
  

  

Abstract— Children and adults with sensorimotor disabilities 
can significantly increase their autonomy through the use of 
assistive robots. As the field progresses from short-term, task-
specific solutions to long-term, adaptive ones, new challenges 
are emerging. In this paper a lifelong methodological approach 
is presented, that attempts to balance the immediate context-
specific needs of the user, with the long-term effects that the 
robot’s assistance can potentially have on the user’s 
developmental trajectory.  

I. INTRODUCTION 
SSISTIVE robots have  been shown to provide significant 
increases in the autonomy of disabled users, with an 

immediate impact on their quality of life [1], but also have 
the potential to reduce the burden involved in caring for 
populations of disabled people in frequently under resourced 
clinical settings, such as rehabilitation and residential care 
centres. One of the most common methods for increasing 
autonomy is through the use of powered mobility, for 
example, powered wheelchairs. Rapid progress has been 
made in this field, enabling users with various types of 
disabilities to be able to control wheelchairs through various 
modalities, for example through EEG [2] or EMG [3] 
signals. Unfortunately, safety concerns frequently exclude 
potentially useful assistive powered wheelchairs for certain 
groups of patients, for example those with unilateral neglect 
[8], and many of disabled users find current power 
wheelchair control interfaces difficult to use [9].  
 
An emerging challenge within this field is the design of 
methods that can incorporate developmental considerations 
in the algorithms that provide assistance to the user. For 
example, sensorimotor abilities develop rapidly during the 
first five years in children, and are necessary for enabling 
developing children to explore their physical environment 
and engage in meaningful social interaction. Children with 
disabilities, for example due to cerebral palsy [4], spinal 
muscular atrophy [5], or tetraplegia [6], are deprived from 
crucial opportunities to develop their cognitive and social 
skills, which has a negative impact on their overall 
continued development and quality of life. By providing 
powered mobility, and augmenting it with computational 
mechanisms for adaptive shared control we can facilitate 
socio-cognitive development, reduce “learned helplessness” 
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[17], and assist in approximating the development pattern of 
the non-disabled population. Introducing powered mobility 
to young disabled children however is extremely 
challenging, and occupational therapists do not often 
consider it as an usable option. Common problems are post-
provision difficulties with their use, for example learning 
initial control of the wheelchair, as well as a need to adjust 
operational parameters such as speed and sensitivity of 
control hardware according to the circumstances. In a 
national survey [7], 26 of 47 wheelchair service providers in 
England that had provided powered wheelchairs to children 
under the age of 5 reported post-provision difficulties, with 
19 services specifically citing problems with the child 
learning initial control. Similar, although not identical, 
developmental considerations are important for adult cases, 
for example adult patients following stroke.   

II. TOWARDS CONDITIONALLY ASSISTIVE ROBOTS 

The fundamental point underlying our methodology is that 
assistive systems should not always and unconditionally 
assist the user, but attempt to balance the current needs of 
the user with the challenges that the user can learn to 
overcome with assistance from the robotic system. Requiring 
that assistive robots act as “intelligent tutors” shifts the focus 
to the developmental trajectory of the users, and allows a 
fruitful interaction between control engineering, as used in 
assistive robots, with other disciplines, including cognitive 
science and intelligent tutoring systems. 

 

Figure 1: The overall architecture for regulating assistance 

Figure 1 shows the overall assistive methodology we 
employ. The current context, state of the user, and any user 
commands are sent to the intention recognition module that 
attempts to infer what the user intends to do. A generative 
approach, using the HAMMER architecture [10] derives a 
set of inverse models (explained below) detailing how the 
intention can be achieved. The inverse models are examined 
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as to whether they fall within the capabilities of the user (the 
Vygotskian concept of “Zone of Proximal Development” 
[18], or ZPD, discussed later), and the level of assistance is 
modulated accordingly. In the next few sections, the 
algorithms underlying each stage will be presented.  

A. Intention Prediction 

We use a generative approach to recognising the intentions 
of the user, using HAMMER (Hierarchical Attentive 
Multiple Models for Execution and Recognition) as the basis 
architecture [10], since it has proven useful in related 
Human Robot Interaction tasks, such as action interpretation 
[15] and imitation [16]. A brief review of the architecture: 

Basic components: HAMMER uses the concepts of inverse 
and forward models. The inverse model receives as input an 
estimate of the current state of the controlled system and the 
desired target goal(s) and outputs the control commands that 
are needed to achieve that goal(s). A forward model of a 
system receives as inputs the current state of the system and 
a control command to be applied to it (as usually supplied by 
an inverse model) and outputs the predicted next state of the 
controlled system.  

Controlling the robot: when HAMMER is asked to rehearse 
or execute a certain action to control the assistive robot 
(figure 2), the corresponding inverse model module is given 
information about the current state and, optionally, about the 
target goal(s). The inverse model then outputs the motor 
commands that are necessary to achieve these target goal(s). 
The forward model provides an estimate of the upcoming 
states should these motor commands be executed. The 
estimate can be compared with the target goal to produce a 
reinforcement signal for the inverse model depending on 
how much the model’s motor commands brought the 
estimate closer to the target goal.  

 

Figure 2: The building blocks of HAMMER; multiple paired 
inverse & forward models of this form are maintained. 

Predicting intentions: the HAMMER architecture uses an 
inverse-forward model coupling in a dual role: either for 

executing an action (as detailed before), or for recognising 
the same action if performed by a demonstrator/operator. 
When HAMMER operates in intention recognition mode, it 
can determine whether an ongoing action performed by a 
human user matches a particular inverse-forward model 
combination by feeding the human’s current state as 
perceived by the observer system to the inverse model. The 
inverse model generates the motor commands that it would 
output if it was in that state and was executing the particular 
action. HAMMER consists of multiple pairs of inverse and 
forward models that operate in parallel. As the human user 
executes a particular action (with a particular unknown 
intention), and there are multiple models (possibilities) that 
can explain the ongoing states, we feed the perceived states 
into all of the system’s available inverse models. This will 
result into the generation of multiple motor commands 
(representing the multiple hypotheses as to what action is 
being executed) that are sent to the forward models. The 
forward models generate predictions about the system’s next 
state as described earlier and these are compared with the 
actual system’s next state at the next time step. The error 
signals resulting from this comparison affect the confidence 
values of the inverse models. At the end of the action (or 
usually earlier as required in assistive control) the inverse 
model with the highest confidence value, i.e. the one that is 
the closest match to the operator’s action is selected and is 
offered as an estimate of the user’s intention. Importantly, 
the inverse models that are required in order to achieve the 
goal, are already calculated, and can be sent to the next 
module (ZPD) for evaluation. 

B. Zones of Proximal Development  
 

As explained earlier, our methodology is not to develop 
autonomous systems that will replace the user’s control, nor 
constantly and unconditionally assist the user. Instead a 
lifelong approach is being developed that attempts to 
balance the current needs of the user with the challenges that 
the user could overcome with assistance from the robotic 
system. Principled methods to approach this task are in their 
infancy. Of fundamental importance is developing a method 
to approximate the user’s current sensorimotor capabilities 
and potential for achieving their intentions with and without 
robotic help (akin to calculating the user’s Zone of Proximal 
Development (ZPD), as put forward by Vygotsky [18]). 
While such concepts are widespread in intelligent tutoring 
systems where they are used potential strategies for helping 
(scaffolding) the user’s development, they have not been 
operationalized before in the context of assistive robotics.  
 
We use HAMMER’s distributed networks of inverse and 
forward models [4] as a starting point for approximating the 
user’s Zone of Proximal Development. The algorithm 
attempts to build hierarchical combinations of primitive 
inverse models that can solve a task, and compare them 
against the user’s performance to determine the user’s ZPD, 
and adjusts the level of assistance accordingly. The next few 
sections describe the theoretical aspects of this algorithm, 

in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009), 
pp 3357-3360, Minneapolis, Minnesota, USA, September 2-6, 2009.



  

and in particular how to quantify the current user 
performance and how to approximate the user’s potential for 
achieving his/her intention. 
 

 
 
Figure 3: The zone of proximal development approximation 
using hierarchical inverse models (IM); in this conceptual 
example diagram, inverse models IM10 and IM11 are within 
the ZPD since they rely on IMs 3, 4, 2, and 5 which have 
been successfully executed previously. 
 
The lower bound of the Zone of Proximal Development  
 
In our approach, in order to calculate the lower bound (inner 
circle) of the ZPD, i.e. in order to establish what the user is 
currently capable of, we use the amount of assistance that 
has been given by the shared controller supplementing the 
user’s commands in the past as an approximation of these 
capabilities. The inverse models are annotated to indicate 
quantities and frequency of assistance given, as well as the 
effect it had on the overall user’s performance.  
 
The upper bound of the Zone of Proximal Development 

 
Through the generative prediction of the user’s intention, 

the HAMMER architecture has derived the inverse model 
(which we term Intended Task’s Inverse Model (ITIM)) of 
what is required for the user to achieve his intention. To 
calculate whether the ITIM is within the user’s ZPD, we 
proceed as follows: 

 
• Decompose ITIM into the component inverse models that 

it requires for its completion. 
• Retrieve the associated values for quantities and 

frequency of assistance given for the component inverse 
models in the past. 

• Approximate the predicted level of combined shared 
control that needs to be given. For this, either use 
heuristics (for example, if a number of component 
inverse models are organised serially, take the highest 
quantity of assistance among the components as 
approximation, while if there are components organised 
in parallel (need to be executed concurrently), use a 
weighted sum of the components as approximation), or 
learn this by observation. 

• Determine whether this falls within acceptable levels to 
qualify it as within the ZPD of the user. The threshold 
can be user- or practitioner-defined. 

 
    C. Regulating assistance 
 

Once we have determined whether the intended task 
(ITIM) falls within the user’s ZPD, the challenge that 
remains is to adapt the human-robot interface options and 
levels of shared control to facilitate execution. The challenge 
here is to maximise not only short-term benefits (success in 
the current task) but also long term development (such as 
deterioration of morale due to lack of opportunities to 
overcome challenges).  Options include: 

 
• A user-defined level of assistance that could be given by 

default throughout all tasks (which the user can easily 
adjust to suit his current needs and desires) 

• A situation-dependent level of assistance, that can factor 
in the user’s emotional state, contextual aspects (such as 
whether lack of assistance will pose a danger to self or 
others, or whether it will affect the perceptions of others 
towards the user (for e.g. assistance might be increased 
in public places and reduced in private settings). 

• Disability specific training needs, potentially taking into 
consideration observations as to whether it was 
effective. 

• Approaches that balance the last two options, based on 
practitioners’ defined developmental or rehabilitation 
schedules. 

III. AN ASSISTIVE WHEELCHAIR EXAMPLE 
Up to now we have deliberately remained at the architectural 
level, as to avoid making the algorithms specific to only one 
type of assistive robot.  In this section we will briefly 
describe the operationalization of these algorithms on an 
assistive robotic wheelchair, to demonstrate this process.  
 
Figure 4 shows our experimental setup: a powered 
wheelchair has been adapted for computer control; human 
commands are sent through the joystick to the shared control 
system operating on a tablet PC, which estimates (through 
the wheelchair’s cameras and laser scanners) whether the 
resulting action will have the intended effect, and be safe for 
the user, and alters the commands appropriately [11,12]; a 
wearable eye-gaze tracker evaluates the effects the 
assistance has on the attention patterns of the user [14]. In 
variations of our experiments, the user is controlling the 
wheelchair through EOG/EMG signals.  
 
The user’s current performance is evaluated through a 
number of criteria, for example, the smoothness of the user’s 
joystick movements [11,12], or the amount of assistance that 
was required for a particular inverse model to be successful, 
among others. For example, the user is presumed to have 
mastered a particular competence such as traversing a door 
when the number and frequency of corrective movements 
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has dropped below a certain level.  Throughout our 
experiments [11,12,14], having the adaptive shared control 
system significantly improved the performance of the 
wheelchair users, for example by improving the smoothness 
of their joystick movements. 
 
Of crucial importance to the adoption of these algorithms is 
their evaluation. In one of our studies [14], we used a head-
mounted eye-gaze tracker to record patterns of eye activity 
during operation of the assistive wheelchair with and 
without shared control, which revealed differences in the 
eye-gaze patterns of users when they were assisted, with the 
latter patterns being more varied [14]. This emphasizes an 
important aspect of lifelong assistive robots: in addition to 
the development of the user model by the assistive robot, the 
user is concurrently forming a mental model [13] of the 
behavior of robot and the assistance s/he can expect from it; 
the two models co-develop and their dynamics are 
interlinked, putting an additional constraint on the amount of 
disturbance we can impose on either. An important 
challenge to our approach is designing suitable interfaces 
that can explain to the user the robot’s view of his/her 
capabilities, as well as the intended level of assistance.  
 

 

Figure 4: The assistive wheelchair experimental setup 

IV. EPILOGUE 
As the technological sophistication of assistive robots 
increases, additional demands will be placed upon them. 
They will need to move beyond unconditional assisting 
towards conditionally assisting (or potentially even 
hindering) the user as to improve their developmental 
trajectory. We have outlined our methodology that attempts 
to bring concepts from cognitive science, developmental 
psychology and intelligent tutoring systems into the assistive 
robotics field. In addition to the usefulness that such 
concepts bring to the field of assistive robotics, their 
operationalisation in robotic systems can help clarify and 

sharpen their theoretical details.  
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