48,445 research outputs found

    Enhancing Clinical Learning Through an Innovative Instructor Application for ECMO Patient Simulators

    Get PDF
    © 2018 The Authors. Reprinted by permission of SAGE PublicationsBackground. Simulation-based learning (SBL) employs the synergy between technology and people to immerse learners in highly-realistic situations in order to achieve quality clinical education. Due to the ever-increasing popularity of extracorporeal membrane oxygenation (ECMO) SBL, there is a pressing need for a proper technological infrastructure that enables high-fidelity simulation to better train ECMO specialists to deal with related emergencies. In this article, we tackle the control aspect of the infrastructure by presenting and evaluating an innovative cloud-based instructor, simulator controller, and simulation operations specialist application that enables real-time remote control of fullscale immersive ECMO simulation experiences for ECMO specialists as well as creating custom simulation scenarios for standardized training of individual healthcare professionals or clinical teams. Aim. This article evaluates the intuitiveness, responsiveness, and convenience of the ECMO instructor application as a viable ECMO simulator control interface. Method. A questionnaire-based usability study was conducted following institutional ethical approval. Nineteen ECMO practitioners were given a live demonstration of the instructor application in the context of an ECMO simulator demonstration during which they also had the opportunity to interact with it. Participants then filled in a questionnaire to evaluate the ECMO instructor application as per intuitiveness, responsiveness, and convenience. Results. The collected feedback data confirmed that the presented application has an intuitive, responsive, and convenient ECMO simulator control interface. Conclusion. The present study provided evidence signifying that the ECMO instructor application is a viable ECMO simulator control interface. Next steps will comprise a pilot study evaluating the educational efficacy of the instructor application in the clinical context with further technical enhancements as per participants’ feedback.Peer reviewedFinal Accepted Versio

    Models of technology and change in higher education: an international comparative survey on the current and future use of ICT in higher education

    Get PDF
    The aim of this study is to investigate which scenarios are emerging with respect to the use of ICT in higher education and how future developments can be predicted and strategic choices can be based on that. It seeks to answer the following questions:\ud What strategic responses do institutions make with respect to the use of ICT; Which external conditions and developments influence these choices; Which external and internal conditions and measures are taken in order to achievestrategic targets; What are the implications for technology use, teaching and learning processes and staff? \ud The study applies an international comparative methodology and is carried out in the Netherlands, Germany, Norway, the United Kingdom, Australia, Finland and the USA. Data were collected through Web-based questionnaires tailored to three different response groups: decision makers, support staff and instructors. In total 693 persons responded to the questionnaire. This implies that between 20 and 50 percent of the institutions in the various countries responded (institutional data were also gathered), with the exception of the USA where the response was much lower

    Towards a Lightweight Approach for Modding Serious Educational Games: Assisting Novice Designers

    Get PDF
    Serious educational games (SEGs) are a growing segment of the education community’s pedagogical toolbox. Effectively creating such games remains challenging, as teachers and industry trainers are content experts; typically they are not game designers with the theoretical knowledge and practical experience needed to create a quality SEG. Here, a lightweight approach to interactively explore and modify existing SEGs is introduced, a toll that can be broadly adopted by educators for pedagogically sound SEGs. Novice game designers can rapidly explore the educational and traditional elements of a game, with a stress on tracking the SEG learning objectives, as well as allowing for reviewing and altering a variety of graphic and audio game elements

    Development of a programme to facilitate interprofessional simulation-based training for final year undergraduate healthcare students

    Get PDF
    Original report can be found at: http://www.health.heacademy.ac.uk/publications/miniproject/alinier260109.pdfIntroduction: Students have few opportunities to practise alongside students from other disciplines. Simulation offers an ideal context to provide them with concrete experience in a safe and controlled environment. This project was about the development of a programme to facilitate interprofessional scenario-based simulation training for final year undergraduate healthcare students and explored whether simulation improved trainees’ knowledge of other healthcare discipline’s roles and skills. Methods: A multidisciplinary academic project team was created and trained for the development and facilitation of this project. The team worked on the development of appropriate multiprofessional scenarios and a strategy to recruit the final year students on a volunteer basis to the project. By the end of the project 95 students were involved in small groups to one of fifteen 3-hour interprofessional simulation sessions. Staff role played the relatives, doctor on call, and patient when it was more appropriate than using a patient simulator (Laerdal SimMan/SimBaby) in the simulated community setting and paediatric or adult emergency department. Each session had 3 to 4 of the following disciplines represented (Adult/Children/Learning Disability Nursing, Paramedic, Radiography, Physiotherapy) and each student observed and took part in one long and relevant high-fidelity scenario. Half the students were randomly selected to fill in a 40-item questionnaire testing their knowledge of other disciplines before the simulation (control group) and the others after (experimental group). Students were assessed on the questions relating to the disciplines represented in their session. Results: By the end of the project 95 questionnaires were collected of which 45 were control group students (Questionnaire before simulation) and 50 experimental group students (Questionnaire after simulation). Both groups were comparable in terms of gender, discipline and age representation. Participants were: Adult nurses (n=46), Children’s nurses (n=4), Learning Disability nurses (n=7), Nurses, Paramedics (n=8), Radiographers (n=20), Physiotherapists (n=8). 15 sessions were run with an average of around 7 participants and at least 3 disciplines represented. The knowledge test results about the disciplines represented was significantly different between the control and experimental groups (Control 73.80%, 95% CI 70.95-76.65; and Experimental 78.81%, 95% CI 75.76-81.87, p=0.02). In addition, there were sometimes reliable differences between the groups in their view of multidisciplinary training; confidence about working as part of a multidisciplinary team was 3.33 (SD=0.80, Control) and 3.79 (SD=0.90, Experimental), p=0.011; their anticipation that working as part of a multidisciplinary team would make them feel anxious was 2.67 (SD=1.17, Control) and 2.25 (SD=1.04, Experimental), p=0.073; their perception of their knowledge of what other healthcare professionals can or cannot do was 3.00 (SD=0.91, Control) and 3.35 (SD=0.93, Experimental), p=0.066; their view that learning with other healthcare students before qualification will improve their relationship after qualification was 3.93 (SD=1.14, Control) and 4.33 (SD=0.81, Experimental), p=0.055; their opinion about interprofessional learning helping them to become better team workers before qualification was 3.96 (SD=1.24, Control) and 4.42 (SD=0.77, Experimental), p=0.036. Conclusions: Although the difference is relatively small (~5%), the results demonstrate that students gained confidence and knowledge about the skills and role of other disciplines involved in their session. Through simulation, the positivism of students about different aspects of learning or working with other healthcare disciplines has significantly improved. Students gained knowledge of other disciplines simply by being given the opportunity to take part in a multiprofessional scenario and observe another one. The results of the test and their reported perception about multidisciplinary team working suggest that they are better prepared to enter the healthcare workforce. Discussions during the debriefings highlighted the fact that multidisciplinary training is important. The main challenges identified have been the voluntary student attendance and timetabling issues forcing us to run the session late in the day due to the number of disciplines involved in each session and their different placement rota. The aim is now to timetable formally this session within their curriculum. Introducing simulation in the undergraduate curriculum should facilitate its implementation as Continuing Professional Development once these students become qualified healthcare professionals

    A conceptual architecture for interactive educational multimedia

    Get PDF
    Learning is more than knowledge acquisition; it often involves the active participation of the learner in a variety of knowledge- and skills-based learning and training activities. Interactive multimedia technology can support the variety of interaction channels and languages required to facilitate interactive learning and teaching. A conceptual architecture for interactive educational multimedia can support the development of such multimedia systems. Such an architecture needs to embed multimedia technology into a coherent educational context. A framework based on an integrated interaction model is needed to capture learning and training activities in an online setting from an educational perspective, to describe them in the human-computer context, and to integrate them with mechanisms and principles of multimedia interaction

    MITT writer and MITT writer advanced development: Developing authoring and training systems for complex technical domains

    Get PDF
    MITT Writer is a software system for developing computer based training for complex technical domains. A training system produced by MITT Writer allows a student to learn and practice troubleshooting and diagnostic skills. The MITT (Microcomputer Intelligence for Technical Training) architecture is a reasonable approach to simulation based diagnostic training. MITT delivers training on available computing equipment, delivers challenging training and simulation scenarios, and has economical development and maintenance costs. A 15 month effort was undertaken in which the MITT Writer system was developed. A workshop was also conducted to train instructors in how to use MITT Writer. Earlier versions were used to develop an Intelligent Tutoring System for troubleshooting the Minuteman Missile Message Processing System

    Supporting active database learning and training through interactive multimedia

    Get PDF
    The learning objectives of a database course include aspects from conceptual and theoretical knowledge to practical development and implementation skills. We present an interactive educational multimedia system based on the virtual apprenticeship model for the knowledge- and skills-oriented Web-based education of database course students. Combining knowledge learning and skills training in an integrated environment is a central aspect of our system. We show that tool-mediated independent learning and training in an authentic setting is an alternative to traditional classroom-based approaches
    corecore