25,070 research outputs found

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Ready To Roll: Southeastern Pennsylvania's Regional Electric Vehicle Action Plan

    Get PDF
    On-road internal combustion engine (ICE) vehicles are responsible for nearly one-third of energy use and one-quarter of greenhouse gas (GHG) emissions in southeastern Pennsylvania.1 Electric vehicles (EVs), including plug-in hybrid electric vehicles (PHEVs) and all-electric vehicles (AEVs), present an opportunity to serve a significant portion of the region's mobility needs while simultaneously reducing energy use, petroleum dependence, fueling costs, and GHG emissions. As a national leader in EV readiness, the region can serve as an example for other efforts around the country."Ready to Roll! Southeastern Pennsylvania's Regional EV Action Plan (Ready to Roll!)" is a comprehensive, regionally coordinated approach to introducing EVs and electric vehicle supply equipment (EVSE) into the five counties of southeastern Pennsylvania (Bucks, Chester, Delaware, Montgomery, and Philadelphia). This plan is the product of a partnership between the Delaware Valley Regional Planning Commission (DVRPC), the City of Philadelphia, PECO Energy Company (PECO; the region's electricity provider), and Greater Philadelphia Clean Cities (GPCC). Additionally, ICF International provided assistance to DVRPC with the preparation of this plan. The plan incorporates feedback from key regional stakeholders, national best practices, and research to assess the southeastern Pennsylvania EV market, identify current market barriers, and develop strategies to facilitate vehicle and infrastructure deployment

    Smart Procurement of Naturally Generated Energy (SPONGE) for Plug-in Hybrid Electric Buses

    Get PDF
    We discuss a recently introduced ECO-driving concept known as SPONGE in the context of Plug-in Hybrid Electric Buses (PHEB)'s.Examples are given to illustrate the benefits of this approach to ECO-driving. Finally, distributed algorithms to realise SPONGE are discussed, paying attention to the privacy implications of the underlying optimisation problems.Comment: This paper is recently submitted to the IEEE Transactions on Automation Science and Engineerin

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Detection of Lying Electrical Vehicles in Charging Coordination Application Using Deep Learning

    Full text link
    The simultaneous charging of many electric vehicles (EVs) stresses the distribution system and may cause grid instability in severe cases. The best way to avoid this problem is by charging coordination. The idea is that the EVs should report data (such as state-of-charge (SoC) of the battery) to run a mechanism to prioritize the charging requests and select the EVs that should charge during this time slot and defer other requests to future time slots. However, EVs may lie and send false data to receive high charging priority illegally. In this paper, we first study this attack to evaluate the gains of the lying EVs and how their behavior impacts the honest EVs and the performance of charging coordination mechanism. Our evaluations indicate that lying EVs have a greater chance to get charged comparing to honest EVs and they degrade the performance of the charging coordination mechanism. Then, an anomaly based detector that is using deep neural networks (DNN) is devised to identify the lying EVs. To do that, we first create an honest dataset for charging coordination application using real driving traces and information revealed by EV manufacturers, and then we also propose a number of attacks to create malicious data. We trained and evaluated two models, which are the multi-layer perceptron (MLP) and the gated recurrent unit (GRU) using this dataset and the GRU detector gives better results. Our evaluations indicate that our detector can detect lying EVs with high accuracy and low false positive rate
    • 

    corecore