the 

actual motor speeds for each axis configurable at motor controller software and hardware levels. 

Sn 

~ 
~ 

PC ACK 
... 2 

B2 



Appendix B JMCL 

Vn 

The velocity of axis n command (Vn) sets the speed of axis n to a percentage of the maximum 

axis speed. The command is used for fine speed control, and consists of two transmissions to the 

microcontroller. The first indicates that speed is being set, and which axis is selected. As n can be 

from one to eight, there are eight actual opcodes for the Vn command. The motor controller 

responds with the next command (Nxt) which acts as request for the speed value. This value k, is 

then transmitted by to the microcontroller as one byte, thus 256 speed levels are selectable for 

each axis. This translates to a selection from 0 to 100% of the hardware setting, with a resolution 

of 0.4%. 

Vn • 
NXT 

PC I ~ uC 
K • 

ACK • 
WIn 

The where is axis n command (Win) is used to determine the position of axis n, where n can be 

from one to eight. Receipt of the command by the microcontroller causes transmission of the 

absolute position of the selected axis in two bytes. The most significant byte is first transmitted, 

followed by receipt of the Nxt command, after which the least significant byte is transmitted. 

Win 

• 
~H 

PC I • uC Nxt 

• 
~ 

~L 

ACK 

• 

B3 



Appendix B JMCL 

Mod 

The move axis n in direction d command (Mnd) is used to move a selected axis in one of two 

directions. As n can take on a value of from one to eight, and n can take on a value of one or two, 

Mnd consists of a set of sixteen consecutive opcodes. 

Mnd 

~~ ACK .~ 

Mx 

The move in direction x command (Mx) is used to move the manipulator's end-effector in the x 

plane in one of 2 directions. Thus x may take on a value of one or two. 

~ 
MX 

ACK ~~ . ~ 
Mx 

The move in direction y command (My) is used to move the manipulator's end-effector in the y 

plane in one of 2 directions. Thus y may take on a value of one or two. 

~ 
MY 

ACK ~~ . ~ 

B4 



Appendix B JMCL 

Pn 

The move axis n to an absolute position (Pn) is used to move a selected axis to a position encoded 

in two bytes. On receipt of the Pn command, the micro controller requests the two bytes by issuing 

the Nxt command. 

Pn • 
... NXT 

PC X .... 
~ uC 

... NXT 

X, • 
... 8C~ 

Lnd 

The Lnd command is used to indicate that the limit of axis n in direction d was reached. This may 

be caused by either a software or hardware limit being exceeded, and would have resulted in the 

microcontroller removing drive signals from all axes (achieved applying the motor brake). 

Lnd 

0~ ACK ~2 

B5 



Appendix B JMCL 

RST 

The reset command is used to reset all motor axes. This removes the effect of any previously 

applied brake signals, and allows a drive signal to be applied to the motors. 

RST 

o ACK ~~ 
... ~ 

B6 



Appendix C Motor Control Code Listings 

Appendix C 

Motor Control Code Listings 

The following appendix provides listings of the 8051 motor control code written in the C programming 
language. The listings include: 

1 MCMain.c 
2 10.c 
3 Serial.c 
4 Control.h 

Main source file containing top level code 
10 routines 
Serial comms routines 
Hardware dependent constant definitions, Gain constants 
Global variable definitions 

The following appendix provides listings of the 8051 motor control code 
written in the C programming language. The listings include: 

1 MCMain.c 
2 1O.c 
3 Serial.c 
4 Control.h 

Main source file containing top level code 
10 routines 
Serial comms routines 
Hardware dependent constant definitions, Gain constants 
Global variable definitions 

C 1 



Appendix C Motor Control Code Listings 

1 MCMain.c 

//////////////////////////////////////////////////////////////////////////////// 
// Headers for functions not defined here 
#include "serial.h" 
#include "funcs.h" 
#include "jmcl.h" 

// BRAKECHECKDELAY is used to determine how frequently we check if 
// a brake has been set 
#define BRAKECHECKDELAY 100 
#ifndef FALSE 

#endif 

#define FALSE 0 
#define TRUE !FALSE 

// Number of axes is 6 till we get a 3 d.o.f. end-effector 
#ifndef NUMBER OF AXIS 

#define NUMBER OF AXIS 6 
#endif 

// Variables defined as extern for accessibility in linked modules 
// Not exactly structured programming, but faster 

// Motor filter values 
extern float MotorAlpha; 
extern float MotorBeta; 

// current axis 
extern char Axis; 

// Arrays hold current and target positions, error is the dfference 
extern int CurrentPos[); 
extern int TargetPos[); 
extern int Error[); 

// These act as software limits for each axis 
extern unsigned char MinPos[); 
extern unsigned char MaxPos[); 

// Dynamic error holds acceptable error values (dynamic) 
extern unsigned char DynamicError[); 

// HIt band holds acceptable error values (static) 
extern unsigned char HltBand[); 

// Reaced elements set to true for each axis when error acceptable 
extern char Reached[) 

// used to record drive signals, so new drive signals can be increased 
// at an acceptable rate 
extern float PrevSignal[); 

// Current user selected speed setting 
extern unsigned char SpeedSetting; 

// If there is new user input, the following variables are set to true, 
// command name, and arguments respectively 
static char NewInput = TRUE; 
static int UserInput = BRK; 
static int UserInput2; 
static int UserInput3; 

// Following variables determine whether the brake can be set, how long since 
// we last checked, whether there's a forced brake or whether the brake is set 
static char CanSetBrake = FALSE; 
static char BrakeCheckDelay = BRAKECHECKDELAY; 

C2 



Appendix C 

static char ForcedBrake TRUE; 
static char BrakeSet = TRUE; 

Motor Control Code Listings 

/////////////////////////////////////////////////////////////////////////// 
/////////////////////////////////////////////////////////////////////////// 
main() 
( 

//////////////////////////////////////////////////////////// 
// Perform hardware initialization, and ensure brake is set 

InitSerialPort(); 
ConfigTimerlc(); 
InitPortl(); 
SetBrakeOn(); 

//////////////////////////////////////////////////////////// 
// Set initial positions to initial target positions 

ReadCurrentPos(); 
for (Axis = O;Axis < NUMBER_OF_AXIS; Axis ++) 

TargetPos[Axis] = CurrentPos[Axis]; 

//////////////////////////////////////////////////////////// 
// Perform main program loop for ever 

do 
( 

// Check for user input 
if (CharReady()) 
( 

UserInput = SerialIn(); 
NewInput = TRUE; 

// If three is input, process it 
if (NewInput) 
{ 

switch (UserInput) 
( 
// If user has selected brake, set brake and initialize all 
// associated variables appropriately 
case BRK: SetBrakeOn(); 

ForcedBrake = TRUE; 
BrakeSet = TRUE; 
SetZeroSpeeds(); 
for (Axis = 0; Axis < NUMBER_OF_AXIS; Axis++) 
{ 
Reached[Axis] = TRUE; 

PrevSignal[Axis] = 0; 
TargetPos[Axis] CurrentPos[Axis]; 

// use goto to quit - horrible but quick 
goto EndOfNewInput; 

// If halt, add a predefined constant to current position 
case HLT : for (Axis = O;Axis < NUMBER_OF_AXIS; Axis ++) 

if(!Reached[Axis]) 
if(Error[Axis]>O) 

TargetPos[Axis] CurrentPos[Axis] + HltBand[Axis]; 
else 

TargetPos[Axis] CurrentPos[Axis] HltBand[Axis]; 

C3 



Appendix C Motor Control Code Listings 

II 
II 

goto EndOfNewInput; 

case RST 
II If reset, release brakes and set appropriate flags 

SetZeroSpeeds(); 
Reset(); 
BrakeSet = FALSE; 
ForcedBrake = FALSE; 
goto EndOfNewInput; 

III end of switch 

The remaining commands can't easily be checked for within 
they consist of ranges of values. 
II If Win, send data from the CurrentPos array 

if ( (WIO <= UserInput) && (UserInput <= WI9) ) 
{ 

SerialWordOut(CurrentPos[UserInput - WIO]); 
goto EndOfNewInput; 

a switch, as 

II If Mnd, work out which axis, then set the target as the min or max 
II for that axis 

if ( (MOO <= UserInput) && (UserInput <= M91) ) 
{ 

UserInput -= MOO; 
Axis = UserInput I 2 ; 
if ( UserInput%2 == 0) 

TargetPos[Axis] 
else 

TargetPos [Axis] 

Reached [Axis] = FALSE; 
BrakeCheckDelay = 0; 
goto EndOfNevlInput; 

MinPos[Axis]; 

MaxPos [Axis] ; 

II If Speed, Work out which level, the set corresponding variable 
if ( (SOO <= UserInput) && (UserInput <= S31)) 
{ 

if(UserInput <= S08) 
SpeedSetting = OxOO; 

else if(UserInput <= S15) 
SpeedSetting = OxOl; 

else 
SpeedSetting 

goto EndOfNewInput; 
Ox02; 

II If Pnn, work out which axis, set the target position, then check this does 
II not exceed the axis limit 

EndOfNe\.,Input 

if ( (UserInput >= POO) && (UserInput <= P09) 
if ( (UserInput2 = GetNextByte ()) ! = ERROR 

if (UserInput3 = GetNextByte()) != ERROR 
{ 

Axis = UserInput - POO; 
TargetPos[Axis] = UserInput2 « 4; 

TargetPos[Axis] += UserInput3; 
if (TargetPos[Axis] > MaxPos[Axis]) 

TargetPos[Axis] = MaxPos[Axis]; 
if (TargetPos[Axis] < MinPos[Axis]) 

TargetPos[Axis] = MinPos[Axis]; 
Reached[Axis] = FALSE; 
BrakeCheckDelay = 0; 

NewInput = FALSE; 
1* End of new input service *1 

C4 



Appendix C Motor Control Code Listings 

II Perform check to see which motors need drive signals applied or adjusting 
ReadCurrentPos(); 

if( !ForcedBrake 
{ 

} while (TRUE 

II Periodic Check For Brake set, set a flag if all targets reached 
if(! (BrakeCheckDelay--)) 
( 

BrakeCheckDelay BRAKECHECKDELAY; 
CanSetBrake = TRUE; 
for (Axis = 0 ; Axis < NUMBER_OF_AXIS; Axis++) 

if(!Reached[Axis)) 
( 

if(CanSetBrake) 
( 

CanSetBrake 
break; 

SetBrakeOn(); 
BrakeSet = TRUE; 

else if (BrakeSet) 
Reset (); 

FALSE; 

II Check for axis move per Axis 
for ( Axis = 0; Axis < NUMBER_OF_AXIS; Axis ++) 

1* Here we call the move function if the target has not been reached 
and the current error is greater than the dynamic error *1 

if ( Mag(Error[Axis)) > DynamicError[Axis) ) 
( 

else 

Move(Axis); 
Reached[Axis) 

II 

FALSE; 

Otherwis classify axis as reached 

Reached [Axis) = TRUE; 
OutputDriveSignal( Axis, 0); 
PrevSignal[Axis) = 0; 

II End of each axis check 

II End of if !Forced Brake 

TRUE); II end of main program loop 

C5 



Appendix C Motor Control Code Listings 

2 IO.C 
//////////////////////////////////////////////////////////////////////////////// 
// definitions of lower level input/output functions called by MCMain 

#include "controlf.h" 
#include "funcs.h" 
#include "io51.h" 

// Global variables (see MCMain) 
extern unsigned char ZeroSpeedOffset[]; 
extern float MotorAlpha; 
extern float MotorBeta; 
extern char Axis; 
extern int CurrentPos[]; 
extern int TargetPos[]; 
extern int Error[]; 
extern unsigned char MinPos[]; 
extern unsigned char MaxPos[]; 
extern unsigned char DynamicError[]; 
extern unsigned char HltBand[]; 
extern char Reached[] 
extern float PrevSignal[]; 
extern unsigned char SpeedSetting; 

// A to D filter variables 
int Sample, LastSample; 
unsigned char SampleCount; 

// Function populates CurrentPos array with current axis positions 
void ReadCurrentPos() 
{ 
// Enable A/D 

for (Axis 0; Axis < NUMBER OF AXIS - 1; Axis++) 
{ 

// Read value for current axis, use as initial value for filter 
SampleCount = DATA_SAMPLE_LENGTH; 
SetADAddress(Axis) 
StartConv () ; 
StopConv () ; 
LastSample = read_XDATA(MSB_ADDR); 

// Read another samplecount values and filter 
vlhile (SampleCount--) 
( 

} 

StartConv () ; 
StopConv(); 
Sample = read_XDATA(MSB ADDR); 
LastSample *= AD_BETA; 
LastSample += Sample; 
LastSample /= 10; 

// Set current pos and target array values 
CurrentPos[Axis] = LastSample; 
Error[Axis] = TargetPos[Axis] - CurrentPos[Axis]; 

C6 



Appendix C Motor Control Code Listings 

////////////////////////////////////////////////////// /1//111111 
II Function Calculates required drive signal, and applies to axis 
void Move (char Axis) 
( 

FuncEnd 

float DriveSignal; 

1* Calculate New Drive Signal *1 
/* Error varies between -255 & +255, thus possible drive signal 

varies between -127 and +127 for gain = 0.5 *1 

/* Multiply error by gain Kq or Kp dependent on direction *1 
1* If error is within target band, multiply signal by another constant 
to increase rate of deceleration */ 

if(Error[Axis]>O) 
( 

DriveSignal = (float) Error[Axis] * Kp[Axis]; 
1* Filter Output if Accelerating*1 

if( (DriveSignal>PrevSignal[Axis]) && (Error[Axis] >5)) 
{ 

DriveSignal *= MotorAlpha; 
DriveSignal += ((float )PrevSignal[Axis] * MotorBeta); 

else if (DriveSignal < PosMin[Axis]) 
{ 

DriveSignal = PosMin[Axis]; 
goto FuncEnd; 

else if (Error[Axis]<O) 
( 

DriveSignal = (float) Error[Axis] * Kq[Axis]; 
/* Filter Output if Accelerating*/ 

if((DriveSignal<PrevSignal[Axis]) && (Error[Axis] < 5)) 
( 

DriveSignal *= MotorAlpha; 
DriveSignal += ((float) PrevSignal[Axis] * MotorBeta); 

else if (DriveSignal > -1 * NegMin[Axis]) 
( 

DriveSignal = -1 * NegMin[Axis]; 
goto FuncEnd; 

II Check max signals not exceeded 
if(DriveSignal > MaxSig[Axis] [SpeedSetting]) 

DriveSignal = MaxSig[Axis] [SpeedSetting]; 
else if(DriveSignal < (-l*MinSig[Axis] [SpeedSetting])) 

DriveSignal = (-l*MinSig[Axis] [SpeedSetting]); 

/1 Store signals & output 

PrevSignal[Axis] = DriveSignal; 
OutputDriveSignal( Axis, PrevSignal[Axis]); 

C7 



Appendix C 

/////////////////////////////////////////////////////////////////// 
// Function sets drive signal output 

void OutputDriveSignal( char Axis, int IDriveSignal) 

/* IDriveSignal varies between -32 & 32 and should be 
mapped to 0 to 64 +- offset for current axis. 
result is then assigned to char for output */ 

char DriveSignal; 
IDriveSignal+=ZeroSpeedOffset[Axis]; 

DriveSignal IDriveSignal; 

svlitch (Axis) 
{ 

Motor Control Code Listings 

case OxOO 

case OxOl 

case Ox02 

case Ox03 

case Ox04 

case Ox05 

write_XDATA(COUNTER_l, DriveSignal); 
break; 

write_XDATA(COUNTER_2, DriveSignal); 
break; 

write_XDATA(COUNTER_3, DriveSignal); 
break; 

write_XDATA(COUNTER_4, DriveSignal); 
break; 

write_XDATA(COUNTER_5, DriveSignal); 
break; 

write_XDATA(COUNTER_6, DriveSignal); 
break; 

/////////////////////////////////////////////////////////////// 
// Initialize 8254 timer Ics for waveform generation 

void ConfigTimerIc() /* Configure Timer IC 

write_XDATA(CTRL_ADDR_l_3,CTRL_WRD_l); 
Delay(IO_DELAY); 
write_XDATA(CTRL_ADDR_l_3,CTRL_WRD_2); 
Delay(IO_DELAY); 
write_XDATA(CTRL_ADDR_l_3,CTRL_WRD_3) ; 
Delay(IO_DELAY); 
write_XDATA(CTRL_ADDR_4_6,CTRL_WRD_4); 
Delay(IO_DELAY); 
vlri te_XDATA (CTRL_ADDR_ 4_6, CTRL_WRD_5) ; 
Delay(IO_DELAY); 
write_XDATA(CTRL_ADDR_4_6,CTRL_WRD_6); 
Delay(IO_DELAY); 
write_XDATA(CTRL_ADDR_7_9,CTRL_WRD_7); 
Delay(IO_DELAY); 
wri te_XDATA (CTRL_ADDR_7 _9, CTRL_WRD_8) ; 
Delay(IO_DELAY); 
write_XDATA(CTRL_ADDR_7_9,CTRL_WRD_9) ; 

C8 

*/ 



Appendix C 

//////////////////////////////////////////////////////II/II 
// Write initial zero speed PWM values 

void SetZeroSpeeds() 
{ 

write_XDATA(COUNTER_l,STOPO); 
Delay(IO_DELAY); 
write_XDATA(COUNTER_2,STOPl); 
Delay(IO_DELAY); 
write_XDATA(COUNTER_3,STOP2); 
Delay(IO_DELAY); 
write_XDATA(COUNTER_4, STOP3); 
Delay(IO_DELAY); 
write_XDATA(COUNTER_5,STOP4); 
Delay(IO DELAY); 
write_XDATA(COUNTER_6,STOP5); 
Delay(IO_DELAY); 
write_xDATA(COUNTER_7,STOP6); 
Delay(IO_DELAY); 
write_XDATA(COUNTER_8,STOP7); 
Delay(IO_DELAY); 
write_XDATA(COUNTER_9,STOP8); 
Delay(IO_DELAY); 

//////////////////////////////////////////////////////III/II 
// Ensure brake set, and A/D conversion stopped 

void InitPortl() 
{ 

SetBrakeOn(); 
StopConv(); 
Delay(IO_DELAY); 

//////////////////////////////////////////////////////II/II 

Motor Control Code Listings 

// Following functions call set bit to control brake, and A/D conversion 
void Reset() 

SetBrakeOff(); 
clear_bit(Pl_4_bit); 
Delay(RESET_PULSE_WIDTH); 
set_bit(Pl_4_bit); 

void SetBrakeOn() 
{ 

clear_bit(Pl_7_bit); 

void SetBrakeOff() 

void StartConv () 
{ 

set_bit(Pl_7_bit); 

clear_bit(Pl_O_bit); 

void StopConv ( ) 
{ 

set_bit(Pl_O_bit); 

void SetADAddress(char Axis) 

clear_bit(Pl_l_bit); 
clear_bit(Pl_2_bit); 
clear_bit(Pl 3 bit); 

C9 



Appendix C 

switch (Axis) 
( 

case 

case 

case 

case 

case 

case 

case 

void Delay(int t) 
( 

while(t--); 

OxOl set_bit(Pl 1 bit); 

Ox02 set_bit(Pl 2 bit); 

Ox03 set_bit(Pl 1 bit); 

Ox04 set_bit(Pl 3 bit); 

Ox05 set_bit(Pl_3_bit); 

Ox06 set_bit(Pl 3 bit); 

Ox07 set_bit(Pl 3 bit); 

ClO 

break; 

break; 

set_bit(Pl_2_bit); 
break; 

break; 

set_bit(Pl_l_bit); 
break; 

Delay(IO_DELAY); 
set_bit(Pl_2_bit); 
break; 

Delay(IO_DELAY); . 
set_bit(Pl_2_bit); 
Delay(IO_DELAY); 
set_bit(Pl_l_bit); 

Motor Contra! Code Listings 



Appendix C 

3 Serial.c 

/////////////////////////////////////////////////////////////// 
// The following routines are called by MCMain to provide serial I/O 
// through the 80S1 serial port 

#include "serialS2.h" 
#include "ioSl.h" 
#include "jmcl.h" 

static int ser_wait; 
static long LongWait; 
static char data_in; 

// Set baud rate and serial mode 
void InitSerialPort() 
{ 

output (SCON, SERIAL_MODE_l); 
output (TMOD, TIMER_MODE_2); 
output (TH1, TIMER_COUNT); 
set_bit(TRl bit); 

// Read a single character 
char SerialIn () 
{ 

clear_bit(RI_bit); 
return(input(SBUF)); 

// Check for character ready 
BOOL CharReady() 
{ 

return (read_bit (RI_bit) ); 

// Check if buffer clear for transmit 
BOOL ReadyToTransmit() 
{ 

return(read_bit(TI_bit)); 

// Send a single character 
void Transmit (char data) 
{ 

while(!ReadyToTransmit()); 
/* \oJait * / 

clear_bit(TI_bit); 

output(SBUF,data); 

C 11 

Motor Control Code Listings 



Appendix C 

II Send a word (2 characters 
int SerialWordOut(int Word) 

int temp; 
char msb, Isb; 

temp = Word » 4; 
msb temp; 
Isb = Word & OxOF; 

ser_wait = 0; 
LongWait = 100 * SER_TIME_OUT; 
Transmit (msb); 

while(!CharReady() && (ser_wait < LongWait)) 
ser wait ++; 

if ser wait < LongWait) 
{ 

data_in = Serialln(); 

else 
{ 

if(data in NXT) 

else 
{ 

Transmit (ERT); 
return ERROR; 

Transmit (lsb); 

Transmit(ERS); 
return ERROR; 

II Solicit a byte by first transmitting the Nxt command 
int GetNextByte() 
{ 

ser Vlait 
LongWait 

0; 
100 * SER_TIME_OUT; 

Transmit (NXT); 
while(!CharReady() && (ser_wait < LongWait)) 

ser wait ++; 

if ser wait < LongWait) 
{ 

else 

data in = Seria1In(); 
return data_in; 

return ERROR; 

C 12 

Motor Control Code Listings 



Appendix C 

// Transmit error command 
void Ers () 
( 

Transmit(ERS); 

4 control.H 

/* Timer IC Address + Control Words */ 

#define CONTROLF H 

#ifndef FALSE 
#define FALSE 0 
#define TRUE !FALSE 

#endif 

#ifndef NUMBER OF AXIS 
#define NUMBER OF AXIS 6 

#endif 

#define CTRL ADDR 1 3 Ox2003 /* address con1tro1-word 1-3 */ 
#define CTRL ADDR 4 6 Ox4003 /* address conltrol-word 4-6 */ 
#define CTRL ADDR 7 9 Ox6003 /* address conltrol-word 7-9 */ 
#define CTRL WRD 1 Ox12 /* define control-word_1 */ 
#define CTRL WRD 2 Ox52 /* define control-word 2 */ 
#define CTRL WRD 3 Ox92 /* define control-word 3 */ 
#define CTRL WRD 4 Ox12 /* define control-word 4 */ 
#define CTRL WRD 5 Ox52 /* define control-word 5 */ 
#define CTRL WRD 6 Ox92 /* define control-word 6 */ 
#define CTRL WRD 7 Ox12 /* define control-word 7 */ 
#define CTRL WRD 8 Ox52 /* define control-word 8 */ 
#define CTRL WRD 9 Ox92 /* define control-word 9 */ 
#define COUNTER 1 Ox2000 /* address counter 1 */ 
#define COUNTER 2 Ox2001 /* address counter 2 */ 
#define COUNTER 3 Ox2002 /* address counter 3 */ 
#define COUNTER 4 Ox4000 /* address counter 4 */ 
#define COUNTER 5 Ox4001 /* address counter 5 */ 
#define COUNTER 6 Ox4002 /* address counter 6 */ 
#define COUNTER 7 Ox6000 /* address counter_7 */ 
#define COUNTER 8 Ox6001 /* address counter 8 */ 
#define COUNTER 9 Ox6002 /* address counter 9 */ 

/* define stop values per axis */ 
#define STOPO Ox1D 
#define STOP1 Ox20 
#define STOP2 Ox1E 
#define STOP3 Ox1D 
#define STOP4 Ox1D 
#define STOPS Ox1D 
#define STOP6 Ox1D 
#define STOP7 Ox1D 

C 13 

Motor Control Code Listings 



Appendix C 

1* AID + Analogue Switch Address + Control Words *1 
#define 10 DELAY 1 
#define MSB AD DR OxSOOO 
#define LSB-ADDR OxAOOO 

1* Motor Driver Logic Signal Definitions *1 
#define RESET PULSE WIDTH 5000 

1* AD Digital filter charcteristics *1 
#define DATA SAMPLE LENGTH Ox10 
#define AD ALPHA 1 
#define AD BETA 9 

1* Gain Constants *1 
#define KpO 1.2 1* Base Down 1.2 *1 
#define Kp1 4.0 
#define Kp2 4.0 1* 4.6 *1 
#define Kp3 2.0 1* 2.0 *1 
#define Kp4 3.S 
#define Kp5 1.2 1* wrist up (spring expands)*1 
#define Kp6 1.5 
#define Kp7 3.S 

#define KqO 3.2 1* Base up 
#define Kq1 4.0 
#define Kq2 3.6 1* 3.6 *1 
#define Kq3 4.0 
#define Kq4 3.S 
#define Kq5 1.2 1* 
#define Kq6 1.5 
#define Kq7 3.S 

#define KdO 1.6 
#define Kd1 0.5 
#define Kd2 1.5 
#define Kd3 0.35 
#define Kd4 O.S 
#define Kd5 0.1 
#define Kd6 O.S 
#define Kd7 O.S 

II Serial 1/0 constants 
#define ERROR -1 

3.2*1 

wrist down *1 

#define SERIAL MODE 1 Ox52 
#define TIMER MODE 2 Ox20 
#define TIMER COUNT OxF3 
#define FOR EVER 1 

1* S bit UART *1 
1* Timer 1 S bit auto reload *1 

1* Use for 2400 Baud *1 

#define BIT 6 MASK OxSO 
#define BIT 7 MASK Ox40 
#define SER TIME OUT 32000 

II Gain arrays 
static float Kp[NUMBER_OF AXIS] 
static float Kq[NUMBER_OF_AXIS] 

II Speed limits for each axis 

(KpO,Kp1,Kp2,Kp3,Kp4,Kp5); 
(KqO,Kq1,Kq2,Kq3,Kq4,Kq5); 

static char MaxSig[NUMBER_OF_AXIS] [SPEED_LEVELS] =(OxOS,Ox09,OxOA, 
Ox07,OxOA,OxOC, 
OxOS,Ox09,OxOA, 
Ox04,Ox04,OxOS, 
Ox16,Ox1A,Ox1A, 
Ox06,Ox07,OxOS); 
static char MinSig[NUMBER_OF_AXIS) [SPEED_LEVELS) =(OxOF,Ox10,Ox11, 
Ox07,OxOA,OxOC, 
Ox06,Ox07,Ox08, 
Ox07,OxOS,OxOA, 
Ox16,Ox1A,Ox1A, 
Ox07,OxOS,Ox09); 

II position limits 

C 14 

Motor Control Code Listings 



Appendix C 

static char PosMin[NUMBER_OF_AXIS] 
static char NegMin[NUMBER_OF_AXIS] 

II initial Speed setting 
unsigned char SpeedSetting 
#define SPEED LEVELS 3 

OxOl; 

1* Control Data structures *1 

{Ox07,Ox06,Ox07,Ox02,Ox14,Ox05}; 
{OxOC,Ox06,Ox06,Ox02,Ox14,Ox05}; 

Motor Control Code Listings 

unsigned char ZeroSpeedOffset[NUMBER_OF AXIS]= {STOPO,STOPl,STOP2,STOP3,STOP4,STOP5}; 
float MotorAlpha = 0.01; 
float MotorBeta = 0.99; 
char Axis; 
int CurrentPos[NUMBER_OF_AXIS]; 
int TargetPos[NUMBER_OF_AXIS]; 
int Error[NUMBER_OF_AXIS]; 
unsigned char MinPos[NUMBER OF_AXIS] = {Ox2A,Ox32,OxOF,OxOA,Ox14,OxOO}; 
unsigned char MaxPos[NUMBER OF AXIS] = { OxBO,OxFF,Ox8C,OxE6,DxDA,OxFF}; 
unsigned char DynamicError[NUMBER OF_AXIS] = {OxOl,OxOl,OxOl,OxOl,OxOl,Ox05}; 
unsigned char HltBand[NUMBER_OF_AXIS] = {OxOl,Ox02,OxOl,Ox02,Ox02,OxO}; 
char Reached [NUMBER_OF_AXIS] = {TRUE,TRUE,TRUE,TRUE,TRUE,TRUE}; 
float PrevSignal[] = {O,O,O,O,O,O}; 

C 15 



Appendix D Issuing JCMLjor Task execution 

Appendix D 

Issuing JMCL for Task execution 

The following appendix provides code examples that may be used as a template to create an executable. 
The application may sequence and issue JMCL commands to perform a pre-determined task. Code 
examples are provided in section 1, with a serial 10 library listed in section 2. 

D 1 



Appendix D 

1. Code examples for task automation 

// To set motor brakes call 
s _putc (BRK) ; 

// To reset motor brakes call 
s_putc(RST); 

// To stop all axes call 
s_putc(HLT); 

// To Check for serial in 
if((pos = s inchar()) != NOT READY) 

// To move axis 0 in direction 0 
s_putc(MOO); 

// To move axis 0 in direction 0 
s_putc(M01); 

// To set speed level 
s_putc (S31); 

Issuing JMCLjor task execution 

//////////////////////////////////////////////////////////// 
// Example code to read position of axis 0 

s_putc(WIO) ; 
Timer(TIMER RESET); 

while( ((pos s inchar()) 

if(!Timer(TIMER_TEST) ) 
return -1; 

s_putc(NXT); 

Timer(TIMER_RESET); 

pos «= 4; 

while ( ((temp s inchar()) 

if(!Timer(TIMER_TEST)) 
return -1; 

pos += (temp & OxOF); 
return pos; 

NOT READY) && Timer (TIMER_INC) ); 

NOT READY) && Timer (TIMER_INC) ); 

///////////////////////////////////////////////////////////// 

D 2 



Appendix D Issuing JMCLjor task execution 

///////////////////////////////////////////////////////////// 
// Settint axis 0 to position PosNo 

s_putc(POO); 

Timer(TIMER_RESET); 
while ( ((Next = s inchar()) 

if(!Timer(TIMER_TEST)) 
return ERROR; 

else if (Next == NXT) 
s_putc(PosNo); 

NOT READY) && Timer(TIMER_INC)); 

////////////////////////////////////////////////////////////// 

///////////////////////////////////////////////////////////// 
// Moving axis A from x to y 

MoveAxisTo(A,x); 

MoveAxisTo(A,y); 

int MoveAxisTo(int Axis, int Pos) 

int Next; 

s_putc(POO+Axis); 
Timer(TIMER_RESET); 
while(((Next = s inchar()) 

if(!Timer(TIMER_TEST)) 
{ 

NOT READY) && Timer(TIMER_INC)); 

printf("\n\tTimed out on Nxt "); 
delay(500); 

} 

return 0; 

else if (Next == NXT) 
s_putc(Pos); 

return 1; 

//////////////////////////////////////// 

//////////////////////////////////////////////////////////////////// 

D 3 



Appendix D Issuing JMCLjor task execution 

2 Serial IO routines 

//////////////////////////////////////////////////////////////////// 
// Serial I/O functions 

struct serial 

int uart base; 
int data off; 
int status off; 
unsigned rcvmask; 
unsigned xmitmask; 
} ; 

static struct serial sio 

} ; 

BYTE s rcv () 
{ 

COMM2, 
DP_OFF, 
SP_OFF, 
RCV_MASK, 
XMIT_MASK, 

return ( inportb(sio.uart_base + sio.data off)); 

BYTE s rcvstat () 
{ 

return ( inportb(sio.uart base + sio.status off) & sio.rcvmask); 

void s xmit(BYTE c) 

outportb(sio.uart base + sio.data off, c); 

BYTE s xmitstat() 
{ 

return ( inportb(sio.uart base + sio.data off) & sio.xmitmask); 

int s inchar ( ) 

return(s rcvstat() NULL ? NOT READY s rcv () ) ; 

D 4 



Appendix D 

void s_putc(BYTE c) 

while(s xmitstat()== NULL); 
s_xmit (c) ; 

int Timer(BOOL Call) 

static long count; 
int i; 

for(i=O; i<1000; i++); 

if(Call == TIMER RESET) 
count = 0; 

else if (Call == TIMER INC) 
count++; 

return ((count <TIME OUT) ? 1 0); 

D 5 

Issuing JMCLjor task execution 



Appendix E Juvo User Control Language 

Appendix E 

Juvo User Control Language 

The following appendix provides a summary of the commands that may be issued with the 
Middlesex Manipulator's interface system. As the interface system is designed to be adaptable, 
the configurations of the interface may vary in the order and number of commands presented 
to the user. 

E 1 



Appendix E 

Level 0 

Branch 

Branch 

A 

DoTask 

F 
HereIs 

Branch A DoTask 

Stem A 

Level 

1 

2 

3 

2 

tTask 

Go 
tJoint 
tLevel L2 

Stop 

JUCL 

B c D E 

Goto Speed MoveArm Move 

G I 
TeachTask Power 

B c D E F 

EndLQ 

Speed EndLQ 

E 2 



Appendix E JUCL 

Branch B Goto 

Stem A B C 
Level 

1 tPosition EndLO 

2 Go Speed EndLO 

1 tLevel L2 

3 Stop 

4 Continueu Speed End LO 

tLevel L4 

Branch C Speed 

Stem A B C 
Level 

1 tJoint EndLO 

2 tLevel LO EndLO 

Branch D MoveArm 

Stem A B C 
Level 

1 tc Dir EndLO 

2 Go Speed EndLO 
tLevel L2 

3 Stop 

4 Continue L3 Speed End LO 

tLevel L4 

E 3 



Appendix E JUCL 

Branch E Move 

Stem A B C 
Level 

1 tJoint EndLO 

2 tc Dir EndLQ 

3 Go Speed EndLO 

tLevel L3 

4 Stop 

5 Continue L4 Speed End LO 

tLevel L5 

Branch F HereIs 

Stem A B C 
Level 

1 tPosition Where EndLQ 
tConfirm LO 

Branch G Teach Task 

Stem A B C D E F 

Level 

1 tTask EndLQ 

2 GoTo Speed MoveArm Move Wait L2 EndLQ 
tposition Level L2 tc Dir tJoint 

2 
tJ Dir 

3 Go EndLQ 

4 Stop L2 

E 4 



Appendix E JUCL 

Branch H Home 

Stem A B 
Level 

1 tOo EndLO 

2 Stop 

3 Continue L2 EndLO 

Branch I Power 

Stem 
Level 

A 

On LO 

B 

OffLO EndLO 

Branch J Confirm 

Stem 
Level 

t 

L2 

A B 

Yes LO NoLO 

Indicates List 
Read as return to level 2 
Indicates items occur as options 

E 5 



Appendix F User lnte/face Code Listings 

Appendix F 

User Interface Code Listings 

The following appendix provides example code listings of the user interface system. The module 
provided corresponds to the Dialogue Manager component of the user interface system. For complete 
code listings of all Modal Logic Units and Input Device Modules refer to the Disk 3 included with the 
thesis. 

F 1 



Appendix F User Intelface Code Listings 

1. DMAN.CPP 

1* 
DMAN.CPP 

Source code for dialogue manager application, part of a suite of applications 
that combine to form a user interface and control system for the JUVO 
manipulator. 

DMAN acts as a client and communicates with a number of servers via DDE. 
Conversations are established with at least one Input Device Module (IDM) 
and one Feedback Device Module (FDM). The IDM receives commands from the 
user witch are dispatched to DMAN. DMAN responds by despatching status 
information to the FDM, and sending the command code to the appropriate 
Modal Logic unit (MLU), this may involve first activating the MLU (establishing a DDE 
conversation) . 
The MLU will respond with a list of command codes, which are then dispatched 
to the IDM and FDM. 
*1 

#include <owl\owlpch.h> 
#include <owl\applicat.h> 
#incl~de <owl\framewin.h> 
#include <owl\dc.h> 
#include <owl\menu.h> 
#include <owl\inputdia.h> 
#include "dman.rh" 
#include <ddeml.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "JUCL.h" 

II Forward declaration of main window 
class TDMLCIWnd; 

II Main application class 
class TDMLCIApp : public TApplication 

public: 
TDMLCIApp() : TApplication(),CaIIBackProc((FARPROC)CaIIBack) 

Instld = 0; 

}; 

} 
void InitMainWindow(); 
void Initlnstance(); 
int Termlnstance(int status); 

DWORD Instld; 

II Call back function used for DDE comms 
static HDDEDATA FAR PASCAL export CaIIBack(WORD, WORD, HCONV, HSZ, HSZ, 

HDDEDATA, DWORD, DWORD); 

TProclnstance CallBackProc; 

class TDMLCIWnd : public TFrameWindow { 
public: 

TDMLCIWnd(TWindow*, const char*); 
virtual -TDMLCIWnd(); 

virtual void SetupWindow(); 

void EvlnitMenu(HMENU); 

F 2 



Appendix F User Intelface Code Listings 

int Connect () ; I I Establish IDM & FDM conversations 
int Advise(); 
void IRequest(); 
void FRequest(); 
void MLURequest();11 

II Establish advise loops with IDM & FDM 
II Request Data from IDM 
II FDM 
MLU 

II Poke Data to IDM 
II Poke Data to FDM 

void IPoke(unsigned char *); 
void FPoke(unsigned char *Data); 
void MLUPoke(unsigned char *); II Poke Data to MLU 

void IReceivedData(HDDEDATA); 
void FReceivedData(HDDEDATA); 
void MLUReceivedData(HDDEDATA); 

II Establish and terminate conversation with MLU named by char * 
int ActivateMLU(unsigned char *); 
void DeActivateMLU(); 

II Array holds JUCL commands 
unsigned char FCommandList[25]; 

II Menu option calls connect and advise, and issues initial 
II command list to IDM 

void CmInit(); 

DWORD InstId () { 
return ((TDMLC1App*)GetApplication())->InstId; 

BOOL Initialised; II True if CmInit has been called 

II Standard DDE variables for IDM, FDM and MLU 

HCONV 
BOOL 
HSZ 
HSZ 
HSZ 

HCONV 
BOOL 
HSZ 
HSZ 
HSZ 

HCONV 
BOOL 
HSZ 
HSZ 
HSZ 

HIConv; 
ILoop; 
IService; 
ITopic; 
IItem; 

HFConv; 
FLoop; 
FService; 
FTopic; 
FItem; 

HMLUConv; 
MLULoop; 
MLUService; 
MLUTopic; 
MLUItem; 

IData[25]; II Data recieved from IDM 
FData[25]; II Data recieved from FDM 
MLUData[25];11 Data recieved from MLU 

unsigned char 
unsigned char 
unsigned char 
unsigned char CommandList[25];11 If MLUData is a command list 

II its copied into 
CommandList 

II which is poked to IDM 

char 
BOOL 

MLUName[20]; II Name of active MLU for paint 
MLUActive; II True if an MLU is currently active 

DECLARE RESPONSE TABLE(TDMLC1Wnd); 
}; 

DEFINE_RESPONSE TABLE1(TDMLC1Wnd, TFrameWindow) 
EV_WM_INITMENU, 
EV_COMMAND(CM_INIT, CmInit), 
EV_COMMAND(CM_HELPABOUT, CmHelpAbout), 

END_RESPONSE_TABLE; 

F 3 



Appendix F 

static TDMLClWnd* This 0; 

TDMLClWnd: :TDMLClWnd(TWindow* parent, const char* title) 
TFrameWindow(parent, title), 

TWindow(parent, title) 

II Initialize DDE variables 
IData[O) = 0; 
HIConv = 0; 
ILoop = 0; 

FData[O) = 0; 
HFConv = 0; 
FLoop = 0; 

MLUData[O) = 0; 
HMLUConv = 0; 
MLULoop = 0; 

MLUActive = 0; 
Initialised = 0; 

II Window attributes 
Attr.X 75; 
Attr.Y 105; 
Attr.W 600; 
Attr.H 45; 

TDMLC1Wnd: :-TDMLClWnd() 
{ 

User Intel/ace Code Listings 

II This clean up is required for those resources that were allocated during 
II the DDEML conversation. 
II 
if (HIConv) 

DdeDisconnect(HIConv); 

Ilif (HFConv) 
IIDdeDisconnect(HFConv); 

if (HMLUConv) 
DdeDisconnect(HMLUConv); 

II Free allocated DDE memory. 

if (InstId()) 
{ 

II Let the other party know we are leaving 

DdeFreeStringHandle(Instld(), IService); 
DdeFreeStringHandle(Instld(), ITopic); 
DdeFreeStringHandle(Instld(), lItem); 

void 

DdeFreeStringHandle(Instld(), FService); 
DdeFreeStringHandle(Instld(), FTopic); 
DdeFreeStringHandle(Instld(), Fltem); 

if (MLUActive) 
DeActivateMLU(); 

TDMLClWnd: : SetupWindow() 
( 

This = this; II Requied because callback function not passed this 
TFrameWindow::SetupWindow(); 

AssignMenu(TDMLClWnd_MENU); 

F 4 



Appendix F 

II create resources for IDM and FDM conversations 

IService = ITopic lItem = 0; 
FService = FTopic Fltem = 0; 
MLUService = MLUTopic = MLUltem 0; 
MLUActi ve = 0; 

IService = DdeCreateStringHandle(Instld(), "JUVO", CP_WINANSI); 
ITopic = DdeCreateStringHandle (Instld (), "IDM1", CP_WINANSI); 
lItem = DdeCreateStringHandle(Instld(), "JUCL", CP_WINANSI); 
if (! IService I I ! ITopic I I ! lItem) 
( 

User [nte/face Code Listings 

MessageBox("Creation of strings for IDM1 failed.", Title, MB ICONSTOP); 
PostQuitMessage(O); -

FService = DdeCreateStringHandle(Instld(), "JUVO", CP WINANSI); 
FTopic = DdeCreateStringHandle(Instld(), "FDM1" , CP_WINANSI); 
Fltem = DdeCreateStringHandle(Instld(), "JUCL", CP_WINANSI); 
if (! FService I I ! FTopic I I ! FItem) ( 

MessageBox("Creation of strings for FDM1 failed .", Title, MB ICONSTOP); 
PostQuitMessage(O); -

II Acitvate an MLU named by MLUID, and enter and advise loop 
int 
TDMLClWnd: :ActivateMLU(unsigned char *MLUID) 
( 

DWORD temp; 

MLUService MLUTopic MLUltem 0; 

MLUService = DdeCreateStringHandle(Instld(), "JUVO", CP WINANSI); 
MLUTopic = DdeCreateStringHandle(Instld(), (char *)MLUID, CP_WINANSI); 
MLUltem = DdeCreateStringHandle(Instld(), "JUCL" , CP_WINANSI); 
if (! MLUService I I ! MLUTopic I I ! MLUItem) 

return 0; 

HMLUConv = DdeConnect(Instld(),MLUService, MLUTopic, 0); 
if (HMLUConv) 

if (DdeClientTransaction (0, 0, HMLUConv, MLUltem, CF TEXT, XTYP ADVSTART 
XTYPF_ACKREQ, 1000, &temp)) -

( 

return 0; 

MLUActive 1; 
return 1; 

II Deactivate the currently active MLU 
void 
TDMLClWnd::DeActivateMLU() 
( 

void 

if (HMLUConv) 
DdeDisconnect(HMLUConv); 

DdeFreeStringHandle(Instld(), MLUService); 
DdeFreeStringHandle(Instld(), MLUTopic); 
DdeFreeStringHandle(Instld(), MLUltem); 

MLUData[O] = 0; 
HMLUConv = 0; 
MLULoop = 0; 
MLUActive = 0; 

F 5 



Appendix F 

TDMLClWnd: : EvlnitMenu (HMENU menuHandle) 
( 

TMenu menu(menuHandle); 
DrawMenuBar(); 

II Establish conversations with IDM and FDM 
int 
TDMLClWnd: :Connect() 
( 

HIConv = DdeConnect(Instld(),IService, ITopic, 0); 
if (HIConv) 

else 
( 

PostMessage(WM_INITMENU, WPARAM(GetMenu())); 

MessageBox("Can't connect to IDM1 ",Title,MB_ICONSTOP); 
return 0; 

HFConv DdeConnect(Instld(),FService, FTopic, 0); 
if (HFConv) 

else 
PostMessage(WM_INITMENU, WPARAM(GetMenu())); 

MessageBox("Can't connect to FDM1 ",Title,MB_ICONSTOP); 
return 0; 

return 1; 

II Start continuous advise loops with IDM and FDM 

int 
TDMLClWnd: :Advise() 
{ 

DWORD temp; 
if ( ! ILoop) 
( 

User Intelface Code Listings 

if (DdeClientTransaction (0, 0, HIConv, lItem, CF_TEXT, XTYP ADVSTART 
XTYPF_ACKREQ, 1000, &temp)) 

ILoop = TRUE; 
else 

MessageBox("Cou1d not start advise loop for IDM1", Title, MB_ICONSTOP); 

if (! FLoop) 
( 

if (DdeClientTransaction (0, 0, HFConv, Fltem, CF_TEXT, XTYP ADVSTART 
XTYPF_ACKREQ, 1000, &temp)) 

FLoop = TRUE; 
else 

MessageBox("Could not start advise loop for FDM1" , Title, MB_ICONSTOP); 

return (ILoop && FLoop); 

II Request a data item from the IDM (usually triggered by advise loop). 
II ReceiveData will be called asynchronously by the callback. 
void 
TDMLClWnd: :IRequest() 
( 

DdeClientTransaction(O, 0, HIConv, lItem, CF_TEXT, XTYP REQUEST, TIMEOUT_ASYNC, 0); 

void 
TDMLClWnd: :FRequest() 
( 

DdeClientTransaction(O, 0, HFConv, FItem, CF_TEXT, XTYP REQUEST, TIMEOUT_ASYNC, 0); 

F 6 



Appendix F User lntelface Code Listings 

II Poke a string over to IDM1 
void 
TDMLClWnd: :IPoke(unsigned char *Data) 
( 

DdeClientTransaction(Data, strlen((char *)Data)+l, HIConv, lItem, CF_TEXT, XTYP POKE, 1000, 
0) ; 

} 
II Poke a string over to FDM 
void 
TDMLClWnd: : FPoke (unsigned char *Data) 
( 

DdeClientTransaction(Data, strlen((char *)Data)+l, HFConv, Fltem, CF_TEXT, XTYP_POKE, 1000, 
0) ; 

II Poke a string over to MLU 
void 
TDMLClWnd: :MLUPoke(unsigned char *Data) 
( 

DdeClientTransaction(Data, strlen((char *)Data)+l, HMLUConv, MLUltem, CF_TEXT, XTYP_POKE, 
1000, 0); 

void 
TDMLClWnd: :CmHelpAbout() 
{ 

MessageBox ("DMAN \~ri tten by B. Parsons " 
"JUVO Controller Software", 
"About DMAN", MB ICONINFORMATION); 

II 
II This function is called when the callback function is notified of 
II available data from the IDM. 
II The function checks to see if an MLU is active, and activates one 
II if not, using the code from the IDM as the MLU code. 
II The Code from the IDM is the dispatched to the MLU. 
II A string is copied into MLUName for paint info 

void 
TDMLClWnd: :IReceivedData(HDDEDATA hData) 
{ 

void 

if (hData) 
( 

DdeGetData(hData, IData, sizeof IData, 0); 

if ( ! MLUActi ve) 
if(ActivateMLU(IData)) 
( 

FCommandList[O] CommandListBegin; 
FCommandList[l] IData[O]; 
FCommandList[2] CommandListEnd; 
FCommandList[3] OxOO; 
FPoke(FCommandList); 

if (MLUActive) 
MLUPoke (IData); 

TDMLClWnd: :FReceivedData(HDDEDATA hData) 
{ 

if (hData) 
{ 

DdeGetData (hData, (unsigned char*) FData, sizeof FData, 0); 

F 7 



Appendix F 

II Data recieved from MLU. If data is a command List, data is copied 
II into CommandList and dispatched to IDM. 
II If data is END, MLU is deactivated, and start-up command list is 
II dispatched to IDM. 

void 
TDMLClWnd: :MLUReceivedData(HDDEDATA hData) 
{ 

int i = 0; 
if (hData) 
{ 

DdeGetData(hData, (unsigned char*)MLUData, sizeof MLUData, 0); 

if(MLUData[O] CommandListBegin) 
( 

while(MLUData[i]) 
( 

CommandList[i] 
i++; 

CommandList[i] = OxOO; 
IPoke(CommandList); 

MLUData[i]; 

if (MLUData [0] END) 
( 

DeActivateMLU(); 
CommandList[O] 
CommandList[l] 
CommandLi s t [2]' 
CommandList[3] 
CommandList[4] 

CommandListBegin; 
DOTASK; 
GOTO; 
SPEED; 
MOVEARM; 

CommandList[5] MOVE; 
CommandList[6] HEREIS; 
CommandList[7] TEACHTASK; 
CommandList[8] HOME; 
CommandList [9] POWER; 
CornmandList[lO] = CommandListEnd; 
CornmandList[ll] = OxOO; 
IPoke(CornmandList); 

FCornmandList[O] 
FCornmandList[l] 
FCornmandList[2] 
FCornmandList[3] 

CommandListBegin; 
END; 
CommandListEnd; 
OxOO; 

FPoke(FCornmandList) ; 

II Establish IDM and FDM conversations and advise loops. 
II dispatch start-up command list to IDM 

void TDMLClWnd: :CmInit() 
( 

if (Connect () && Advise()) 
{ 

CornmandList[O] 
CornmandList[l] 
CornmandList[2] 
CornmandList[3] 
CornmandList[4] 
CornmandList[5] 
CommandList[6] 
CommandList[7] 
CornmandList[8] 
CornmandList[9] 

CornmandListBegin; 
DOTASK; 
GOTO; 
SPEED; 
MOVEARM; 
MOVE; 
HEREIS; 
TEACHTASK; 
HOME; 
POWER; 

F 8 

User Intelface Code Listings 



Appendix F 

CommandList[10] = CommandListEnd; 
CommandList[ll] = OxOO; 
IPoke(CommandList); 
Initialised = 1; 

II Call back procedure handles DDE messages from DDEML 
HDDEDATA FAR PASCAL export 

User Inteliace Code Listings 

TDMLCIApp: :CaIIBack(WORD type, WORD, HCONV hConv, HSZ, HSZ, HDDEDATA hData, 
DWORD, DWORD) 

switch (type) { 
case XTYP ADVDATA: 

if (hConv == This->HIConv) 
This->IReceivedData(hData); 

if (hConv == This->HFConv) 
This->FReceivedData(hData); 

if (hConv == This->HMLUConv) 
This->MLUReceivedData(hData); 

return (HDDEDATA)DDE_FACK; 

case XTYP XACT COMPLETE: 
if (hConv == This->HIConv) 

This->IReceivedData(hData); 
if (hConv == This->HFConv) 

This->FReceivedData(hData); 
if (hConv == This->HMLUConv) 

This->MLUReceivedData(hData); 
break; 

II Potential problems here!! 

case XTYP DISCONNECT: 
This->MessageBox("Disconnected.", This->Title, MB_ICONINFORMATION); 
This->HIConv = 0; 
This->ILoop = 0; 
This->HFConv = 0; 
This->FLoop = 0; 

This->PostMessage(WM_INITMENU, WPARAM (This->GetMenu () )); 
break; 

case XTYP ERROR: 
This->MessageBox("A critical DDE error has occured.", This->Title, 

MB_ICONINFORMATION); 

return 0; 

void 
TDMLCIApp: : Ini tMainWindo\ol ( ) 
( 

MainWindow new TDMLCIWnd(O, "JUVO Dialogue Manager"); 

void 
TDMLCIApp: :InitInstance() 
{ 

II The code belo\ol sets up the DDEML call back function that is used by the 
II DDE Management Library to carry out data transfers between 
II applications. 
II 
if (DdeInitialize(&InstId, (PFNCALLBACK) (FARPROC)CaIIBackProc, APPCMD_CLIENTONLY, 0) != 

DMLERR_NO_ERROR) ( 
: :MessageBox(O,"Initialization failed.", "DDEML Client", 

MB ICONSTOPIMB_TASKMODAL); 
PostQuitMessage(O); 

F 9 



Appendix F User Intel/ace Code Listings 

II Must corne after we've initialized DDE since Initlnstance will trigger 
II SetupWindow 
TApplication: :Initlnstance(); 

int 
TDMLClApp: : Terrnlnstance (int status) 
{ 

if (InstId) { 
DdeUninitialize(Instld); 

return TApplication: :Terrnlnstance(status); 

int 
OwlMain(int l*argc*l, char* l*argv*1 []) 
{ 

return TDMLClApp() ,Run(); 

FlO 



Appendix G Neural Nenvork Code Listings 

Appendix G 

Neural Network Code Listings 

BP.CPP provides an implementation of a backpropagation artificial neural network. This file may be linked 
with an application's main program, and provides an API allowing a neural network to be configured, 
trained, and used for classification. The API provides the following interface. 

G 1 



Appendix G 

II BP.CPP 

#include "bp2.h" 
#include "matrix.h" 

#include <math.h> 
#include <stdlib.h> 
#include <time.h> 
#include <stdio.h> 
#include <string.h> 
#include "Mernrnan.h" 

#define FALSE 0 
#define TRUE !FALSE 
#define MAX FILENAME 25 
#define LRMin 0.1 
#define PI 3.14159265359 

typedef unsigned char BOOL; 

II Length of inputvector; 
static int VectorLength = DEFAULT_VECTOR_LENGTH; 

II Lengths of input, hidden and output layers 
static int K DEFAULT K; 
static int J = DEFAULT J; 
static int I DEFAULT I; 

II network initialised flag 
static int Initialised = 0; 

II Arrays of input and target vectors for network training 
static float *XN[MAX VECTORS]; II Input Vectors 
static float *TM[MAX=VECTORS]; II Target Vectors 

static int N; II Number of input vectors 
static int M; II Number of target vectors 
static float *X; II Current Input Vector' 
static float *T; II Current Target Vector 
static float *U; II Cluster centre outputs 
static float *WH[MAX J); II Array of hidden layer weights 
static float *WHChange[MAX J]; II Last weight change 
static float *Y; II Output Layer node outputs 
static float *E; II Network Error 
static float *WO[MAX I]; II Array of output layer weights 
static float *WOChange[MAX I]; II Last weight change 

II Network traning variables 
static float *DeltaOut; 
static float *DeltaHidden; 
static float *WeightedDeltaSum; 
static float LearningRate = 0.9; 
static float LRDescentRate = 0.005; 
static float Momentum = 0.8; 
static long NumTrainingCycles = DEF TRAINING CYCLES; 
int i,j,k; II Loop count variables 
long double Temp; 

II Returns current size of input layer 
int GetInputNodes() 

G 2 

Neural Nenvork Code Listings 



Appendix G Neural Network Code Listings 

return K; 

II Sets current size of input layer 
void SetInputNodes(int k) 

K k; 

II Returns current number of input vectors 
int GetN () 

return N; 

II Returns current number of hidden nodes 
int GetHiddenNodes() 

return J; 

II Sets current number of hidden nodes 
void SetHiddenNodes(int j) 

J = j; 
if (J > MAX_J) 

J = MAX J; 

II Returns current number of output nodes 
int GetOutputNodes() 

return I; 

II Sets current number of output nodes 
void SetOutputNodes(int i) 

I i; 

if(I > MAX I) 
I = MAX I; 

II Returns current length of input vector 
int GetVectorLength() 

return VectorLength; 

II Sets current length of input vector 
void SetVectorLength(int L) 

VectorLength L; 

II Returns current learning rate 
int GetLearningRate() 

return (int ) (LearningRate * 100); 

II Sets current learning rate 
void SetLearningRate(int L) 

G 3 



Appendix G 

LearningRate ((float )L) 1100.00; 

II Returns descent rate 
int GetDescentRate() 

return (int ) (LRDescentRate * 10000); 

II Sets descent rate 
void SetDescentRate(int L) 

LRDescentRate ((float) L) /10000.00; 

II Sets number of training cycles 
void SetNoTrainingCyc1es(int N) 

NumTrainingCycles = N; 
NumTrainingCycles *= 1000; 

II Returns number of training cycles 
int GetNoTrainingCyc1es() 

return (int ) (NumTrainingCycles I 1000); 

II Allocates memory for network 
int InitDataStructures() 

if ( Initialised) 
( 

X 

T 

if (X) delete [] X; 
if (T) delete [] T; 
if (U) delete [] U; 
if (WH) delete [] WH; 
if (WHChange) delete [] WHChange; 
if (Y) delete [] Y; 
if (E) delete [] E; 
if (WO) delete [] WO; 
if (WOChange) delete [] WOChange; 
if (De1taOut) delete [] DeltaOut; 
if (De1taHidden) delete [] DeltaHidden; 
if (WeightedDe1taSum) delete [] WeightedDeltaSum; 
Initialised = 0; 

Newfloat1 (K) ; 

if (!X) 
II Current Input Vector 

return 0; 

Newfloat1 (I); 
if (!T) 

II Current Target Vector 

return 0; 

U Newf1oat1(J); II Cluster centre outputs 
if (!U) 

for(int j 
( 

return 0; 

0; j < J; j++) 

G4 

Neural Nellvork Code Listings 



Appendix G Neural Nenvork Code Listings 

WH[j] = Newfloat2(K); II Array of hidden layer weights 
if ( !WH [j]) 

return 0; 

for (j 0; j<J; j++) 
{ 

WHChange[j] = Newfloat3(K); II Last weight change 
if ( ! WHChange [j] ) 

return 0; 
else 

for(int k = 0; k<K; k++) 
WHChange[j] [k] = 0.0; 

Y Newfloat1 (I); 
if (!Y) 

II Output Layer node outputs 

return 0; 

E Newfloat1(I); 
if (!E) 

II Network Error 

return 0; 

for(int i 0; i<I; i++) 
{ 

WO[i] = Newfloat4(J); II Array of output layer weights 
if (! WO [i]) 

return 0; 

forti 0; i<I; i++) 
{ 

WOChange[i] = Newfloat5(J); II Last weight change 
if ( ! WOChange [i]) 

return 0; 
else 

for(int j = 0; j<J; j++) 
WOChange [i] [j] = O. 0 ; 

DeltaOut = Newfloat1(I); 
if ( ! DeltaOut) 

return 0; 

DeltaHidden = Newfloat1(J); 
if ( ! DeltaHidden) 

return 0; 

WeightedDeltaSum = Newfloat1(J); 
if(!WeightedDeltaSurn) 

return 0; 

Initialised 1; 
return 1; 

II Calculates network output, populating array Y 
void CornputeNetOut() 

for(i=O; i<I; i++) 
{ 

Y[i] VectorMult(&WO[i] [0], 0, J); 
Y[i] 1/(1+(exp(-1*Y[i]))); 

G 5 



Appendix G 

II Calculates hidden output, populating array U 
void ComputeHiddenOut() 

for (j=O; j<J; j++) 
{ 

U[j] VectorMult(&WH[j] [0], X, K); 
Temp expl ( (long double) (-1 *U [j ] ) ) ; 
U[j] 1/(1+ (float)Temp); 

II Adjust weights in the output layer 
void UpdateOutWeights() 

II Compute Delta Out 
for(i = 0 ; i<I; i++) 

DeltaOut [i] 

II Adjust weights 
for(i = 0; i<I; i++) 
for(j = 0; j<J; j++) 
{ 

Y[i]*(l - Y[i])*E[i]; 

Neural Network Code Listings 

WOChange[i] [j] =(LearningRate*DeltaOut[i]*U[j])+(Momentum*WOChange[i] [j]); 
wo [ i] [j] += WOChange [ i] [j ] ; 

} 

II Adjust weights in the hidden layer 
void UpdateHiddenWeights() 

II Compute Delta Hidden 
for(j = O;j<J;j++) 

WeightedDeltaSum[j] 0; 

for(j O;j<J;j++) 
{ 

for(i = 0; i<I; i++) 
WeightedDeltaSum[j] += DeltaOut[i]* WO[i] [j]; 

DeltaHidden[j] = U[j] * (1 - U[j]) * WeightedDeltaSum[j]; 

II Update Weights 
for (j = 0; j<J; j++) 
for(k = 0; k<K; k++) 
{ 

WHChange[j] [k]=(LearningRate*DeltaHidden[j]*X[k])+(WHChange[j] [k]*Momentum); 
WH [j] [k] += WHChange [j] [k] ; 

} 

II Randomize weight values, called before training 
void RandomizeWeights() 

time_t t; 
srand((unsigned) time(&t)); 

II Randomize weights 

G 6 



Appendix G Neural Nef1vork Code Listings 

for(i = 0; i<I; i++) 
for(j = 0; j<J; j++) 

WO[i) [j) = ((float )random(99)) 110000.00; 

for(j = 0; j<J; j++) 
for(k = 0; k<K; k++) 

WH[j) [k) = ((float )random(99)) I 10000.00; 

II Train the neural network using exsisting contents of inputs X 
II and targets T 
int Train() 

int n = 0; 
int Cycles 0, Loops 0; 

RandomizeWeights(); 

dol 
II Choose next training pair 
n = random(N); 
CopyVector(T, TM[n), I); 
CopyVector(X, XN[n), K); 

ComputeHiddenOut(); 
ComputeNetOut(); 

II Calc Error 
VectorSub(T, Y , I, E); 
UpdateOutWeights(); 
UpdateHiddenWeights() ; 

Loops++; 
if (! (Loops%N) ) 
{ 

Loops = 0; 
Cycles++; 
Ilif(ErrorAcceptable() ) 
. I I break; 

LearningRate -= LRDescentRate/250.00; 
LearningRate = (LearningRate < LRMin ) ? LRMin 

lwhile(Cycles < NumTrainingCycles); 

if(Cycles < NumTrainingCycles) 
return 1; 

else 
return 0; 

II Determine whether current network errors are acceptable 
int ErrorAcceptable() 

for(i = 0; i< I; i++) 
if(Mag(E[i)) > ACCEPTABLE_ERROR) 

return 0; 

return 1; 

II Function classifies an input vector, populating Netout array 
II with the network output 

G 7 

LearningRate; 



Appendix G 

int Classify(int Vector, float *NetOut} 

II Create X from gesture 
float MaxOutVal = -9999; 
int WinningNode = -1; 

for(int k =0; k<K; k++} 
X[k] = (float) XN[Vector] [k]; 

ComputeHiddenOut(} ; 
ComputeNetOut(} ; 

II find maximum output 

for(int i 0; i<I; i++} 
{ 

NetOut[i] = Y[i]; 
if(Y[i] > MaxOutVal} 
{ 

MaxOutVal = Y[i]; 
WinningNode = i; 

return WinningNode + 1; 

II Function Reads a set of input vectors from a file, populating 
II the array XN 
int ReadInputVectors(char *FileName} 

FILE *fp; 
char VectorFileName[MAX_FILENAME]; 

float Buffer[MAX_K]; 

strcpy(VectorFileName, FileName}; 
strcat (VectorFileName, ".pvt"} ; 

if((fp = fopen(VectorFileName,"r"}} 
return 0; 

N = 0; 
while (! feof (fp) ) 
{ 

for(int i 0; i< K; i++} 
{ 

NULL} 

fscanf(fp, "%f", &Buffer[i]}; 
Buffer[i]/=100; 

XN[N] = new float [K]; 
if (!XN [N]) 
{ 

delete XN; 
return 0; 

CopyVector(XN[N], Buffer, K}; 
N++; 

fclose (fp); 
N--; 
return 1; 

'0 8 

Neural Network Code Listings 



Appendix G Neural Network Code Listings 

II Function Reads a set of target vectors from a file, populating 
II the array T 
int ReadTargetVectors(char *FileName) 

} 

FILE *fp; 
float Buffer[MAX_I); 

char TargetFileName[MAX_FILENAME); 

strcpy(TargetFileName,FileName) ; 
strcat(TargetFileName,".tvt"); 

if((fp = fopen(TargetFileName,"r")) 
return 0; 

M= 0; 
while (! feof (fp) ) 
( 

for(int i = 0; i< I; i++) 

NULL) 

fscanf(fp, "%f", &Buffer[i)); 

TM[M) = new float [I); 
if( !TM[M)) 
( 

delete TM; 
return 0; 

CopyVector(TM[M), Buffer, I); 
M++; 

fclose (fp); 
return 1; 

II Function saves a set of network weights stored in WH and WO 
II to a file 
int SaveWeights(char *WeightFileName) 

FILE *fp; 

if( (fp = fopen(WeightFileName,"w")) 
return 0; 

II Output Hidden weigths 
for(int j = 0; j< J; j++) 
( 

for(int k = 0; k < K; k++) 

NULL) 

fprintf(fp, "%f ", (float )WH[j) [k)); 
fprintf(fp, "\n"); 

II Output output layer weights 

for(int i 0; i< I; i++) 
{ 

for (j = 0; j< J; j++) 
fprintf(fp, "%f" (float )WO[i) [j)); 

fprintf(fp, "\n"); 

G 9 



Appendix G 

} 

fclose (fp); 
return 1; 

II Function loads a set of network weights to store in WH and WO 
II from a file 
int LoadWeights(char *WeightFileName) 
( 

FILE *fp; 

if((fp = fopen(WeightFileName,"r")) 
return 0; 

II Read hidden weights 

for(int j = 0; j< J; j++) 

NULL) 

for(int k = 0; k < K; k++) 
fscanf(fp, "%f", &WH[j][k]); 

II Read output layer weigths 

for(int i = 0; i< I; i++) 
for(j = 0; j< J; j++) 

fscanf (fp, "%f" &WO [i] [j]) ; 
fclose (fp); 
return 1; 

G 10 

Neural Network Code Listings 



Appendix H Neural Network Test Application 

Appendix H 

Neural Network Test Application 

The BPTEST windows application captures user input from a mouse or trackball device, storing an array 
of a and y coordinates as a 2 dimensional gesture. These are then classified using the neural network 
functions provided in BP.CPP 

H 1 



Appendix H 

II BPTEST.CPP 

#include <owl\owlpch.h> 
#include <owl\applicat.h> 
#include <owl\framewin.h> 
#include <owl\menu.h> 
#include <owl/inputdia.h> 
#include <ddeml.h> 
#include <owl\static.h> 
#include <string.h> 

#include <time.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <owl/dc.h> 

#include "bp2.h" 
#include "bptst3.rc" 
#include "bptst3.rh" 

#define DELAY 2 
#define FALSE 0 
#define TRUE !FALSE 
int Filter = 5; 
#define THRESHOLD 0.15 
#define MAXGESTURES 8 

Neural Nenvork Test Application 

II Application's main wiindow class 
class TDMLSrWnd : public TFrameWindow 

pUblic: 

network 

BOOL START REC; 
int StartX, Starty; 
int TraceElement; 

BOOL Initialised; 
BOOL ReadyToRecord; 
TGesture Gesture; 
BOOL Running; 
int Classification; 

int CurrentVector; 
float NetOut[MAX_I]; 

int LastRecord; 
int RUNLENGTH; 
float *GestureArray; 
int *Buffer; 
int GestureID; 

II Gesture timing variables 
clock_t Now, LastTime; 

II Start recording flag set true by Left Button 
II Mouse Pos at start of recording 

II counter variable 

II Network initialized? 
II Ready to record? 
II A gesture class holds x and y coordinates 

II Curently recording 
II Variable holds classification value from 

II Counter Variable 
II Array holds network output 

II Array of coordinates 

clock_t GestureStartTime[200],GestureEndTime[200]; 
int Run, ScoreCard[200], Target; 

char FileName[30]; 
FILE *fp; II Used to save templates 

TDMLSrWnd(TWindow *Parent, const char*); 

II member functions are defined below 
void StartRec(); 

H 2 



Appendix H 

} ; 

void Capture(); 
void Test(); 
void Evaluate(); 
void InitNetwork(); 
void CmAutoTest(); 
virtual void SetupWindow(); 
void EvLButtonDown(uint, TPoint&); 
void EvRButtonDown(uint, TPoint&); 
void EvMouseMove(uint, TPoint&); 
bool IdleAction(long ); 
void CmSetGest(); 
void CmSetRunLength(); 
void TDMLSrWnd: :EraseBox(); 
void TDMLSrWnd: :DrawBox(); 

DECLARE_RESPONSE_TABLE(TDMLSrWnd); 
DECLARE CASTABLE; 

DEFINE_RESPONSE_TABLE1(TDMLSrWnd, TWindow) 
EV_COMMAND(CM_AUTOTEST, CmAutoTest), 
EV_COMMAND(CM_SETGEST, CmSetGest), 
EV_COMMAND(CM_SETRUNLENGTH, CmSetRunLength), 
EV WM_LBUTTONDOWN, 
EV_WM_MOUSEMOVE, 
EV_WM_RBUTTONDOWN, 

END RESPONSE TABLE; 

IMPLEMENT CASTABLE1(TDMLSrWnd, TWindow); 

TDMLSrWnd: :TDMLSrWnd(TWindow* parent, const char* title) 
TFrameWindow(parent, title), 

TWindow(parent, title) 
( 

II Initialize all flags, attributes, and netwrk 
START REC = FALSE; 
Running = FALSE; 
ReadyToRecord = FALSE; 
InitNetwork(); 
LastRecord = 0; 
GestureID = 0; 
RUNLENGTH 20; 
randomize() ; 
Attr.X 0; 
Attr.Y 0; 
Attr.W 600; 
Attr.H 600; 

II Assign menu in Setup 
void 
TDMLSrWnd: : SetupWindow() 
( 

TWindow: :SetupWindow(); 
TMenu Menu(GetMenu()); 
AssignMenu(BPTESTMENU) ; 

II Initialze network data structures and load weights 

H 3 

Neural Network Test Application 



Appendix H Neural Netlvork Test Application 

void 
TDMLSrWnd: : InitNetwork() 
( 

if(!InitDataStructures()) 
MessageBox("Network too large! !", Title, MB ICONSTOP); 

else if ( ! LoadWeights ("TrackS. wgt") ) 
MessageBox("Error Loading Weights", Title, MB_ICONSTOP); 

II Gesture coordinates are recorded in response to Windows mouse move 
II messages 
void TDMLSrWnd: : EvMouseMove (uint, TPoint& point) 

HOC DC; 
char sl [40]; 
char *blanks=" 
int x,y; 

" i 

if(TCAPTURE && START REC) II Store Current Mouse Pos (relative to 
II to start) in Template of currently 
II selected command 

recorded 

if (TraceElement 0) 
( 

StartX 
StartY 

point. x; 
point.y; 

if(TraceElement«GetVectorLength()/2)) II If all elements not yet 

x point.x; II Current Mouse Pos 
y point. y; 

x - StartX; II Adjust relative to start 
y - StartY; 
y *= -1; 

Gesture.x[TraceElement] x; 
Gesture.y[TraceElement] y; 

LastRecord++; 
if(LastRecord >= Filter) 
( 

TraceElement++; 
LastRecord = 0; 

DC GetDC(HWindow); 

II Output Coords to provide feedback 

strcpy(sl," "); 
TextOut (DC, 50, 100, sl, strlen (sl)); 

sprintf(sl,"%d %d ", x, y); 
TextOut (DC, 50, 400, sl, strlen (sl)); 
ReleaseDC(HWindow, DC); 

H 4 



Appendix H Neural Nef1vork Test Application 

else II End of Template Record 

char s[30) = " 
DC = GetDC(HWindow}; 
TCAPTURE = FALSE; 
START REC = FALSE; 
GestureEndTime[Run) = clock(}; 

" . , 

TextOut(DC, 50, 30, s, strlen(s}}; 
TextOut(DC, 50, 400, blanks, strlen(blanks}}; 
Test(} ; 
ReleaseDC(HWindow, DC}; 
Run++; 
EraseBox(} ; 
TextOut(DC, 50, 10, blanks, strlen(blanks}}; 
LastTime = clock(}; 
Now = clock(}; 

II Function to capture user gesture, requests gesture to be performed 
void TDMLSrWnd: :Capture(} 

char TargetString[3); 
char * blanks 

HDC DC; 

char s[20)="Perform gesture "; 
if(GestureID == O} 
{ 

Target = random(MAXGESTURES}; 
Target ++; 

else 
Target GestureID; 

itoa(Target, TargetString, 10}; 
strcat(s,TargetString}; 

DC = GetDC(HWindow}; 
TextOut(DC, 50, 10, s, strlen(s}}; 
TextOut(DC, 50, 60, blanks, str1en(blanks}}; 
TextOut(DC, 50, 400, blanks, strlen(blanks}}; 

strcpy(s, "X"}; 
TextOut(DC, 225, 225, s, strlen(s}}; 
ReleaseDC(HWindow, DC}; 

TraceElement = 0; 
LastRecord = 0; 
TCAPTURE = TRUE; 
START REC = TRUE; 
GestureStartTime[Run) 
DrawBox(}; 

c1ock(} ; 

II Test routine captures and classifies a user gesture 
void TDMLSrWnd: :Test(} 

char *Class = " 
char Message[35); 

" . , 

H 5 

" ; 



Appendix H 

HDC DC; 
char sl[]=n 
char Buffer[10]; 
float Uncertainty 0; 

Classification = Classify(Gesture, NetOut); 
itoa(Classification, Class, 10); 
strcpy(Message,nClassified as : n); 
strcat(Message,Class); 

DC GetDC(HWindow); 

for(int i = 0; i<GetOutputNodes(); i++) 
if(i != Classification -1) 

Uncertainty += NetOut[i]; 

TextOut(DC, 50, 60, sl, strlen(sl)); 

Neural Network Test Application 

" i 

if((Classification == Target) && Uncertainty < THRESHOLD) 
( 

ScoreCard [Run] = 1; 
TextOut(DC, 50, 60, Message, strlen(Message)); 

else 

ScoreCard [Run] = 0; 
MessageBeep(-l); 
strcpy(Message,nNot recognised !n); 
TextOut(DC, 50, 60, Message, strlen(Message)); 
MessageBeep(-l); 

TextOut (DC, 50, 10, sl, strlen (sl)); 

ReleaseDC(HWindow, DC); 

II If we are currently running, call capture routine periodically from 
II idle action 
bool TDMLSrWnd: : IdleAction(long 1) 
( 

if (Running) 
( 

if(Run RUNLENGTH) 
( 

Running = FALSE; 
Evaluate() ; 

if(!TCAPTURE && Running) 
( 

Now = clock(); 
if(Now - LastTime < 0) 

LastTime = Now; 
if( (Now - LastTime)/CLK_TCK > DELAY) 
( 

return 1; 

LastTime = Now; 
Capture(); 

H 6 



Appendix H 

II At the end of a run, evaluate and output results 
void TDMLSrWnd: :Evaluate() 

HDC DC; 
float AverageTime 
float Time; 
int Errors = 0; 

0, Slowest 

char ResultString[200]; 

o ,Fastest 

Neural Nenvork Test Application 

1000; 

char SSlowest[8], SFastest[8], SAverageTime[8], SErrors[6]; 

for(int i 0; i<RUNLENGTH; i++) 
{ 

Time = (GestureEndTime[i]-GestureStartTime[i]) I CLK TCK; 
AverageTime+= Time; 

if(Time >Slowest) 
Slowest = Time; 

if (Time<Fastest) 
Fastest = Time; 

if(!ScoreCard[i]) 
Errors++; 

AverageTime 1= RUNLENGTH; 

sprintf(SSlowest,"%.2f",Slowest); 
sprintf(SFastest,"%.2f",Fastest); 
sprintf(SAverageTime,"%.2f",AverageTime); 
itoa(Errors, SErrors, 10); 

strcpy(ResultString, "Average Time = H); 
strcat(ResultString, SAverageTime); 
strcat(ResultString,", Slowest "); 
strcat(ResultString, SSlowest); 
strcat(ResultString,", Fastest "); 
strcat(ResultString, SFastest); 
strcat(ResultString," Number of Errors "); 
strcat(ResultString, SErrors); 

DC GetDC(HWindow); 

TextOut(DC, 50, 100, ResultString, strlen(ResultString)); 

ReleaseDC(HWindow, DC); 

II Ste the length of a test run 
vO,id TDMLSrWnd: : CmSetRunLength () 

char InputText[6]; 

wsprintf(InputText, "%d", RUNLENGTH); 
if ((TlnputDialog (this, "Run Length", 

H 7 

"Set Run Length ." 
InputText, 



Appendix H 

lDOK) 

RUNLENGTH= atoi(lnputText); 
if (RUNLENGTH < 1) 

RUNLENGTH = 1; 

Neural Network Test Application 

sizeof(lnputText))) .Execute() 

II Function allows a specific gesture to be continuously tested 
void TDMLSrWnd: :CmSetGest() 

char lnputText[6]; 

wsprintf(lnputText, "%d", GesturelD); 
if ((TlnputDialog (this, "Gesture Number", 

"Set Gesture Number ( 0 for 
Random ) . " 

lDOK) 

GesturelD = atoi(lnputText); 
if (GesturelD < 0) 

GesturelD = 0; 

if (GesturelD > MAX_GESTURES) 
GesturelD = MAX GESTURES; 

lnputText, 
sizeof(lnputText))) .Execute() 

II A box Draw and erase function exist to provide an area for gesture input 
void TDMLSrWnd: :DrawBox() 

int XGap = 75, YGap 
int X, Y; 

HDC DC; 

DC = GetDC(HWindow); 
char OutString[2]; 

OutString [0] 
OutString [1] 

X 150; 
Y 150; 

127; 
OxOO; 

75; 

for(int i 0; i<3; i++) 
{ 

for (int j 0; j<3; j++) 
{ 

TextOut(DC, X, Y, OutString, strlen(OutString)); 
X += XGap; 

Y += YGap; 
X = 150; 

H 8 



Appendix H 

ReleaseDC(HWindow, DC); 

void TDMLSrWnd: :EraseBox() 

int XGap = 75, YGap 
int x, Y; 
int BoxTLX,BoxTLY; 

HDC DC; 

DC = GetDC(HWindow); 
char OutString[2]; 

OutString [0] 
OutString [1] 

X 150; 
Y 150; 

, . , 
OxOO; 

75; 

for(int i 0; i<3; i++) 
{ 

for (int j 0; j<3; j++) 
{ 

Neural Network Test Application 

TextOut(DC, X, Y, OutString, strlen(OutString)); 
X += XGap; 

Y += YGap; 
X = 150; 

OutString[O] = 'X'; 
TextOut(DC, 225, 225, OutString, strlen(OutString)); 

ReleaseDC(HWindow, DC); 

II Main application class 
class TDMLSrApp : public TApplication 

pUblic: 

TDMLSrApp(const char FAR* AName 

virtual void InitMainWindow(); 
} ; 

void 
TDMLSrApp: : InitMainWindow() 
{ 

0) :TApplication(AName) {}; 

MainWindow new TDMLSrWnd(O, "Gesture Performance Test"); 

int 
OwlMain(int l*argc*l, char* l*argv*1 []) 
{ 

return TDMLSrApp("Performance Test") .Run(); 

H 9 



Appendix I UML 

Appendix I 

Unified Modeling Language Notation (UML) 

Class diagram 
Class name 

Attributes 

Methods 

Responsibilities 

Relationships 

Association 

1 
Directed association Co"~I, 1 Directed association 

with named role 

.. .. 
I I 
I I 
I I An association where 

Dependency 
I 

Directed dependency 
I 

I I 
one or many objects are I I 

I I 
I I dependent on a single object 
I I 
I I 
I 1..* I 
I I 
I I 

I 1 



Appendix J Evaluation video contents 

Appendix J 

Evaluation Video Contents 

As discussed in chapter 8, video footage was made of the manipulator evaluation. The thesis 

includes as accompanying material a video containing sample footage. The video shows the 

author and an evaluator undertaking feeding and drinking tasks with the manipulator. 

The manipulator's characteristics as discussed in chapter 8 may be observed in the video, 

including its appearance, the generation of acoustic noise, and the slow speed of the linear axes. 

The manipulator does not include the three-axis end-effector discussed in chapter 3. However, the 

video demonstrates that the tasks addressed were successfully undertaken. 

J 1 



Appendix J Evaluation video contents 

Section 1 

Start 2 minutes 

The first section of the video contains footage of the author simulating a feeding task. The semi

structured environment contains a food plate and the arm mounted on a fixed platform. The 

positioning of these items is not optimized for the feeding task (the distance between is far greater 

than necessary), but facilitates the video recording. 

A modified spoon is attached to the manipulator, and may move through the vertical plane. The 

task is undertaken using a number of pre-taught positions. The manipulator is controlled using a 

mouse for direct menu selection, and feedback is provided by a VDU (a window on the VDU is 

created to simulate the feedback LCD screen). 

The feeding task consists of repeatedly acqumng scoops of food from the plate using 

predominantly the pre-taught positions, with joint movement for fine adjustment if required. 

Section 2 

2 minutes 3 minutes 25 seconds 

This section shows footage of the feeding task being undertaken by the author using voice 

control. The footage highlights the slow movement exhibited by the manipulator's linear axes. 

Section 3 

3 minutes 25 seconds - 5 minutes 

A repeat of the feeding task, using simple finger movement monitored by an electrolytic tilt 

sensor. The input device now employs a scanning system, as opposed to the direct-menu selection 

used above. 

The acoustic noise generated by the linear axes is evident during task completion. 

J2 



Appendix J Evaluation video contents 

Section 4 

5 minutes - 6 minutes 

The evaluator discussed in chapter 8 is shown undertaking a feeding task, using the manipulator 

to feed a pot of yogurt emptied into the plate. Control is achieved through wrist movement 

activating a scanning system. 

Section 5 

6 minutes - 6 minutes 30 seconds 

The evaluator is shown undertaking the feeding task using voice control. 

Section 6 

6 minutes 30 seconds 15 minutes 15 seconds 

The evaluator is shown undertaking pick and place and drinking tasks. A semi-structured 

environment was created including a straw holder, and a wine box with a lever attached to its tap. 

The evaluator was required to pick up a straw and place the straw in a cup. Pick up the cup and 

place the cup below a tap. Pour the drink, and finally pick up the cup. This was achieved using a 

mouse and direct-menu selection. Joint control as opposed to pre-taught positions was selected. 

A temporary two-finger gripper was attached to the manipulator. 

J3 



Appendix K Spreadsheet Automated Task Analysis 

Appendix K 

Spreadsheet automated Task Analysis 

The following visual basic routines act as macros attached to a Microsoft excel worksheet. The 
worksheet is used to provide a representation of a user task as shown in section 1. The VB 
routines perform calculations to estimate task completion time by extracting user characteristics 
and task details from the sheet, these acting as inputs to the functions defined. 

Kl 



Appendix K Spreadsheet Automated Task Analysis 

1. Spreadsheet Task description 

av 
max 

---rmn--
ut av 

max 
min 
av 

----------

av 
av 
av 

ne av 
av 

Example spreadsheet representation of a user task completion time estimates are shown for different sets of 
user characteristics. 

2. Visual Basic Routines 

Dim Resolve, ScanRate, Issue, VerifY As Single 
Dim Optl, Opt2 As String 

Sub MainRoutineO 
Sheets("Main"). Select 

For CellValue = 2 To 13 Step I 

Resolve = Cells(CellValue, 7).Value 
Issue = Cells(CellValue, 8).Value 
VerifY = Cells(CellValue, 9).Value 
ScanRate = Cells(CellValue, lO).Value 
Cells(CellValue, 11).Value = CalcTO 

Next CellValue 

End Sub 

Function CalcTO 
Dim Step As Single 

Optl = Range("D2").Value 
Step = SetSpeed(Optl) 

Optl = Range("D3").Value 
Opt2 = Range(IE3").Value 
Step = Step + GotoPos(Optl, Opt2) 

Optl = Range(ID4").Value 
Opt2 = Range(IE4").Value 
Step = Step + Move(Optl, Opt2) 

Optl = Range(IDS").Value 
Opt2 = Range("ES").Value 
Step = Step + JointMove(Optl, Opt2) 

K2 



Appendix K 

Optl = Range("D6").Value 
Opt2 = Range("E6").Value 
Step = Step + JointMove(Optl, Opt2) 

Optl = Range("D7").Value 
Opt2 = Range("E7").Value 
Step = Step + JointMove(Optl, Opt2) 

Optl = Range("DS").Value 
Opt2 = Range("ES").Value 
Step = Step + JointMove(Optl, Opt2) 
Step = Step + EndMoveO 

Optl = Range("D9").Value 
Opt2 = Range("E9").Value 
Step = Step + GotoPos(Optl, Opt2) 

Optl = Range("DlO").Value 
Opt2 = Range("EIO").Value 
Step = Step + Move(Optl, Opt2) 

Optl = Range("D II ").Value 
Opt2 = Range("EII ").Value 
Step = Step + JointMove(Optl, Opt2) 
Step = Step + EndMoveO 

Optl = Range("Dl2").Value 
Opt2 = Range("El2").Value 
Step = Step + GotoPos(Optl, Opt2) 
CalcT = Step 

End Function 

Function SetSpeed(SpeedLevel) 
T = SelectCommand("Speed") 
T = T + SelectCommand(SpeedLevel) 
SetSpeed = T 

End Function 

Function Move(Joint, Direction) 
T = SelectCommand("Move") 
T = T + SelectCommand(Joint) 
T = T + SelectCommand(Direction) 
Move=T 

End Function 

Function JointMove(Joint, Direction) 
T = SelectCommand(Joint) 
T = T + SelectCommand(Direction) 
T = T + SelectCommand("Stop") 
JointMove = T 

End Function 

Function EndMoveO 
T = SelectCommand("End") 
EndMove= T 

Spreadsheet Automated Task Analysis 

K3 



Appendix K 

End Function 

Function GotoPos(Sector, Level) 
T = SelectCommand("Goto") 
T = T + SelectCommand(Sector) 
T = T + SelectCommand(Level) 
GotoPos = T 

End Function 

Function SelectCommand( Command) 
T = T + Resolve 
n = SystemDelay(Command) 
T = T + (n * ScanRate) 

Rem If (ScanRate > 0) Then 
Rem T=T+2 
Rem End If 

T = T + Issue 
T= T+ Verify 
SelectCommand = T 

End Function 

Function SystemDelay(Item) 
Dim n As Single 

If (Item = "Speed") Then 
n=2.5 

EIseIf (Item = "Med") Then 
n=3 

EIseIf (Item = "Move") Then 
n=2.5 

EIseIf (Item = "Base") Then 
n=3 

EIseIf (Item = "Arm") Then 
n=3 

EIseIf (Item = "Shoulder") Then 
n=3 

EIseIf (Item = "Elbow") Then 
n=3 

EIseIf (Item = "Hand") Then 
n=3 

EIseIf (Item = "Wrist") Then 
n=3 

EIseIf (Item = "Out") Then 
n=2 

EIseIf (Item = "In") Then 
n=2 

EIseIf (Item = "Home") Then 
n=2 

EIseIf (Item = "Front") Then 
n=2 

EIseIf (Item = "Side") Then 
n=2 

EIseIf (Item = "One") Then 
n=2 

EIseIf (Item = "Two") Then 
n=2 

Spreadsheet Automated Task Analysis 

K4 



Appendix K 

ElseIf (Item = "Three") Then 
n=2 

ElseIf (Item = "Stop") Then 
n=O 

ElseIf (Item = "End") Then 
n=3 

End If 

SystemDelay = n 

End Function 

Dim Resolve, ScanRate, Issue, Verify As Single 
Dim Optl, Opt2 As String 

Sub CalcTO 
Dim Step As Single 
Sheets("Main").Select 
Resolve = Range("H2").Value 
ScanRate = Range("K2").Value 
Issue = Range("I2").Value 
Verify = Range("J2").Value 

Optl = Range("D2").Value 
Step = SetSpeed(Optl) 
Range("F2").Value = Step 

Optl = Range("D3").Value 
Optl = Range("E3").Value 
Step = GotoPos(Optl, Opt2) 
Range("F3").Value = Step 

Optl = Range("D4").Value 
Opt2 = Range("E4").Value 
Step = Move(Optl, Opt2) 
Range("F4").Value = Step 

Optl = Range("D5").Value 
Opt2 = Range("E5").Value 
Step = JointMove(Optl, Opt2) 
Range("F5").Value = Step 

Optl = Range("D6").Value 
Opt2 = Range("E6").Value 
Step = JointMove(Optl, Opt2) 
Range("F6").Value = Step 

Optl = Range("D7").Value 
Opt2 = Range("E7").Value 
Step = JointMove(Optl, Opt2) 
Range("F7").Value = Step 

Optl = Range("DS").Value 

Spreadsheet Automated Task Analysis 

K5 



Appendix K 

Opt2 = Range(IES").Value 
Step = JointMove(Optl, Opt2) 
Step = Step + EndMoveO 
Range(IFS").Value = Step 

Optl = Range(ID9").Value 
Optl = Range(IE9").Value 
Step = GotoPos(Optl, Opt2) 
Range(IF9").Value = Step 

Optl = Range("DIO").Value 
Opt2 = Range("ElO").Value 
Step = Move(Optl, Opt2) 
Range("FlO").Value = Step 

Optl = Range(IDII").Value 
Opt2 = Range(IEII").Value 
Step = JointMove(Optl, Opt2) 
Step = Step + EndMoveO 
Range("FII ").Value = Step 

Optl = Range("DI2").Value 
Optl = Range("EI 2").Value 
Step = GotoPos(Optl, Opt2) 
Cells(lO, 9).Value = Step 

End Sub 

Function SetSpeed(SpeedLevel) 
T = SelectCommand(ISpeed") 
T = T + SelectCommand(SpeedLevel) 
SetSpeed = T 

End Function 

Function Move(Joint, Direction) 
T = SelectCommand(IMove") 
T = T + SelectCommand(Joint) 
T = T + SelectCommand(Direction) 
T = T + SelectCommand("Stop") 
Move=T 

End Function 

Function JointMove(Joint, Direction) 
T = SelectCommand(Joint) 
T = T + SelectCommand(Direction) 
T = T + SelectCommand(IStop") 
JointMove = T 

. End Function 

Function EndMoveO 
T = SelectCommand(IEnd") 
EndMove=T 

End Function 

Spreadsheet Automated Task Analysis 

K6 



Appendix K 

Function GotoPos(Sector, Level) 
T = SelectCommand("Goto") 
T = T + SelectCommand(Sector) 
T = T + SelectCommand(Level) 
GotoPos = T 

End Function 

Function SelectCommand( Command) 
T = T + Resolve 
n = SystemDelay(Command) 
T = T + (n * ScanRate) 
If (ScanRate > 0) Then 

T=T+l 
End If 
T= T+ Issue 
T= T+ Verify 
SelectCommand = T 

End Function 

Function SystemDelay(Item) 
If (Item = "Speed") Then 

n=2 
ElseIf (Item = "Med") Then 

n=2 
ElseIf (Item = "Move") Then 

n=O 
ElseIf (Item = "Base") Then 

n=O 
Elself (Item = "Arm") Then 

n=l 
Elself (Item = "Shoulder") Then 

n=2 
Elself (Item = "Elbow") Then 

n=3 
Elself (Item = "Hand") Then 

n=4 
Elself (Item = "Wrist") Then 

n=5 
Elself (Item = "Out") Then 

n=O 
ElseIf (Item = "In") Then 

n=l 
ElseIf (Item = "Home") Then 

n=O 
ElseIf (Item = "Front") Then 

n=l 
ElseIf (Item = "Side") Then 

n=2 
ElseIf (Item = "One") Then 

n=O 
ElseIf (Item = "Two") Then 

n=l 
Elself (Item = "Three") Then 

n=2 
Elself (Item = "Stop") Then 

Spreadsheet Automated Task Analysis 

K7 



Appendix K 

n=O 
ElseIf (Item = "End") Then 

n=6 
End If 

SystemDelay = n 

End Function 

Spreadsheet Automated Task Analysis 

K8 




	568734_0001
	568734_0002
	568734_0003
	568734_0004
	568734_0005
	568734_0006
	568734_0007
	568734_0008
	568734_0009
	568734_0010
	568734_0011
	568734_0012
	568734_0013
	568734_0014
	568734_0015
	568734_0016
	568734_0017
	568734_0018
	568734_0019
	568734_0020
	568734_0021
	568734_0022
	568734_0023
	568734_0024
	568734_0025
	568734_0026
	568734_0027
	568734_0028
	568734_0029
	568734_0030
	568734_0031
	568734_0032
	568734_0033
	568734_0034
	568734_0035
	568734_0036
	568734_0037
	568734_0038
	568734_0039
	568734_0040
	568734_0041
	568734_0042
	568734_0043
	568734_0044
	568734_0045
	568734_0046
	568734_0047
	568734_0048
	568734_0049
	568734_0050
	568734_0051
	568734_0052
	568734_0053
	568734_0054
	568734_0055
	568734_0056
	568734_0057
	568734_0058
	568734_0059
	568734_0060
	568734_0061
	568734_0062
	568734_0063
	568734_0064
	568734_0065
	568734_0066
	568734_0067
	568734_0068
	568734_0069
	568734_0070
	568734_0071
	568734_0072
	568734_0073
	568734_0074
	568734_0075
	568734_0076
	568734_0077
	568734_0078
	568734_0079
	568734_0080
	568734_0081
	568734_0082
	568734_0083
	568734_0084
	568734_0085
	568734_0086
	568734_0087
	568734_0088
	568734_0089
	568734_0090
	568734_0091
	568734_0092
	568734_0093
	568734_0094
	568734_0095
	568734_0096
	568734_0097
	568734_0098
	568734_0099
	568734_0100
	568734_0101
	568734_0102
	568734_0103
	568734_0104
	568734_0105
	568734_0106
	568734_0107
	568734_0108
	568734_0109
	568734_0110
	568734_0111
	568734_0112
	568734_0113
	568734_0114
	568734_0115
	568734_0116
	568734_0117
	568734_0118
	568734_0119
	568734_0120
	568734_0121
	568734_0122
	568734_0123
	568734_0124
	568734_0125
	568734_0126
	568734_0127
	568734_0128
	568734_0129
	568734_0130
	568734_0131
	568734_0132
	568734_0133
	568734_0134
	568734_0135
	568734_0136
	568734_0137
	568734_0138
	568734_0139
	568734_0140
	568734_0141
	568734_0142
	568734_0143
	568734_0144
	568734_0145
	568734_0146
	568734_0147
	568734_0148
	568734_0149
	568734_0150
	568734_0151
	568734_0152
	568734_0153
	568734_0154
	568734_0155
	568734_0156
	568734_0157
	568734_0158
	568734_0159
	568734_0160
	568734_0161
	568734_0162
	568734_0163
	568734_0164
	568734_0165
	568734_0166
	568734_0167
	568734_0168
	568734_0169
	568734_0170
	568734_0171
	568734_0172
	568734_0173
	568734_0174
	568734_0175
	568734_0176
	568734_0177
	568734_0178
	568734_0179
	568734_0180
	568734_0181
	568734_0182
	568734_0183
	568734_0184
	568734_0185
	568734_0186
	568734_0187
	568734_0188
	568734_0189
	568734_0190
	568734_0191
	568734_0192
	568734_0193
	568734_0194
	568734_0195
	568734_0196
	568734_0197
	568734_0198
	568734_0199
	568734_0200
	568734_0201
	568734_0202
	568734_0203
	568734_0204
	568734_0205
	568734_0206
	568734_0207
	568734_0208
	568734_0209
	568734_0210
	568734_0211
	568734_0212
	568734_0213
	568734_0214
	568734_0215
	568734_0216
	568734_0217
	568734_0218
	568734_0219
	568734_0220
	568734_0221
	568734_0222
	568734_0223
	568734_0224
	568734_0225
	568734_0226
	568734_0227
	568734_0228
	568734_0229
	568734_0230
	568734_0231
	568734_0232
	568734_0233
	568734_0234
	568734_0235
	568734_0236
	568734_0237
	568734_0238
	568734_0239
	568734_0240
	568734_0241
	568734_0242
	568734_0243
	568734_0244
	568734_0245
	568734_0246
	568734_0247
	568734_0248
	568734_0249
	568734_0250
	568734_0251
	568734_0252
	568734_0253
	568734_0254
	568734_0255
	568734_0256
	568734_0257
	568734_0258
	568734_0259
	568734_0260
	568734_0261
	568734_0262
	568734_0263
	568734_0264
	568734_0265
	568734_0266
	568734_0267
	568734_0268
	568734_0269
	568734_0270
	568734_0271
	568734_0272
	568734_0273
	568734_0274
	568734_0275
	568734_0276
	568734_0277
	568734_0278
	568734_0279
	568734_0280
	568734_0281
	568734_0282
	568734_0283
	568734_0284
	568734_0285
	568734_0286
	568734_0287
	568734_0288
	568734_0289
	568734_0290
	568734_0291
	568734_0292
	568734_0293
	568734_0294
	568734_0295
	568734_0296
	568734_0297
	568734_0298
	568734_0299
	568734_0300
	568734_0301
	568734_0302
	568734_0303
	568734_0304
	568734_0305
	568734_0306
	568734_0307
	568734_0308
	568734_0309
	568734_0310
	568734_0311
	568734_0312
	568734_0313
	568734_0314
	568734_0315
	568734_0316
	568734_0317
	568734_0318
	568734_0319
	568734_0320
	568734_0321
	568734_0322
	568734_0323
	568734_0324
	568734_0325
	568734_0326
	568734_0327
	568734_0328

