
 1 

The Coordinating Role of Language in Real-Time Multi-Modal 
Learning of Cooperative Tasks 

 
Maxime Petit1, Stéphane Lallée1, Jean-David Boucher1, Grégoire Pointeau1, Pierrick Cheminade1, Dimitri Ognibene2, 

Eris Chinellato2, Ugo Pattacini3, Ilaria Gori3, Uriel Martinez-Hernandez4, Hector Barron-Gonzalez4, Martin 
Inderbitzin5, Andre Luvizotto5, Vicky Vouloutsi5, Yannis Demiris2, Giorgio Metta3 and Peter Ford Dominey1 

 
1 INSERM U846 SBRI, Robot Cognition Laboratory, 18 avenue Doyen Lepine, 69675 Bron, France:  2 Imperial College of 
Science, Technology and Medicine, London, UK; 3 Fondazione Istituto Italiano di Tecnologia, Genoa, Italy; 4 University of 

Sheffield, UK, 5 Universitat Pompeu Fabra, Barcelona, Spain: 
 

(maxime.petit, peter.dominey)@inserm.fr 
 

One of the defining characteristics of human cognition is our outstanding capacity to cooperate.  A central requirement for 
cooperation is the ability to establish a “shared plan” – which defines the interlaced actions of the two cooperating agents – in real 
time, and even to negotiate this shared plan during its execution.   In the current research we identify the requirements for 
cooperation, extending our earlier work in this area.  These requirements include the ability to negotiate a shared plan using spoken 
language, to learn new component actions within that plan, based on visual observation and kinesthetic demonstration, and finally to 
coordinate all of these functions in real time.  We present a cognitive system that implements these requirements, and demonstrate the 
system’s ability to allow a Nao humanoid robot to learn a non-trivial cooperative task in real-time.  We further provide a concrete 
demonstration of how the real-time learning capability can be easily deployed on different platform, in this case the iCub humanoid.  
The results are considered in the context of how the development of language in the human infant provides a powerful lever in the 
development of cooperative plans from lower-level sensorimotor capabilities. 

    
 

Index Terms—cooperation, humanoid robot, spoken language interaction, shared plans, situated and social learning. 
 

I. INTRODUCTION 
THE ability to cooperate, to creatively establish and use 

shared action plans is, like language and the underlying social 
cognitive and motivational infrastructure of communication, 
one of the major cognitive capacities that separates humans 
from non-human primates [1].   In this context, language itself 
is an inherently cooperative activity in which the listener and 
speaker cooperate, in order to arrive at the shared goal of 
communication.   Tomasello et al make the foundational 
statement that language is built on the uniquely human ability 
to read and share intentions, which is also the foundation for 
the uniquely human ability and motivation to cooperate.  
Indeed, Tomasello goes one step further, suggesting that the 
principal function of language is to establish and negotiate 
cooperative plans [1]. 

The building blocks of cooperative plans are actions.  In 
this context, it has been suggested that we are born with 
certain systems of “core cognition”, which are “identified by 
modular innate perceptual-input devices” [2] (p. 11).  One of 
the proposed elements of core cognition is agency.  This 
includes an innate system for representing others in terms of 
their goal directed actions, and perceptual mechanisms such as 
gaze following that allow the developing child to monitor the 
goal directed actions of others.  Thus we consider that these 
notions of agency are given in the system, though the degree 
to which they may actually be developed vs. innate remains an 
open question [2]. 

A cooperative plan (or shared plan) is defined as a goal 
directed action plan, consisting of interlaced turn-taking 
actions by two cooperating agents, in order to achieve a 
common goal that could otherwise not have been achieved 

individually  [1].  Interestingly, infants can establish shared 
plans without the use of language, if the shared goal and 
corresponding plan are sufficiently simple.  However, once the 
plans reach a certain level of complexity, and particularly if 
the plan must be renegotiated in real-time,  then language is 
often invoked to establish and negotiate who does what [3, 4].   
Thus, cooperation requires communication, and when things 
get complex, language is the preferred communication 
method. Indeed, much of early language maps onto physical 
parameters of goal directed action  [5, 6].   

In the construction grammar framework, Goldberg 
identifies how the structure of language is mapped onto the 
structure of meaning such that “constructions involving basic 
argument structure are shown to be associated with dynamic 
scenes … such as that of someone volitionally transferring 
something to someone else, someone causing something to 
move or change state” [5] p. 5.  Thus, grammatical 
constructions implement the mapping from linguistic 
utterances to meaning, in the form of action and perceptual 
scene specifications.  The nature of the link between language 
and action, and how that link is established, is an open topic of 
research in child development and developmental robotics [7].    

In the context of this debate, following a usage-based 
approach [6], we have demonstrated how such constructions 
can be learned in a usage-based approach, as the mapping 
between the argument structure of sentences and argument 
structure of robotic representations of action meanings [8].  
This “usage-based” development of grammatical constructions 
(vs. a more nativist approach) is also a topic of debate, similar 
to the case for agency cited above.  

Independent of the nativist vs. usage-based debate, we can 
take the position that via such constructions, language is 
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uniquely situated in its capability to allow agents to construct 
and negotiate shared cooperative plans.  Our approach is to 
implement a scaffolded system based on this capability. In this 
scaffolding, we build in simple grammatical constructions that 
map onto the argument structure of actions that can be 
performed by the robot.  This allows a scaffolding for the 
creation of action plans.  We have previously used spoken 
language to construct diverse action plans for a robot 
cooperating with a human [9, 10], but the plans were not 
shared, in that they only specified the robot’s actions.  We 
then introduced a shared planning capability where a robot 
could observe a sequence of actions, with an agent attributed 
to each by the user via language.  This generated a true shared 
plan, that could pass the test of role reversal [11].  Role 
reversal occurs when the two participants in a cooperative task 
can exchange roles, thus indicating that they both have a 
“bird’s eye view” of the shared plan, which is a central part of 
the requirements for true cooperation [12].   

In a series of studies we then more carefully re-examined 
the bases of shared planning.  In the first study [13] we 
implemented a capability for learning to perceive and 
recognize novel human actions based on the structure of 
perceptual primitive constituting those actions.  We next 
implemented the corresponding ability to learn to execute 
complex actions based on the composition of motor 
primitives, and to make the link between perception and action 
via imitation [14].  Finally, we extended this capability to 
multiple actions in shared plans, where the human could use 
spoken language to specify a shared plan that could then be 
executed by the robot, again displaying role reversal [15].   

While this work represented significant progress, it left 
several issues unanswered.  First, when a shared plan “goes 
wrong” there is no mechanism to fix it.  Language can fulfill 
this role -indeed much of human language is about 
coordinating and correcting shared plans  [16].  Second, in our 
previous work, teaching the shared plan was in a fixed 
modality, typically with the human speaking the shared plan, 
action by action.  Here we extend this so that language 
becomes the central coordinator, a scaffold, which allows the 
user to then specify individual actions by (a) kinesthetically 
demonstrating the action, (b) performing the action himself so 
the robot can perceive and imitate, or (c) finally - for known 
actions – to specify the action verbally.  Learning by visual 
and kinesthetic demonstration are highly developed and well 
documented means for transmission of skill from human to 
robot e.g.  [17-19].  We will demonstrate how this provides a 
novel interaction framework that where language coordinates 
these three potential modalities for learning shared plans.   

The transmission of knowledge from humans to robots can 
take multiple forms.  We consider three specific forms.  
“Imitation” will refer to learning in which the human performs 
the action to be learned, and the robot observes this and 
performs a mapping from observation space onto its execution 
space, as defined in [20].  Likewise based on [20] we will 
refer to “kinesthetic teaching” as a form of “demonstration” 
where the passive robot is moved through the desired 
trajectory by the human teacher.  Finally we will refer to 
“spoken language programming” [21] as the method described 
above where well-formed sentences are used to specific robot 
actions and arguments, either in isolation or in structured 

sequences.  Language has been used to explain new tasks to 
robots [22], and is especially useful for scaffolding tasks, 
when the teacher uses previously acquired skills to resolve a 
new and more complex tasks [23].   

Imitation has been successfully used on diverse platforms 
[24-29]. It is an easy way for the teacher to give the robot the 
capacity to perform novel actions, and is efficient in high 
dimensional spaces, and as a mechanism for communication 
[30]. It also speeds up the learning time by reducing the 
repetitions required for trial-and-error learning [31], and it can 
lead to open-ended learning without previous knowledge of 
the tasks or the environment [32].  

Demonstration (also called self-imitation) [33, 34] avoids 
the problem of mapping from teacher to observer space.  
While this problem exists during imitation, it is eliminated in 
demonstration, as the human directly move the limbs of the 
robot [20] thus avoiding the "Correspondance Problem" [28]. 
It also does not require expert-knowledge of the domain 
dynamics, allowing the teacher to be a non- expert [20].   

Some authors have also studied multi-modal learning, 
combining these techniques; including  imitation and 
instructions [35-37] or demonstration and instruction [38].   In 
this research we build upon and extend these multi-modal 
approaches.  We implement a multi-modal learning 
architecture which allow a user to teach action to robots (iCub 
and Nao) using one or a combination of language instructions, 
demonstration or imitation. More precisely, demonstration is a 
form of "tele-operation" by “kinesthetic teaching” and 
imitation is mediated by "external sensor" as defined in [20]: 
demonstration by kinesthetic teaching because the teacher 
operates directly on the robot learner platform, and imitation 
by external sensor because we are using kinect as perceptual 
device to encode the executing body's moves. 

Thus the novelty of the current research is threefold – first 
it demonstrates a rich language capability for establishing and 
negotiating shared plans in real time.  Second, it does this by 
allowing a multi-modal combination of spoken language 
programming, imitation and demonstration based learning.  
Finally, it demonstrates that, with an appropriate robotic 
platform, language can be used as the glue that binds together 
learning from these different modalities.  These capabilities 
are demonstrated on two robots, the Nao and the iCub, which 
allow us to take advantage of the specific motor capabilities of 
each, including the more dexterous manipulation capabilities 
of the iCub. 

 

II. SYSTEM REQUIREMENTS AND DESIGN 
 

The goal of the current research is to demonstrate that a 
learning system that is based on the human developmental 
capability to map language onto action can provide the basis 
for a multimodal shared plan learning capability.  In order to 
proceed with this analysis, we consider a scenario that 
involves multimodal learning. This will allow us in particular 
to determine the requirements involved in a human-robot 
cooperation to achieve an unknown task with real-time 
learning. 

Consider a scenario where a humanoid robot and a human 
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are in a face-to-face interaction, with a box and a toy put on a 
table. The human wants to clean the table, by putting the toy 
in the box. In order to do that, he must first grasp the toy, then 
open the box, then put the toy in the box, and finally close the 
box.  Let us further consider that the human cannot grasp the 
toy and open the box at the same time, and that he thus needs 
help in performing this task.  The human will ask the robot to 
“clean the table”. The robot doesn’t yet know the plan so it 
will ask the human to explain. The user will describe each step 
of the plan, which is composed by several sequential actions: 

- “I grasp the toy, then 
- you open the box, then 
- I put the toy in the box, then 
- you close the box”, 
 
After checking whether the stated shared plan has been 

understood correctly, the robot will check each action that it 
should perform.  The robot recognizes that there are some 
problems because it doesn’t know how to open or close the 
box. It will ask for the help of the human, who has to teach it 
however he wants. 

For opening the box, the human will decompose the 
teaching in two parts: at first, going to a safe initial position 
and next imitating him.  After the opening action is learned, 
the user will teach the closing behavior, by directly 
demonstrating the motion by moving the arm of the robot.  
Finally, the robot has learned the whole shared plan and each 
action it should perform, and so the two agents can proceed 
and clean the table together.  This scenario allows us to 
identify the functional requirements for the system.   The 
system should: 

1. Understand human language, including mapping 
grammatical structure onto internal representation of 
action. 

2. Appropriately distinguish the definition of self and the 
other for relative pronouns (e.g. “I”, “You”), 

3. Manage a memory of known shared plan and actions, 
4. Become active in the discussion by asking human when 

a problem occurred, 
5. Perform Inverse kinematics mapping to learn from 

human action by imitation, 
6. Encode proprioception induced when the human is 

moving the robot to teach. 
7. Perceive the state of objects in the world. 
 
In the following sections we will define an overall system 
architecture that accommodates requirements 1 – 4 in a 
platform independent manner, suggesting that these are the 
core learning functions.  We will further demonstrate how 
this system can be used for real-time multimodal shared 
plan learning on the Nao with requirements 5 and 6, and on 
the iCub with point 7. 

 

 
Figure 1. Biomimetic Architecture for Situated Social 
Intelligence Systems (BASSIS).   

III. SYSTEM DESIGN OVERVIEW 
Here we present the system architecture for the learning and 
execution of cooperative shared plans.  We begin with the 
components that are independent of the physical platform, and 
then introduce the platform specific components. 
 

The BASSIS architecture (Figure 1) is a multi-scale 
architecture organized at three different levels of control— 
reactive, adaptive and contextual, with the different levels of 
self are all based on the physical instantiation of the agent 
through its body (soma).  It is based on the Distributed 
Adaptive Control Architecture [39-41]. Soma corresponds to 
the physical platform, instantiated as the Nao or iCub in our 
experiments.  The Reactive or sensorimotor layer employs 
Kinect for perception and Choreograph™ (Aldebaran) for 
motor control on the Nao, and the ReacTable sensitive table, 
and the passive motion planner (PMP) and iKin inverse 
kinematic solver for iCub. The Adaptive layer defines 
adaptive motor capabilities for each robot.  In the current 
context this adaptation can take place through learning within 
the human-robot interaction.  The Contextual layer is platform 
independent, and implements a Supervisor function, with a 
grammar-based Interaction Manager, and a Shared Plan 
Manager.  Within the BASSIS framework, the Contextual 
layer implements a form of long term memory that we exploit 
here in the context of learning shared action plans. 
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A. Supervisor 
The Supervisor function consists in two related 

capabilities.  The first is general management of the human-
robot interaction via a state-based dialog management 
capability.  The second is capability to learn and execute 
shared plans.  Both of these functions are platform 
independent.  
1) Interaction Management 

Interaction Management is provided by the CSLU Toolkit 
[42] Rapid Application Development (RAD) state-based 
dialog system which combines state-of-the-art speech 
synthesis (Festival) and recognition (Sphinx-II recognizer) in 
a GUI programming environment.  RAD allows scripting in 
the TCL language and permits easy and direct binding to the 
YARP domain, so that all access from the Interaction 
Management function with other modules in the architecture is 
via YARP. 

The system is state based, with states for specifying the 
shared plan, modifying the shared plan, if there are errors, 
teaching specific actions within the shared plan, and finally, 
executing the shared plan during the cooperative task 
execution.  Interaction management also allows the system to 
indicate error states to the user, and to allow him to explore 
alternate possibilities to rectify such errors, as illustrated in 
section IV.A.2. 

 
2) Shared Plan Learning 

The core aspect of of the learning capability is the 
capability to learn and execute shared plans, and to learn 
constituent actions that can make up those plans.  As defined 
above, a shared plan is a sequence of actions with each action 
attributed to one of two agents in a turn-taking context.  
Shared plans can be learned via two complimentary learning 
mechanisms.  The first method involves a form of spoken 
language programming, in which the user verbally describes 
the succession of action-agent components that make up the 
shared plan.  Recognition is based on a grammar that we have 
developed for this purpose: 

 
(1) $SharedPlan = pedro%% *sil%% $agent $command 

[<($linkWord $agent $command)>]; 
(2) $agent = you| I; 
(3) $command =  

a. $action1 [*sil%%]   |   
b. $action2 [*sil%%]  ; 

(4) $pause = [*sil%%] [*any%%] [*sil%%];  
(5) $object = winnie | toy | chest; 
(6) $posture = initial-position ; 
(7) $action1 =  

a. grasp $pause $object|  
b. reach $pause  $object|  
c. open $pause  $object|  
d. close $pause  $object|  
e. move-to $pause $posture; 

(8) $action2 = put $pause $object $pause [in%%] $pause 
$object; 

(9) $linkWord = then |  after-that | next | and ; 
 
Line (1) specifies that a shared plan begins with the 

“imperative” “Pedro” (the robot’s name) followed by an 
optional silence (*sil%%), then an agent and command, 

followed by [0-n] groups made of a link word, an agent and a 
command.  Agent terminals are identified in (2).  Commands 
can take 1 or two arguments, as specified respectively in (7) 
and (8).  Interestingly, in this grammar, the set of terminal 
nodes (actual words to be recognized) is only 16 distinct 
words.  Thus, the speaker independent recognition system is in 
a well-defined recognition niche, and the system works with 
few to no errors. 

In the case that errors are made, either in recognition, or by 
the user forgetting a command, saying a wrong command etc. 
we have a “spoken language programming” editing capability.  
Editing can involve the following edits:  Replace one 
command with another.  In this case the user repeats the faulty 
command, and then the correct one (in cooperation with the 
dialog system of the robot). Delete a command, in which case 
the user stats the command to be deleted.  Insert a command, 
in which case the user says before or after a given command, 
and then the new command.  

 
Figure 2. Shared Plan Manager.  In the initial state, the user 
describes the entire shared plan.  The robot repeats the 
understood plan, allowing editing.  Then, for each action, if it 
is unknown, the system enters specific states for learning by 
language, imitation or demonstration.  When all actions are 
learned, the shared plan is executed. 

 
The second learning mechanism is evoked at the level of 

individual actions, and allows the user to teach new 
component actions to the robot.  This involves a combination 
of spoken language programming and perceptual action 
recognition.  Perceptual action recognition can occur via 
action recognition with the Kinect, and via kinesthetic 
demonstration, which will be detailed below. The robot can 
then use the resulting shared plan to take the role of either 
agent, thus demonstrating the crucial role-reversal capability 
that is the signature of shared planning [1, 12]. 

As illustrated in the example dialog with the Nao below, 
this provides a rich capability to negotiate a complex 
cooperative task using spoken language.  The resulting system 
can learn how to perform novel component actions (e.g. open, 
close), and most importantly, it can learn arbitrary novel turn-
taking sequences – shared plans – that allow the user to teach  
in any novel cooperative behavior to the robot in real-time.  
The only constraint is on the set of composite actions from 
which the novel behavior can be constructed. 
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B. YARP 
Software modules in the architecture are interconnected 

using YARP [43], an open source library written to support 
software development in robotics. In brief YARP provides an 
intercommunication layer that allows processes running on 
different machines to exchange data. Data travels through 
named connection points called ports.  Communication is 
platform and transport independent: processes are not aware of 
the details of the underlying operating system or protocol and 
can be relocated at will across the available machines on the 
network. More importantly, since connections are established 
at runtime it is easy to dynamically modify how data travels 
across processes, add new modules or remove existing ones. 
Interface between modules is specified in terms of YARP 
ports (i.e. port names) and the type of data these ports receive 
or send (respectively for input or output ports).  This modular 
approach allows minimizing the dependency between 
algorithm and the underlying hardware/robot; different 
hardware devices become interchangeable as long as they 
export the same interface.  

C. Humanoid Robot Nao and Kinect  
The Nao (Figure 3) is a 25 degree of freedom humanoid 

robot built by the French company Aldebaran. It is a medium 
size (57 cm) entertainment robot that includes an onboard 
computer and networking capabilities at its core. Its open, 
programmable and evolving platform can handle multiple 
applications. The onboard processor can run the YARP server 
(described below) and can be accessed via telnet connection 
over the internet via WiFi. 

More specifically, the Nao is equipped with the following : 
CPU x86 AMD Geode with 500 MHz, 256 MB SDRAM and 
1 Gb Flash memories, WiFi (802.11g) and Ethernet, 2 x 
640x480 camera with up to 30 frames per second, inertial 
measurement unit (2 gyro meters and 3 accelerometers), 2 
bumper sensors and 2 ultrasonic distance sensors.  

In this research, we extend the perceptual system of the Nao 
to include a 3D motion capture capability implemented with 
the Kinect ™ system.  The Kinect recognizes a human body 
image in a configuration posture (see Fig. 3), and then 
continuously tracks the human body.  Joint angles for three 
degrees of freedom in the shoulder and one in the elbow are 
extracted from the skeleton model, and mapped into the Nao 
joint space to allow real-time telecommand of the two arms. 
 

D. iCub Humanoid and ReacTable Perceptual System  
The iCub is a 53 DOF humanoid platform developed within 

the EU consortium RobotCub.  The iCub [44] is an open-
source robotic platform with morphology approximating that 
of a 3½ year-old child (about 104cm tall), with 53 degrees of 
freedom distributed on the head, arms, hands and legs. The 
current work was performed on the iCubLyon01 at the 
INSERM laboratory in Lyon, France.  The head has 6 degrees 
of freedom (roll, pan and tilt in the neck, tilt and independent 
pan in the eyes). Three degrees of freedom are allocated to the 
waist, and 6 to each leg (three, one and two respectively for 
the hip, knee and ankle). The arms have 7 degrees of freedom, 

three in the shoulder, one in the elbow and three in the wrist. 
The iCub has been specifically designed to study 
manipulation, for this reason the number of degrees of 
freedom of the hands has been maximized with respect to the 
constraint of the small size. The hands of the iCub have five 
fingers and 19 joints.  

 
1) Motor Control 

Motor control is provided by PMP.  The Passive Motion 
Paradigm (PMP) [45] is based on the idea of employing 
virtual force fields in order to perform reaching tasks while 
avoiding obstacles, taking inspiration from theories conceived 
by Khatib during 80's [46]. Within the PMP framework it is 
possible to describe objects of the perceived world either as 
obstacles or as targets, and to consequently generate proper 
repulsive or attractive force fields, respectively. A meaningful 
example of attractive force field that can be produced is the so 
called spring-mass-damper field; in this case the relevant 
parameters are the stiffness constant and the damping factor, 
which regulate the force exerted by a target placed in a given 
spatial location. An effective model that represents repulsive 
force fields is the Multivariate Gaussian function, which 
accounts for a field centred at an obstacle and is characterized 
by the typical bell-shaped decay. According to the 
composition of all active fields, the manipulator’s end-effector 
is eventually driven towards the selected target while 
bypassing the identified obstacles; evidently, its behaviour and 
performances strictly depend on the mutual relationship 
among the tuneable field’s parameters. 

 
 

 
Figure 3: PMP software architecture. 
 
However, in order to tackle the inverse kinematics problem 

and compute the final trajectory of the end-effector, the 
original PMP makes use of the Transposed Jacobian 
algorithm; this method is well known to suffer from a number 
of weaknesses [47] such as the difficulty to treat constraints of 
complex kinematic structures as the iCub arm turns to be [48, 
49]. Therefore, we have decided to replace the Transposed 
Jacobian approach with a tool that relies on a powerful and 
fast nonlinear optimizer, namely Ipopt [50]; the latter manages 
to solve the inverse problem while dealing with constraints 
that can be effectively expressed both in the robot’s 
configuration space (e.g. joints limits) and in its task-space. 
This new tool  [49] represents the backbone of the Cartesian 
Interface, the software component that allows controlling the 
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iCub directly in the operational space, preventing the robot 
from getting stuck in kinematic singularities and providing 
trajectories that are much smoother than the profiles yielded 
by the first implementation of PMP. 

In this changed context, the Cartesian Interface lies at the 
lowest level of the revised PMP architecture, whose simplified 
diagram is show in Figure 3. At higher level the pmpServer 
element is responsible of composing the final force field 
according to the objects currently stored in an internal 
database. Users can add, remove or modify this database in the 
easiest way by forwarding requests to the server through a 
dedicated software interface, made available by the pmpClient 
component. It is important to point out that the properties of 
objects stored in the database can be retrieved for modification 
in real-time in order to mirror the environment as it evolves 
over time.  All the software components of the revised PMP 
architecture can be openly accessed from the iCub repository. 

 
2) Perception 

In the current research we extend the perceptual capabilities 
of the iCub with the ReacTable™.  The ReacTable is licensed 
by Reactable Systems.  The ReacTable has a translucid 
surface, with an infrared illumination beneath the table, and 
detection system that perceives tagged objects on the table 
surface with an accuracy of ~5mm.  Thus, tagged objects can 
be placed on the table, and their location accurately captured 
by the infrared camera.   

Interaction with the external world requires that the robot is 
capable of identifying its spatial reference frame with the 
objects that it interacts with.  In the human being, aspects of 
this functionality is carried out by the dorsal stream, involving 
areas in the posterior parietal cortex which subserve complex 
aspects of spatial perception [51].  In our system, the 2D 
surface of the table is calibrated into the joint space of the 
iCub by a linear transformation calculated based on a 
sampling of three calibration points on the table surface that 
are pointed to by the iCub.  Thus, three points are physically 
identified in the Cartesian space of the iCub, and on the 
surface of the ReacTable, thus providing the basis for 
calculation of a transformation matrix which allows the 
projection of object coordinates in the space of the table into 
the Cartesian space of the iCub.  These coordinates can then 
be used as spatial arguments to the PMP action system of the 
iCub, described above, which provides basic physical actions 
including point-to(x, y, z), put(source X, Y, Z; target x, y, z), 
grasp(x, y, z), release(x, y, z).   

 

IV. MULTIMODAL LEARNING I:  NAO & KINECT 
Here we demonstrate the system functionality for real-time 

learning, in which language, spatial perception (via Kinect), 
and proprioception are combined to allow the Nao to learn a 
shared plan which is then executed in real-time with the 
human teacher.  The idea is to solve a common problem 
encountered during daily life which is cleaning a table with 
some objects on it. As defined in the requirements analysis in 
section II, the goal is to place the object from the table to a 

chest. However, the chest needs to be opened before doing 
that, and we need to close it afterward to complete the task.  

 

A. Learning the Shared Plan and Component Actions 
Here we present the time-tagged unfolding of the 

cooperative dialog where the shared plan is established, and 
indicate how the system components are engaged to permit the 
corresponding interaction, and learning and execution of the 
shared plan. 

1) Establishing the shared plan 
The user begins by giving the name of the cooperative 

shared plan: 
00:25 Nao: Tell me what I have to do. 
00:26 Human: “Pedro, help me to clean 

the table”.  
The Nao recognizes the spoken order and checks in the 

shared plan manager if it knows this plan, and determines that 
there is no definition for such a plan...  
00:30 Nao: “The shared plan is clean. 
00:36 Nao: “Please explain me.” 
The shared plan manager creates an empty shared plan 

called “clean the table” and it is ready to be filled with the 
human description.  

The user verbally explains all the steps of the shared plan, 
including both moves of the robot and himself.  It is worth 
noting that the shared plan is initially specified in ~10 
seconds. 

00:37 Human: “I reach the toy, then I 
reach the trash box then you open the 
trash box then I put the toy in the 
trash box then you close the trash 
box”.  

The Nao will segments the global shared plan in a 
sequential set of 3 actions using the grammar built in the 
spoken language interface, and then repeats it to be sure it has 
perfectly understood the whole interaction :  

00:50: Nao: “I reach the toy, you reach 
the trash box, then I open the trash 
box, you put the toy in the trash 
box, I close the trash box. Do you 
agree with this plan?”  

Two remarks should be made. First, note that in order to be 
intuitive and understandable, for relative pronouns “You” or 
“I” rather than repeating these literally, the Nao has created 
the plan by replacing the relative agent by the absolute ones: 
the human for “I” and the Nao for “You” because the human 
was speaking. 

 
2) Correcting the Shared Plan 
 
The second remark here is that there is in fact an error in the 

plan.  Nao states that it should reach for the toy, rather than the 
human doing so. When the Nao is repeating the plan, it is not 
only to check if it has understood the orders but it also 
provides the human a way to verify his plan.  

The user has here the possibility to edit the shared plan 
(section IIA2), and will do it by answering that he does not 
agree with this, for instance: 
Human: “No I do not”.  
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Thus the robot will ask where the problem is:  
01:05 Nao: ”So, What did I 

misunderstand?“.  
Here, the human has several ways to edit the plan:  
- He could specify that there is a problem with a specific  

action by repeating it and could, after that, remove it or 
replace it by another one, 

- He could erase everything and describe the plan again 
from scratch, 

- He could insert a missing action. 
 

In this dialogue example described below, the problem is 
with the agent of the first action.  The Nao said “I reach the 
toy”, but the intended action was “You reach the toy”, with 
“you” referring to the human, so in response to the robot’s 
question “what did I misunderstand?”,  the human names the 
erroneous action:  
01:08 Human: “I reach the toy”  
Thus, this dialog is motivated by the user’s recognition that 

an error has occurred, followed by his specification of the 
erroneous component.  This will trigger an editing of the plan, 
with the Nao asking  
01:10 Nao: “What do you want me to do 

instead?” 
A new command can now be inserted to replace the 

erroneous one.   
01:13 Human:  “I reach the toy”. 
 

 
Figure 4.  Multimodal learning. (Left column) Using 
perceptual based imitation, the human demonstrates to the Nao 
how to open the box, and the Nao performs the action in real-
time, mirroring the action of the human. (Right column)  
Using kinesthetic demonstration the human teaches the Nao 
how to close the box. 

 

This illustrates the detailed manipulation of relative 
pronouns, as the human is now speaking from his own 
perspective, and thus refers to himself as “I”.  To confirm the 
edit, the Nao then places a “virtual cursor” after the element to 
be replaced, and before the next action, and verifies that the 
new command should be inserted there. 
01:15 Nao:  “So where – I reached the 

toy, instead, you will reach the toy.  
Do you agree with this plan? 

01:24 Human: “Yes, I do”. 
The robot now has a complete shared plan including tasks 

for the user and for itself.  The next step is to verify that all of 
the tasks assigned to the robot are known. 

 
3) Learning component actions 

 
The Nao iterates through the shared plan until it encounters 

an action assigned to it, determines if it knows the action, and 
informs the user if not.  A query is made to the Motor 
Primitive Library where the list of current known behaviors of 
the Nao is stored into. There may be several unknown 
behaviors in a new plan, thus to keep the interaction more 
animated the system selects one of the three interrogatory 
sentences at random. 

Here, the Nao recognizes that it has to perform the “open” 
action, which is unknown for now and will call the human for 
help:  
01:26 Nao: “Behavior ‘open’ is unknown. 

I am going to learn ‘open’” 
 This will put the supervisor in the learning state.  The 

human could create the behavior in the Motor Sequence 
Learning with one or a combination of these methods (see 
Figure 2): 

- Calling a known behavior by language, 
- Asking the robot to imitate him, 
- Physically demonstrating the action by moving the 

robot’s arms 
 
As illustrated in Figure 4 (left column), the chest can be 

opened by pushing a lever, and the human will choose to teach 
“open” by decomposing the action in two steps: First, the 
robot needs to move its arms up in the air, before, second,  
going down to push the lever.  The “put-the-hands-up” is a 
known action, so the human will command this action.  

 
01:34 Nao: “Tell me what to do.” 
01:36 Human:“Move to Kinect init”.  
This is recognized to be a known behavior in Motor 

Primitive Library, so the robot asks for a confirmation before 
performing the action:  
01:38 Nao: “I am going to move to Kinect 

init. Are you sure?”.  
01:42 Human: “Yes I am”. 
After the user’s acknowledgment, Nao executes the 

behavior and the resulting joint angle trajectory will be stored 
in the new “open” behavior of Motor Sequence Learning to 
begin the construction of this action. 

The robot informs the user that the action is finished and it 
is waiting for the following command. 
01:51 Nao: “Tell me what to do”. 
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The human proceeds to the second step of the teaching by 
calling the imitation method:  
01:53 Human:“Imitate me”.  
01:56 Nao: “Imitation activated. Tell me 

when it is finished”.  
The system then enters the state (Figure 2) where joint 

angles are read from the Kinect device based on the observed 
human demonstrator (which is calibrated in the hands up 
position).  The user then demonstrates the motion required to 
open the box, using visual feedback from the Nao in real-time.  
The corresponding joint angle trajectory is concatenated to 
those from the previous method. The user then terminates the 
imitation. 
02:17 Human: “It is finished”.  
The “open” behavior has thus been learned by the Nao in 

real-time as a complex joint trajectory, and is transferred from 
Motor Sequence Learning to Motor Primitive Library so that it 
is now available as a command. 

 
Following the flow outlined in Figure 2, the Nao proceeds 

to the next behavior it should perform in the shared plan, and 
again there is an unknown action: “close”. 
02:20 Nao: “The behavior ‘close’ is 

unknown. I am going to learn 
‘close’”. 

02:27 Nao: “Tell me what to do.” 
An empty “close” behavior is created in Motor Sequence 

Learning.  This time, the human chooses to teach the action 
using the demonstration method. 
02:29 Human: “Let me move your arms”. 
This places the supervisor in a state where it commands the 

Nao to set the stiffness of the arms to zero so that they can be 
manipulated by the human.   
02:33 Nao: “Stiffness changed. Tell me 

when it is finished”.  
As illustrated in Fig. 3 (right column) the human then 

physically demonstrates the action, pushing the Nao’s hand 
and arm through a trajectory that closes the box.  Once the 
demonstration is finished, the human terminates the learning, 
and asks the robot to proceed with the shared plan execution. 
02:46 Human : “It is finished”. 
 
Thus, this dialog fragment, and Figure 4, illustrate two 

complimentary learning methods: imitation of an action 
trajectory performed by the human, and physical 
demonstration where the human physically guides the learned 
trajectory of the robot.  Depending on the nature of what is to 
be learned, the user can choose the more appropriate method.  

B. Executing the Shared Plan 
The shared plan is now fully specified, and the Nao begins 

execution. 
02:56 Nao: “The current step is you 

reach toy. You are supposed to reach. 
Tell me when it is done”. 

03:01 Human: “It is done”. 
03:03 Nao: “The current step is I open 

trash box”. 
 
 

 
 

Here the robot uses the learned action trajectory to 
reproduce the “open” movement. 
03:27 Nao: “The current step is you put 

the toy trash box. You are supposed 
to put. Tell me when it is done”. 

03:34 Human: “It is done”. 
03:37 Nao:  “The current step is I close 

trash box”. 
The Nao then uses the joint trajectory that was taught by 

kinesthetic demonstration, to close the box.  At this point the 
toy has successfully been closed in the box, and the shared 
plan is finished. 
03:52 Nao: “This was the last command”. 

 
Figure 4.  Shared plan execution.  Left column: Human takes 
toy, Nao opens box, human places toy in box.  Right column: 
Nao closes box. 

 

C. Performance  Analysis 
We analyze performance from three separate executions of 

the learning task described above.  Two were performed in the 
laboratory, and the third was performed during the Robocup 
@home Open Challenge 2011 in Istanbul, July 2011.  In this 
case, we were required to install and set up the system in 3 
minutes, and then had five minutes to perform the task, with 
no possibility to shift to a different time, or to have another 5 
minutes in case of failure.  The task was successfully 
completed, and our “Radical Dudes” team placed 4th/19 in the 
Open Challenge.  This demonstrates the robustness of the 
system. 

 



 9 

 
Figure 5. Effects of shared plan learning on overall action 
execution time in seconds. 

 
For each of the three sessions where the shared plan was 

learned and then executed, we measured the time to complete 
the open-the-box and close-the-box actions during the learning 
phase, and then during execution of the learned shared plan.  
Execution time is measured from the onset of the human 
command, to the execution of the action and onset of next 
request by the Nao.  Thus, during learning, the execution time 
includes the teaching component.  In order to compare the 
effect of learning on the time to complete individual actions, 
we performed non-parametric Wilcoxon signed-rank test 
comparing each action when it was being learned vs. when it 
had been learned, collapsing across sessions.  There were two 
actions per session (open and close), each performed once in 
learning and once in execution after learning.  With the three 
sessions, this provided a total of 6 learning-learned 
comparisons.  As illustrated in Figure 5, there is a significant 
reduction in execution time during the shared plan execution.  
This was confirmed in a significant learning effect in the 
Wilcoxon signed-rank test, N = 6, Z = 2.20, p = 0.027.  We 
thus demonstrated that the system can learn to produce 
arbitrary sequences of actions with a turn-taking structure.  
The principle limiting factor is simply the set of basic level 
actions from which the shared plans can be constructed. Three 
repetitions of the “clean-up” shared plan, including one during 
the Robocup@Home Open Challenge, demonstrate the 
reliability of the system.  Over these three trials, we also 
demonstrated a significant effect of this learning (as opposed 
to simply commanding the robot) in terms of behavior 
execution time after learning. 

 

D. Nao Experiment Discussion 
We have previously demonstrated how the user can 

employ language to teach new actions [13, 14], and then 
combined the previously learned actions into a new shared 
plan [11, 15].  The current research extends this shared plan 
learning. For the first time, we demonstrate how spoken 
language can be used to coordinate on-line multimodal 
learning for a shared cooperative plan.  The multiple 
modalities include imitation of actions performed by the 

human (using the Kinect), human demonstration of a desired 
trajectory by physically manipulating the robot arm, and 
finally, spoken language based invocation of known actions, 
with all of these modalities contributing to a coherent and 
integrated plan.  We should stress that learning by imitation, 
demonstration and spoken language programming all have 
been extensively studied in the past.  What is new here is the 
combination of these multiple modalities in a coherent and 
seamless manner, under the control of language.  It is worth 
noting that while we emphasize the learning of the “clean the 
table” shared plan, the grammar-based learning capability 
allows for the construction of arbitrary turn-taking action 
sequences. 

V. MULTIMODAL LEARNING II:  ICUB & REACTABLE 
 

While the learning that we observed in the previous section 
has certain components that are platform specific (e.g. the 
morphology of the Nao, and the mapping of the Kinect to that 
morphology), the principal learning component which is based 
on spoken language is platform independent.  Indeed, it 
provides a method for the linking together of action primitives 
into shared plans that can subsequently be used to achieve 
cooperative activity. 

 

A. Learning the Shared Plan and Component Actions 
In the first experiment with the iCub, the human explains a 

shared cooperative task similar to that used with the Nao, 
where the goal is to “hide” a toy under a box.  The grammar is 
of the same structure as that used for the Nao.  The principal 
difference is that it is constructed so that the plan is 
successively constructed from single actions that are 
concatenated with the previous actions (4). 

 
(1) $subjects = I | Me | You | Stephane | Maxime | Peter | 

iCub; 
(2) $objects = box | toy | trumpet | drums | left | middle | 

right; 
(3) $action =  

a) $subjects [*sil%% | *any%%] grasp [*sil%% | 
*any%%] $objects |  

b) $subjects [*sil%% | *any%%] point [*sil%% | 
*any%%] $objects |  

c) $subjects [*sil%% | *any%%] put [*sil%% | 
*any%%] $objects [*sil%% | *any%%] 
$objects |  

d) $subjects [*sil%% | *any%%] uncover 
[*sil%% | *any%%] $objects [*sil%% | 
*any%%] $objects;  

(4) $sharedPlan = concatenate($sharedPlan,$action) ; 
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Figure 6.  Learning and performing the “hide the toy” 
cooperative plan. Setup with the “toy” on the left of the table, 
and “box” on the right.  Spatial representation on iCub GUI 
left rear.  B.  iCub puts the box on its left.  C.  human put the 
toy in the middle. D. iCub reaches for the box, and F. puts the 
box on the toy.  Note the grasping precision. 
 
 

 
Here we illustrate how by exploiting this grammar, the 

shared plan manager can construct the shared plan from the 
sequence of actions described by the subject.  

 
00:00 ICub: “What can I help you with?” 
00:02 Human: “Shared Plan”.  
00:05 ICub: “Shared Plan menu”. 
00:07 Human: “You and I hide the toy 

with the box”.  
The Supervisor consults the Shared Plan Manager, and 

determines that there is no definition for this plan. 
 
00:11 ICub: “Tell me how you and I can 

hide toy box?” 
00:13 ICub: “What is next?” 
00:17 Human: “You put box left”.  
00:20 ICub: “Did you say ‘you put box 

left’?”. 
00:23 Human: “Yes I did”. 
00:25 ICub: “What is next?”.  
00:27 Human:“I put toy middle”.  
00:30 ICub: “Did you say ‘I put toy 

middle’?”.  
00:32 Human: “Yes I did”. 

00:35 ICub: “What is next?”.  
00:38 Human:“You put box toy”.  
00:40 ICub: “Did you say ‘You put box 

toy’?”.  
00:43 Human: “Yes I did”. 
00:46 ICub: “What is next?”. 
00:48 Human: “Finished”.  

 
The successive actions of the shared plan have now been 

extracted, and the plan is stored as: 
 
Hide (you, I, toy, box){  
           (You put (box left)) 
           (I put (toy middle)) 
           (You put (box toy))} 
 
In the definition, the four arguments to hide are 

instantiated with the “you, I, toy, box”.  When the shared plan 
is used in the future, it can be called with different arguments, 
e.g. hide(John, you, trumpet, carton) for “John and you hide 
the trumpet with the carton”, and these new arguments will be 
systematically substituted into the component actions of the 
shared plan.   This provides the ability generalize to new 
objects and agents, including providing a capability for role 
reversal as specified in section C.  

 
 
 

B. Executing the Shared Plan  
 
01:00 Human: “You and I hide the trumpet 

with the box” 
 
Note here that the system allows arguments to be used in 

the “hide” shared plan.  Here trumpet will be hidden. 
 
01:04 ICub: “I will put the box on the 

left. You will put the trumpet on the 
middle. I will put the box on the 
trumpet. Should we proceed?”. 

01:24 Human: “Yes we should” 
01:26 ICub: “I will put the box on the 

left“. 
The robot performs its action, illustrated in Figure 6A-B. 
 
02:02 ICub: “You will put the trumpet on 

the middle”. 
The human makes the move, and the robot detects the 

change of position of the trumpet to the middle (Figure 6C). 
02:12 ICub: “I will put the box on the 

trumpet”. 
The iCub performs the final move, covering the trumpet 

with the box (Figure 6D-E), completing the shared plan.. 
 
02:48 ICub:  “Shared Plan menu”. 
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C. Role Reversal 
In the cooperative task, the user can decide who takes 

which role.  This implies the principal of role reversal.  As 
stated in the introduction, role reversal is taken as evidence 
that the agent has a global representation of the actions that 
both agents will perform.  This representation allows the agent 
to take on the role of either of the two participants in the 
shared plan  [12]. 

In order to reverse roles, the human can use the same 
shared plan, and indicate role reversal by specifying the 
arguments in the reversed order.  He can say “you and I hide 
the toy in  the box” or “I and you hide the toy in  the box.”  As 
specified in section V.A above, depending on how the 
pronouns I and you are ordered in the specification, the roles 
of the human and robot will be reversed. 

00:08 Human: “I and You will hide the 
toy in the box” 

00:13 ICub: “You will put the box on 
the left. I will put the toy on the 
middle. You will put the box on the 
toy. Should we proceed?”. 

00:29 Human: “Yes we should” 
00:31 ICub: “You will put the box on 

the left“. 
Here the robot detects the change of position of the box to 

the left. 
00:37 ICub: “I will put the toy on the 

middle”. 
01:13 ICub: “You will put the box on 

the toy”. 
01:19 ICub:  “Shared Plan menu”. 

 
Role reversal is a specific instance of a more general 

capability that is provided by the system.  That is, once a 
shared plan has been learned with a given set of agent 
arguments, the arguments for the two agents can be 
instantiated with different instances, e.g. I and you vs. you and 
I. 

D. Performance Analysis 
 

We repeated the shared plan learning, execution and role 
reversal twice each.  The timing of the principal events is 
illustrated in Figure 7.  It is noteworthy that the system allows 
the multiple-action shared plan to be specified in well-under 
one minute, and then executed in this same time scale, both in 
the standard format, and the role reversal.  

 

 
Figure 7.  Event durations (in seconds:minutes) for two trials 
(Trial 1 in black, trial 2 in grey) of the learning, execution and 
role reversal for the “hide the toy” shared plan.   

 
 Note that in Figure 7, the role reversal condition is 

executed more rapidly than the standard condition.  This is due 
to the relative slowness of the robot actions, with respect to 
those of the human.  In the standard sequence, the robot 
performs two actions (moving the box away from the center, 
and then over the toy) while the human performs only one 
action (placing the toy in the middle to be covered).  This is 
reversed in the role, reversal, and thus the effect of the 
slowness of the robot is reduced. 

 

E. iCub Discussion 
These experiments extend the results with the Nao, which 

is in part achieved because of the more dexterous grasping 
capabilities of the iCub.  In the current experiments we 
demonstrated how an arbitrary shared plan could be 
established in less than one minute, and then immediately be 
used to execute the cooperative task.  In addition, we 
demonstrate how this shared plan can be used to allow role 
reversal, in which the two agents swap roles.  Again, for 
Carpenter et al. [12] this is a hallmark of shared plan use, as it 
clearly demonstrates that the agents have a “bird’s eye view” 
or global view, of the shared activity.  Technically this 
requires that all of the actions that can take place in the shared 
plan can be executed physically by both the human and the 
robot.  Because of the high spatial precision of the ReacTable, 
and the precision grasping capabilities of the iCub, this is a 
technical reality. 

VI. DISCUSSION AND FUTURE WORK 
The current research can be situated within the larger 

context of cognitive developmental robotics [52], with 
physical embodiment playing a central role in structuring 
representations within the system, through interaction with the 
environment, including humans.  In development, the early 
grammatical constructions that are acquired and used by 
infants define structural mappings between the underlying 
structure of everyday actions, and the expression of this 
structure in language [6, 53].  We have exploited this 
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mapping, in building systems that can learn grammatical 
constructions from experience with the environment  [8, 54].  
Here we exploit this type of grammatical construction, by 
building such constructions into the grammars that are used 
for speech recognition.  These constructions that map onto the 
basic structure of action (e.g. agent action object) correspond 
to the basic argument constructions that are the workhorses of 
initial language [6, 53].  The “ditransitive” construction is a 
good example that has been extensively studied  [5]. In a 
canonical form of this construction “Subject Verb 
Recipient Object” (e.g. John gave Sally a flower), 
Subject maps onto the agent of the transitive action 
specified by Verb, and Recipient receives the Object 
via that transitive action.  The current research demonstrates 
how language, based on these constructions, can be used to 
coordinate real-time learning of cooperative actions, providing 
the coordination of multiple demonstration modalities 
including vision-like perception, kinesthetic demonstration 
[13, 29, 55-58], and command execution via spoken language.  
In this sense, language serves a dual purpose: First and most 
important, it provides the mechanism by which a cooperative 
plan can be constructed and modified.  Second, during the 
construction of the shared plan, one of the modalities by which 
actions can be inserted into the plan is via the spoken issue of 
a command.  We demonstrate that in this framework, the 
constructive features of language can be mapped onto 
different robot platforms.  This requires the mapping of the 
argument structure of grammatical constructions onto the 
predicate-argument structure of the command and perceptual 
operators of the given platform  [13, 55].  Doing so, we 
subsequently achieve performance, where the systems can 
learn and perform new cooperative behaviors in the time 
frame of 2-3 minutes.  The introduction of structured language 
provides a powerful means to leverage sensory-motor skills 
into cooperative plans, reflecting how the development of 
language in human children is coincident with an explosion in 
their social development in the context of triadic relations 
between themselves, another person and a shared goal [1].  
We should note that the “ecological validity” of the kind of 
language that the user can employ is somewhat restricted to 
simple grammatical constructions. That is, people cannot use 
fully unconstrained natural language, such as relative clauses, 
and pronouns.  Still, this allows sufficient expressive ability 
for the user to construct elaborated shared plans.  

The approach to learning that we have taken thus consists in 
the implementation of a highly structured scaffolding that 
allows the user to teach the robot new action components, and 
then to teach the robot how to organize these actions into more 
elaborate turn-taking sequences that constitute shared plans.  
The advantage of this approach is that it is powerful and scales 
well.  It is powerful because it allows the user to specify 
arbitrary turn-taking sequences (which can even include solo 
sequences that are performed only by one of the agents), and 
the set of elementary actions can also be augmented through 
learning.  All of this learning can be done with a single trial.  
The advantage of this is that learning is rapid. Indeed, related 
studies have demonstrated that for complex tasks such as those 

used here, human and neural network simulations fare better 
with high level instruction (imitation or verbal instruction) 
than with lower level instruction (reinforcement learning) 
[59]. The disadvantage is that the teaching must be perfect.  
Thus, in demonstrating a trajectory, the system cannot benefit 
from a successive refinement over multiple trials  [60]. 

One of the limitations of this work is that there is not a 
systematic mechanism for the long-term accumulation and 
synthesis of such learning.  In the future it will be important 
for these developmental acquisitions to be integrated into the 
system over a life-time scale [61].  Another limitation is that 
in the current research the behavior is determined by the 
shared plan, and there is no choice.  To cope with changing 
task contingencies, the system will require more adaptive 
behavior including the ability to choose between competing 
options [62].  Perhaps one of the most fundamental limitations 
of the current research, which lays a foundation for future 
research, has to do with the deeper nature of the shared plan.  
This is the notion of the shared intention.  Our robots can learn 
a plan that allows them to perform a cooperative task, and 
event to demonstrate role reversal.  Yet the true notion of the 
actual final goal, the shared intention, to get that toy into the 
box, is currently not present.  We have started to address this 
issue by linking actions to their resulting states, within the 
action representation [56].  We must go further, in order to 
now expand the language capability to address the expression 
and modification of internal representations of the intentional 
states of others. 

The current research proposes an interaction architecture, 
for on-line multi-modal learning, and demonstrates its 
functionality.  It is not an extended user study that allows for 
the collection of data whose variability can be statistically 
analyzed in a population of subjects.  Within the interactions 
that we test, the most pertinent parameter that reflects the 
change in the real-time flow and fluidity of the interactions is 
related to the time required for different component actions, 
and their changes as a function of learning.  We thus 
demonstrate the feasibility of using spoken language to 
coordinate the creation of arbitrary novel turn-taking action 
sequences (which we refer to as shared plans).  This includes 
the ability to create new actions (through demonstration and 
imitation), and to embed these actions in new turn-taking 
shared plans.  Clearly a more robust demonstration of the 
performance of the architecture (and effective time gains 
before/after learning) should use naïve users and include 
metrics related to interaction quality, success etc.  This is a 
topic of our ongoing research. 
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