1,635 research outputs found

    The e-Bike Motor Assembly: Towards Advanced Robotic Manipulation for Flexible Manufacturing

    Full text link
    Robotic manipulation is currently undergoing a profound paradigm shift due to the increasing needs for flexible manufacturing systems, and at the same time, because of the advances in enabling technologies such as sensing, learning, optimization, and hardware. This demands for robots that can observe and reason about their workspace, and that are skillfull enough to complete various assembly processes in weakly-structured settings. Moreover, it remains a great challenge to enable operators for teaching robots on-site, while managing the inherent complexity of perception, control, motion planning and reaction to unexpected situations. Motivated by real-world industrial applications, this paper demonstrates the potential of such a paradigm shift in robotics on the industrial case of an e-Bike motor assembly. The paper presents a concept for teaching and programming adaptive robots on-site and demonstrates their potential for the named applications. The framework includes: (i) a method to teach perception systems onsite in a self-supervised manner, (ii) a general representation of object-centric motion skills and force-sensitive assembly skills, both learned from demonstration, (iii) a sequencing approach that exploits a human-designed plan to perform complex tasks, and (iv) a system solution for adapting and optimizing skills online. The aforementioned components are interfaced through a four-layer software architecture that makes our framework a tangible industrial technology. To demonstrate the generality of the proposed framework, we provide, in addition to the motivating e-Bike motor assembly, a further case study on dense box packing for logistics automation

    Peripersonal Space in the Humanoid Robot iCub

    Get PDF
    Developing behaviours for interaction with objects close to the body is a primary goal for any organism to survive in the world. Being able to develop such behaviours will be an essential feature in autonomous humanoid robots in order to improve their integration into human environments. Adaptable spatial abilities will make robots safer and improve their social skills, human-robot and robot-robot collaboration abilities. This work investigated how a humanoid robot can explore and create action-based representations of its peripersonal space, the region immediately surrounding the body where reaching is possible without location displacement. It presents three empirical studies based on peripersonal space findings from psychology, neuroscience and robotics. The experiments used a visual perception system based on active-vision and biologically inspired neural networks. The first study investigated the contribution of binocular vision in a reaching task. Results indicated the signal from vergence is a useful embodied depth estimation cue in the peripersonal space in humanoid robots. The second study explored the influence of morphology and postural experience on confidence levels in reaching assessment. Results showed that a decrease of confidence when assessing targets located farther from the body, possibly in accordance to errors in depth estimation from vergence for longer distances. Additionally, it was found that a proprioceptive arm-length signal extends the robot’s peripersonal space. The last experiment modelled development of the reaching skill by implementing motor synergies that progressively unlock degrees of freedom in the arm. The model was advantageous when compared to one that included no developmental stages. The contribution to knowledge of this work is extending the research on biologically-inspired methods for building robots, presenting new ways to further investigate the robotic properties involved in the dynamical adaptation to body and sensing characteristics, vision-based action, morphology and confidence levels in reaching assessment.CONACyT, Mexico (National Council of Science and Technology

    Learning in behavioural robotics

    Get PDF
    The research described in this thesis examines how machine learning mechanisms can be used in an assembly robot system to improve the reliability of the system and reduce the development workload, without reducing the flexibility of the system. The justification foi' this is that for a robot to be performing effectively it is frequently necessary to have gained experience of its performance under a particular configuration before that configuration can be altered to produce a performance improvement. Machine learning mechanisms can automate this activity of testing, evaluating and then changing.From studying how other researchers have developed working robot systems the activities which require most effort and experimentation are:-• The selection of the optimal parameter settings. • The establishment of the action-sensor couplings which are necessary for the effective handling of uncertainty. • Choosing which way to achieve a goal.One way to implement the first two kinds of learning is to specify a model of the coupling or the interaction of parameters and results, and from that model derive an appropriate learning mechanism that will find a parametrisation for that model that will enable good performance to be obtained. From this starting point it has been possible to show how equal, or better performance can be obtained by using iearning mechanisms which are neither derived from nor require a model of the task being learned. Instead, by combining iteration and a task specific profit function it is possible to use a generic behavioural module based on a learning mechanism to achieve the task.Iteration and a task specific profit function can also be used to learn which behavioural module from a pool of equally competent modules is the best at any one time to use to achieve a particular goal. Like the other two kinds of learning, this successfully automates an otherwise difficult test and evaluation process that would have to be performed by a developer. In doing so effectively, it, like the other learning that has been used here, shows that instead of being a peripheral issue to be introduced to a working system, learning, carried out in the right way, can be instrumental in the production of that working system

    A Robotic System for Learning Visually-Driven Grasp Planning (Dissertation Proposal)

    Get PDF
    We use findings in machine learning, developmental psychology, and neurophysiology to guide a robotic learning system\u27s level of representation both for actions and for percepts. Visually-driven grasping is chosen as the experimental task since it has general applicability and it has been extensively researched from several perspectives. An implementation of a robotic system with a gripper, compliant instrumented wrist, arm and vision is used to test these ideas. Several sensorimotor primitives (vision segmentation and manipulatory reflexes) are implemented in this system and may be thought of as the innate perceptual and motor abilities of the system. Applying empirical learning techniques to real situations brings up such important issues as observation sparsity in high-dimensional spaces, arbitrary underlying functional forms of the reinforcement distribution and robustness to noise in exemplars. The well-established technique of non-parametric projection pursuit regression (PPR) is used to accomplish reinforcement learning by searching for projections of high-dimensional data sets that capture task invariants. We also pursue the following problem: how can we use human expertise and insight into grasping to train a system to select both appropriate hand preshapes and approaches for a wide variety of objects, and then have it verify and refine its skills through trial and error. To accomplish this learning we propose a new class of Density Adaptive reinforcement learning algorithms. These algorithms use statistical tests to identify possibly interesting regions of the attribute space in which the dynamics of the task change. They automatically concentrate the building of high resolution descriptions of the reinforcement in those areas, and build low resolution representations in regions that are either not populated in the given task or are highly uniform in outcome. Additionally, the use of any learning process generally implies failures along the way. Therefore, the mechanics of the untrained robotic system must be able to tolerate mistakes during learning and not damage itself. We address this by the use of an instrumented, compliant robot wrist that controls impact forces

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Scalable transfer learning in heterogeneous, dynamic environments

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier
    • …
    corecore