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Reinforcement learning is a plausible theoretical basis for developing self-learning, 
autonomous agents or robots that can effectively represent the world dynamics and 
efficiently learn the problem features to perform different tasks in different environments. 
The computational costs and complexities involved, however, are often prohibitive for real-
world applications. This study introduces a scalable methodology to learn and transfer 
knowledge of the transition (and reward) models for model-based reinforcement learning 
in a complex world. We propose a variant formulation of Markov decision processes 
that supports efficient online-learning of the relevant problem features to approximate 
the world dynamics. We apply the new feature selection and dynamics approximation 
techniques in heterogeneous transfer learning, where the agent automatically maintains 
and adapts multiple representations of the world to cope with the different environments 
it encounters during its lifetime. We prove regret bounds for our approach, and empirically 
demonstrate its capability to quickly converge to a near optimal policy in both real and 
simulated environments.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Next generation robotics aims at developing autonomous agents with integrative intelligence; these agents or groups of 
agents can automatically or semi-automatically collect sensor inputs, make decisions, learn new skills, and interact with 
humans or other agents to complete multiple, complex tasks in different real-world domains [1]. Emerging global research 
and development trends point to collaborative robots that can work and interact with people [2], dexterous robots with 
advanced manipulation skills and “soft touches” [3], and cognitive robots that are self-improving, robust, and flexible [4]. In 
Asia, for example, social and economic demands have led to intensified activities to develop assistive robots to complement 
a dwindling workforce and healthcare robots to help caring for an ageing population [5].

A major challenge in designing intelligent robots is to equip them with the capabilities to effectively use past experiences 
and at the same time efficiently learn new skills to perform different tasks in different environments. Real-world dynamics 
is usually uncertain, unstructured, and non-stationary; the tasks, objectives, resources, and conditions of the robots may also 
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change over time. The skills required for successful problem solving and decision making are not easily described as simple 
rules, guidelines, or processes. A self-learning agent that can select useful environmental features and learn to behave, to a 
certain degree, based on trial and error is a promising approach to building robots that act in the real world.

1.1. Reinforcement learning in robotics

Reinforcement learning (RL) [6] trains an autonomous agent to behave intelligently based on the feedback it receives 
when interacting with the environment. An RL task is commonly represented as a Markov decision process (MDP) with a 
specific domain that includes the relevant actions and states with the defining features, and unknown dynamics (transition) 
and/or goal or feedback (reward) functions. The main challenges of applying RL in robotic domains include the multidimen-
sional state and action spaces that incur high computational costs, the physical constraints that make acting in the real 
world much more difficult than in simulated worlds, the uncertainty due to partial observability of the physical environ-
ments and inherent noise in the sensor measurements, and the difficulty in tailoring the feedback or reward functions to 
guide intelligent behavior of the robots [7].

Despite the challenges, RL has recently been applied in complex tasks such as helicopter maneuvering [8], soccer robots 
[9], and robot navigation [10] with reasonable success. In these cases, careful selections of problem representations, prior 
experiences, and efficient approximations have rendered RL computationally feasible in the complex settings.

In this work, we design a representation of the world dynamics in model-based RL that allows efficient and scalable 
approximation of the agent’s action effects. At the core of our method is the ability to automatically select the relevant 
features of the environment that allow the agent to predict how the environment reacts to its actions. This ability to 
automatically learn to focus attention on the critical factors of the problem is one of the crucial elements needed to make 
intelligent behavior in complex environments computationally feasible.

The value of online feature extraction is further accentuated in situations where the agent encounters many different 
environments in its lifetime, and where transfer learning is essential. While manually designing a small set of important 
features is non-trivial for many real-world tasks, doing so for different environments, some of which may be unknown a 
priori, is even harder. For example, the Mars exploration rover, Opportunity, is now expected to travel tens of kilometers 
through different terrains, with possibly varying characteristics and dynamics, to collect scientific objects [11]. Most of the 
environmental features that it will encounter are unlikely to be specified beforehand.

1.2. Transfer learning in robotic reinforcement learning

In the original RL framework, the agent’s knowledge is task and domain specific. A small change in the task or its domain 
may render the agent’s accumulated knowledge useless; costly relearning from scratch is often needed. In transfer learning, 
an agent applies the knowledge or experience gained in previous (source) tasks to influence and improve the performance 
of new, related (target) tasks. Transfer in RL assumes that knowledge from one or more source task(s) is used to learn one 
or more target task(s) faster than if transfer was not used. In contrast to multi-task learning, which assumes that all the 
tasks are drawn from an underlying, possibly unknown distribution, transfer learning is more general in allowing transfer 
amongst tasks with heterogeneous domains, dynamics, and goals [12]. Transfer learning is hence most relevant in building 
lifelong learning agents or robots – agents that can learn, retain, and transfer knowledge acquired from multiple tasks over 
multiple domains, in a sequential manner, to develop more accurate solutions or policies in learning new tasks over its 
lifetime [13].

Transfer in RL is different from another main category of transfer learning tasks that focus on classification, regression, 
and clustering in non-dynamic domains [14]. The main technical challenges involved, however, are similar in identifying the 
commonalities between the source tasks or domains and the target tasks or domains. Transfer in RL addresses the issues 
of what to transfer, how to transfer, and when to and when not to transfer to avoid or minimize negative effects on the 
learning performance in the new environment.

Many existing RL transfer techniques, however, assume the same state-action spaces i.e., homogeneous domains in dif-
ferent tasks. This assumption may not work well in real-life applications. For example, many environmental cues that help 
an agent navigate through a forest are simply missing when the agent tries to navigate at sea. While recent efforts have 
addressed inter-task transfer in heterogeneous domains or different state-action spaces [15–19], such mappings are hard 
to define when the agent operates in real-world environments with large state-action spaces and multiple goal states, with 
possibly different state feature distributions and world dynamics. A trade-off between computational complexity and sample 
efficiency is usually involved in automatically learning the mappings [20].

We propose an efficient, online system that tries to transfer old knowledge, but at the same time evaluates new options 
to see if they work better. The agent gathers experience during its lifetime and enters a new environment equipped with 
expectations on how different aspects of the world affect the outcomes of the agent’s actions. The main idea is to allow 
an agent to collect a library of world models or representations, called views, that it can consult to focus attention in a 
new task. In this paper, we concentrate on approximating the dynamics or transition model. The feedback or reward model 
library can be learned in an analogous fashion. Effective utilization of the library of world models allows the agent to capture 
the transition dynamics of the new environment quickly; this should lead to a jumpstart in learning and faster convergence 
to a near optimal policy. A main challenge is in learning to select a proper view for a new task in a new environment, 
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without any predefined mapping strategies. The ability to learn new views is also critical in the complex, and feature-rich 
real environments.

Through scoring the learned views and simultaneous evaluation without the views, our system mitigates potential nega-
tive effects by balancing the exploration-and-exploitation trade-off. This is in contrast to minimizing negative transfer effects 
through determining the underlying relationships between the experiences and the new tasks and domains [14]. Such rela-
tionships may not exist and are usually hard to determine in the heterogeneous, dynamic environments that we focus on.

1.3. A new transfer learning framework

We present a new transfer learning framework that supports all the essential steps of a fully autonomous RL transfer 
agent, as compared with most existing work that mainly focuses on one or two of these steps [12]:

1. Select an appropriate source task or set of source tasks to transfer to a target task;
2. Learn the relationships between the source and the target tasks; and
3. Transfer the relevant knowledge from the source task to the target task to improve learning performance.

Our system comprises the following components:

• Situation-calculus Markov decision process (CMDP), a new variant of factored MDP that compactly represents the rele-
vant action effects in a dynamic environment;

• A collection of views, which summarize the experiences learned from constructing transition models in different en-
vironments based on multinomial logistics regression; the views are scored based on their relevance in the new 
environments;

• A view or transition model learning algorithm, multinomial Dual Averaging with Group Lasso (mDAGL), that supports 
online feature selection and relevance-focused updating;

• A new reinforcement learning algorithm, logistic regression RL (loreRL), that applies mDAGL on a CMDP to learn the 
transition models by automatically focusing on the relevant features in the environment; and

• A new transfer learning algorithm, Transfer ExpectationS (TES), that may utilize the previously learned transition models 
to improve reinforcement learning in new environments.

The rest of the paper is organized as follows. We will next formalize the problem and describe the method of online 
feature selection and collecting views into a library. We will then present an efficient implementation of the proposed 
transfer learning technique. After discussing related work, we will demonstrate the effectiveness of our system through a 
set of simulated experiments and a real robotic application. We will conclude by discussing the lessons learned and the 
implications for future robotic research.

2. Background

A task or a problem M for an intelligent agent or robot to solve, e.g., navigate to the master bedroom or fetch a cup from 
the kitchen table, is typically modeled as a Markov decision process (MDP) defined by a tuple M = (S, A, T , R), where S is 
a set of states; A is a set of actions; T : S × A × S → [0, 1] is a transition function or model, such that T (s, a, s′) = P (s′|s, a)

indicates the probability of transiting to a state s′ upon taking an action a in state s; R : S × A →R is a reward function or 
model indicating immediate expected reward after an action a is taken in state s. In RL, the state-action space S × A defines 
the domain of the task, the transition model T and the reward model R define the objective of the task [21]; the transition 
model T and (sometimes) the reward model R are unknown. The main challenge of transfer learning in RL is in transferring 
across heterogeneous domains, i.e., where the state-action spaces, and possibly the feature spaces, are different.

For each task M , the task or problem solution is to find a policy π that specifies an action to perform in each state 
so that the expected accumulated future reward (with possibly higher weights for more recent rewards) for each state is 
maximized [6]. The optimal policy π is usually derived by a model-based or a model-free approach in RL; the latter does 
not consider the transition model T in deriving the solution. The two RL approaches are based on different assumptions, 
problem characteristics, and constraints. We adopt the model-based approach as it is easier to incorporate domain or expert 
knowledge into the transition and reward models; knowledge transfer across different environments can also be facilitated 
through the models.

In model-based RL, the optimal policy is derived by first estimating the transition model T (and the reward model R , 
if necessary) through interacting with the environment. This study focuses on learning the models, and remains relatively 
agnostic about the actual planning techniques. However, since the purpose is to build a model about world dynamics, 
planning systems that rely on simulators appear most natural.

3. A multi-view transfer learning framework

A key idea of this work is that the agent can represent the world dynamics from its sensory state space in different 
ways. Such different views correspond to the agent’s decisions to focus attention on only some features of the state in order 



T.T. Nguyen et al. / Artificial Intelligence 247 (2017) 70–94 73

Fig. 1. Our life-long learning agent.

Algorithm 1 Overview of the proposed learning framework.
Input: View library L.
Output: Updated view library L.

Initialize the system for a task

LH : historical record of how good each view was in previous tasks
L′ ← L /*A working copy of L to find the dynamics of the current environment*/
B ← initialize belief of how well each view can approximate the current

environment dynamics based on LH .
/* while interacting with the environment */
for t = 0, 1, 2, . . . do

Select views to approximate the world transition dynamics
{W} ← select the most promising views from L′ based on B
Interact with environment based on that approximate model
π ← plan an action policy based on {W}
st : current state in the environment
at ← choose an action to perform in st according to action policy π
Perform action at and observe feedback: action outcomes from the environment
Score all views with the new feedback
S ← score all views in L′ with the new feedback
B ← update belief about the views in L′ based on the score S
Adjust all views with new feedback
L′ ← Adapt all views toward this current environment based on the new feedback
Break when the task ends

end for
Update view library L
L ← Update the view library, e.g.

If a view W is different from existing views in L,
which means the transition dynamics of the corresponding action is new,

then add that view W to L;
else replace the old view in L with the newly updated view W.

to quickly approximate the state transition function. In other words, a view represents an expectation of the agent about 
the transition dynamics resulting from one (or several) of its actions in the task environment. In a new task, the agent will 
select appropriate views to solve the task, and to learn new views if the environment is novel. Fig. 1 illustrates the workflow 
of our life-long learning agent. Parts of this work have been published in [22–24].

We sketch the overall behavior of our agent in Algorithm 1.
When the agent does not have any initial information about the transition dynamics of the environment in a new task, 

it selects “expectations” or views based on history that tells how well each view in the library has worked in previous tasks. 
We assume that the more frequently a view has worked in the past, the more likely it will work again in a new task.

The agent then operates according to the policy learned based on the transition model built from the selected views, 
assuming that the reward model is known. However, since the views have been selected without any reference to the 
actual characteristics of the new environment, it is highly likely that these views are inappropriate for the current task. In 
other words, the “expected” transition model may not correctly approximate the true transition dynamics of the current 
environment. The resulting policy may just perform poorly, leading to negative rewards.

To limit such negative transfer effects, our agent exploits the outcomes or feedback for each of its actions, in terms 
of state changes and rewards, to score all the views in the library. The score estimates the capability of each view in 
approximating the transition dynamics in the current environment; it is a primary criterion to re-select the views for 
subsequent decisions.

The new task and/or environment, however, may actually be very different from all the past experiences of the agent. In 
this case, none of the recorded views can capture or adapt to the new transition dynamics. Hence, environment feedback is 
also used to develop and incorporate new views into the library. These steps are repeated until a stopping criterion is met.
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Fig. 2. Different ways to decompose a state transition function.

At the end of a task, the selected views will be recorded as new additions in the library if the transition dynamics 
captured is significantly different from the existing views. Otherwise, the agent would just update the existing views ac-
cordingly. Views that have not been used for a “long time” will be pruned to manage the library size.

We address three main technical challenges in this framework: First, the transition model T (S, A, S) is task specific, 
which is probably a reason why there have not been many studies that transfer the transition model. Second, learning 
or updating a view or a transition model online in a complex and feature-rich environment is computationally expensive. 
Third, the view scoring method must be simple to be calculated online, based on feedback from the environment. The view 
library also needs to be efficiently updated.

3.1. Situation calculus MDP: CMDP

In a factored MDP, each state s is represented by a vector of n state-attributes si, i = 1, . . . , n. Each state attribute is a 
random variable that can take on multiple values; each state s is defined by the Cartesian product of the n state attributes. 
For example, the binary state attributes Water (with values present and absent) and Martians (with values present and 
absent) will define all the states that describe the “interestingness” of a particular location on Mars: {(water, Martians), 
(water, no-Martians), (no-water, Martians), (no-water, no-Martians)}.

The transition function or model for the factored states is commonly expressed in dynamic Bayesian networks (DBNs), a 
temporal variant of Bayesian networks. In the DBN representation of the transition model, T (s, a, s′) = ∏n

i=1 P (s′
i |Paa

i (s), a), 
where si is a state-attribute, Paa

i indicates a subset of state-attributes in s called the parents of s′
i (Fig. 2a), i.e., the attributes 

of s from which there are arcs to s′
i in the DBN. Learning T requires learning the subsets Paa

i and the parameters for 
conditional distributions, or the DBN local structures. A critical issue in this MDP formulation is the ambiguous definitions 
of the factored attributes or variables. The state-attributes or features serve to both define the state space and capture 
information about the transition model, even if these two purposes can be very different. For example, two state-attributes, 
the (x, y)-coordinates uniquely identify a state and compactly factorize the state space in a grid-world. A policy can be 
learned on this factored space. The state transition dynamics, however, may depend on other features of the state, such as 
the surface material at the location (state), the presence or absence of Martians, etc. Such features are often included in 
the state representations. While essential in formulating the transition or reward models, these features may complicate the 
planning or learning processes by increasing the size and complexity of the state space.

We present a variant of the factored MDP that defines a “compact but comprehensive” factorization of the transition 
function and supports efficient learning of the relevant features. We separate the state identifying state-attributes from the 
“merely” informative state-features in our representation (see Fig. 2b). This way, we can apply an efficient feature selection 
method on a large number of state features to capture the transition dynamics, while maintaining a compact state space.

Similar to the approach proposed by Konidaris and Barto [25], the state attributes could be defined in terms of the agent-
space representation based on the capabilities afforded by the sensors or actuators of the robot, e.g., the (x, y)-coordinates 
of the robot location. The state features, on the other hand, could be defined in terms of the problem-space representation 
based on the domain or environmental characteristics of the task, e.g., the terrain or wetness of the floor surface, which 
may or may not be accurately detectable by the agent or robot.

Learning DBN structures of the transition function online, i.e., while the agent is interacting with the environment, is still 
computationally prohibitive in most domains. On the other hand, recent studies [26,27] have shown encouraging results in 
learning the structure of logistic regression models, which can effectively approximate the local structures in DBNs even in 
high dimensional spaces. While these regression models cannot fully capture the conditional distributions, their expressive 
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power can be improved by augmenting low dimensional state representation with non-linear features of the state vectors. 
We will introduce an online sparse multinomial logistic regression method that supports efficient learning of the structured 
representation of the transition function in Section 4.

In addition, we predict the relative changes of states instead of directly specifying the next state-attributes in a transition 
(see Fig. 2c). In RL, an action will stochastically create an effect that determines how the current state changes to the next 
one [28,10,17]. Mediating state changes via action effects is a common strategy in the classic situation calculus [29]. Since 
the number of relative changes or action effects is usually much smaller than the size of the state space, or the size of 
state-attribute domains, the corresponding prediction task should be easier. The learning problem can then be expressed as 
a multi-class classification task of predicting the action effects.

Usually, the transition functions and reward functions are defined in terms of the state features – aspects of the state 
representation that help in predicting the action effects. In a specific task or environment, the same action in different states 
(e.g., different locations) with the same features tend to yield the same action effects (i.e., relative changes in the states).

Formally, a situation calculus MDP (CMDP) is defined by a tuple M = (S, f , A, T , E, R, γ ), where S, A, T , R, γ have the 
same meaning as in a regular MDP. S = 〈S1, S2, .., Sn〉 is the state space implicitly represented by vectors of n state-attributes. 
The function f : S → R

m extracts m state-features from each state. E is an action effect variable such that the transition 
function can be factored as

T (s,a, s′) = P (s′ | s,a) =
n∏

i=1

P (s′
i | s, f (s),a)

=
n∏

i=1

∑
e∈E

P (s′
i | e, s)P (e | s, f (s),a). (1)

Fig. 2c shows an example of this decomposition. The agent uses the feature function f to identify the relevant features, 
and then uses both state attributes and features to predict the action effects. We also assume that the effect e and current 
state s determine the next state s′ , thus P (s′|e, s) is either 0 or 1. This defines the semantic meaning of the effect which 
is assumed to be known by the agent. The remaining task is to learn P (e|s, a) = P (e|x(s), a), where x(s) = (s, f (s)) is a 
vector containing both the state attributes and the state features. Assuming the effect e is discrete, learning P (e | x(s), a)

is a classification problem. In Section 4 we will show how to solve this problem by using multinomial logistic regression 
methods.

3.2. Transferring expectations: TES

In our framework, the knowledge gathered and transferred by the agent is collected into a library T of online effect 
predictors or views. A view consists of a structure component f̄ that picks the features which should be focused on, and 
a quantitative component � that defines how these features should be combined to approximate the distribution of action 
effects. Formally, a view is defined as τ = ( f̄ , �), such that P (E|S, a; τ ) = P (E| f̄ (S), a; �) = τ (S, a, E), in which f̄ is an 
orthogonal projection of x(s) to some subspace of Rm , where m is the dimension of the subspace. Each view τ is specialized 
in predicting the effects of one action a(τ ) ∈ A and it yields a probability distribution for the effects of the action a in any 
state. This prediction is based on the features of the state and the parameters �(τ) of the view that may be adjusted based 
on the actual effects observed in the task environment.

We denote the subset of views that specify the effects for action a by T a ⊂ T . The main challenge is to build and 
maintain a comprehensive set of views that can be used in new environments likely resembling the old ones, but at the 
same time allow adaptation to new tasks with completely new transition dynamics and feature distributions.

At the beginning of every new task, the existing library is copied into a working library which is also augmented with 
fresh, uninformed views, one for each action, that are ready to be adapted to new tasks. We then select, for each action, a 
view with a good “track record”, i.e., it has been “used” or applied many times or with a high recency-weighted score. This 
view is used to estimate the optimal policy based on the transition model specified in Equation (1), and the policy is used 
to pick the first action a. The action effect is then used to score all the views in the working library and to adjust their 
parameters. In each round the selection of views is repeated based on their scores, and the new optimal policy is calculated 
based on the new selections. At the end of the task, the actual library is updated by possibly recruiting the views that have 
“performed well” and retiring those that have not. A more rigorous version of the procedure is described in Algorithm 2.

3.2.1. Scoring the views
To assess the quality of a view τ , we measure its predictive performance by a cumulative log-score. This is a proper

score [30] that can be effectively calculated online.
Given a sequence Da = (d1, d2, . . . , dN) of observations di = (si, a, ei) in which action a has resulted in effect ei in state 

si , the score for an a-specialized τ is

S(τ , Da) =
N∑

i=1

logτ (si,a, ei; θ i(τ )),
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Algorithm 2 TES: Transferring Expectations using a library of views.
Input: T = {τ1, τ2, . . .}: view library; CMDP j : a new jth task; �: view goodness evaluator
Let T0 be a set of fresh views – one for each action
Ttmp ← T ∪ T0 /* the working library for the task */
for all a ∈ A do T̂ [a] ← arg maxτ∈T a �(τ , j) end for /* selecting views */
for t = 0, 1, 2, . . . do

at ← π̂ (st ), where π̂ is obtained by solving MDP using transition model T̂
Perform action at and observe effect et

for all τ ∈ T at
tmp ∪ T at do Score[τ ] ← Score[τ ] + logτ (st , at , et ) end for

for all τ ∈ T at
tmp do Update view τ based on ( f (st ), at , et ) end for

T̂ [at ] ← arg maxτ∈T at
tmp

Score[τ ] /* selecting views */

end for
for all a ∈ A do τ ∗ ← arg maxτ∈T a

tmp
Score[τ ];

T a ← growLibrary(T a, τ ∗, Score, j) /* updating library */
end for
if |T | > M then T ← T − {arg minτ∈T �(τ , j)} end if /* pruning library */

Algorithm 3 Grow sub-library T a .
Input: T a, τ ∗ , Score, j: task index; c: constant; Hτ ∗ = {}: empty history record
Output: updated library subset T a and winning histories Hτ ∗
case τ ∗ ∈ T a

0 do T a ← T a ∪ {τ ∗} /* add newbie to library */
otherwise do Let τ̄ ∈ T be the original, not adapted version of τ ∗

case Score[τ ∗] − Score[τ̄ ] > c do T a ← T a ∪ {τ ∗}
otherwise do T a ← T a ∪ {τ ∗} − {τ̄ }

Hτ ∗ ← H τ̄ /* inherit history */
Hτ ∗ ← Hτ ∗ ∪ { j}

where τ (si, a, ei; θ i(τ )) is the probability of effect ei given by the view or effect predictor τ based on the features of state 
si and the parameters θ i(τ ) that may have been adjusted using previous data (d1, d2, . . . , di−1).

3.2.2. Growing the library
After completing a task, the highest scoring views for each action are considered for recruiting into the actual library. 

The winning “newbies” or new entries are automatically accepted. In this case, the data has most probably come from the 
distribution that is far from the any current models, otherwise one of the current models would have had an advantage to 
adapt and win. In other words, this means that the existing views have generated low or negative rewards in the process 
of deriving the optimal policy in RL; they have not been used further and a new set of world dynamics has been learned. 
Instead of trying to directly identify the underlying commonalities between the old and new tasks and/or environments, 
our framework mitigates potential negative transfer effects by learning the new views or transition dynamics in parallel to 
exploiting and examining if the existing views can improve learning. This ability is important in real domains where the 
underlying system dynamics may not be easily determined.

The winners τ ∗ that are adjusted versions of old views τ̄ are accepted as new members if they score significantly higher 
than their original versions, based on the logarithm of the prequential likelihood ratio [31] �(τ ∗, τ̄ ) = S(τ ∗, Da) − S(τ̄ , Da). 
Otherwise, the original versions τ̄ get their parameters updated to the new values. This procedure is just a heuristic and 
other inclusion and updating criteria may well be considered. The policy is detailed in Algorithm 3.

3.2.3. Pruning the library
To keep the library relatively compact, a plausible policy is to remove views that have not performed well for a long time, 

possibly because there are better predictors or they have become obsolete in the new tasks or environments. To implement 
such a retiring scheme, each view τ maintains a list Hτ of task indices that indicates the tasks for which the view has been 
the best scoring predictor for its specialty action a(τ ). We can then calculate the recency weighted track record for each 
view. In practice, we have adopted the procedure by Zhu et al. [32] that introduces the recency weighted score at time T as

�(τ , T ) =
∑

t∈Hτ

e−μ(T −t),

where μ controls the speed of decay of past success. Other decay functions could naturally also be used. The pruning can 
then be done by introducing a threshold for recency weighted score or always maintaining the top m views.

4. A view learning algorithm

In TES, a view can be implemented by any probabilistic classification model that can be quickly learned online. This 
requirement excludes most of the batch or offline classification methods. In this study, we introduce a scalable online sparse 
multinomial logistic regression algorithm to incrementally learn a view. The proposed algorithm optimizes an objective 
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Algorithm 4 The mDAGL algorithm.
Input: λ, α

Let h(W ) be a strongly convex function with modulus 1
Let W 1 = W 0 = arg minW h(W )

Let Ḡ0 = 0̄
for t = 1, 2, 3, . . . do

(yt , xt ) ← observe data
(W t+1, ̄Gt ) ← mDAGL-update(t, yt , xt , W t , ̄Gt−1, λ, α)

end for

function similar to the group lasso [33] which has been recently suggested for efficient feature selection among a very large 
set of features [27].

Multinomial logistic regression is a simple yet effective classification method. Assuming K classes of d-dimensional 
vectors x ∈ R

d , we represent each class k with a d-dimensional prototype vector Wk . Classification of an input vector x
is based on how “similar” it is to the prototype vectors. Similarity is measured with inner product 〈Wk, x〉 = ∑d

i=1 Wki xi , 
where xi denotes feature i. The probability of a class is defined by P (y = k | x; Wk) ∝ e〈Wk,x〉 . The parameter vectors of the 
model form the rows of a matrix W = (W1, . . . , W K )T .

Let lt(W t) = − log P (yt |xt; W t) denote the item-wise log-loss of a model with coefficient matrix W t predicting a data 
point (yt , xt) observed at time t . A typical objective of an online learning system is to minimize the total loss by updating 
its W t over time. However, the resulting model will often be very complicated and over-fitting. To achieve a parsimonious 
model, we express our a priori belief that most features are irrelevant or superfluous by introducing a regularization term 
�(W ) = λ 

∑d
i=1

√
K‖W ·i‖2, where ‖W ·i‖2 denotes the 2-norm of the ith column of W , and λ is a positive constant. This 

regularization is similar to that of group lasso. It communicates the idea that it is likely that a whole column of W has 
zero values (especially, for large λ). A column of all zeros suggests that the corresponding feature is not necessary for 
classification.

The objective function can now be written as

L(T ) =
T∑

t=1

lt(W t) + �(W t)

=
T∑

t=1

− log
e
〈W t

yt ,x
t 〉

∑
k e〈W t

k,x
t 〉 + λ

d∑
i

√
K‖W t

·i‖2,

where W t is the coefficient matrix learned using t − 1 previously observed data items. The quality of a sequence of param-
eter matrices W t , t ∈ (1, . . . , T ) with respect to a fixed parameter matrix W can be measured by the amount of extra loss, 
or regret

RT (W ) = L(T ) − LW (T )

=
T∑

t=1

(lt(W t) + �(W t)) −
T∑

t=1

(lt(W ) + �(W )).

We want to learn a series of parameters W t to achieve small regret with respect to a good model W that has a small 
loss LW (T ).

4.1. Online learning of multinomial regularized logistic regression with group lasso: mDAGL

Recently, Xiao et al. [26] introduced a dual averaging method for solving lasso online, and Yang et al. [27] extended 
the work for solving group lasso. The methods are simple, efficient, and scalable for learning the regularized regression 
models. Following the same approach, we introduce mDAGL (Algorithm 4), a new algorithm to incrementally learn W
to optimize the specified objective function in the sparse multinomial logistic regression. Typically, group lasso is used 
to regularize groups of coefficients where each coefficient corresponds to a particular feature. In our case of multinomial 
logistic regression, a group comprises the coefficients of a feature; in other words, a group is a column in coefficient 
matrix W .

In the standard online stochastic gradient descent method, after observing the data vector (yt , xt), we adjust the pa-
rameters of the model toward the directions that maximize the likelihood of the observation (or equivalently, minimize the 
item-wise log-loss lt ). The dual averaging method is a version of the stochastic gradient descent, thus we again have to 
compute the gradient Gt of the log-loss function for each observation (yt , xt). But instead of moving the parameters based 
on these directions Gt , we use Gt to update the average of gradients, Ḡt , for observations encountered this far, and move 
the parameters away from those average directions (away, since we are minimizing). We will next describe the method 
more formally.
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Algorithm 5 mDAGL-update.
Input: t, yt , xt , W t , ̄Gt−1, λ, α

Gt ← use equation (2) with (yt , xt ), W t

Ḡt ← t−1
t Ḡt−1 + 1

t Gt

W t+1 ← use equation (A.1) with Ḡt , βt = α
√

t, λ
return (W t+1, ̄Gt )

Algorithm 6 The loreRL algorithm.
Input: mDAGL regularization parameters λ, α, CMDP variables S, f , A, E, R, γ , exploration ε .
Let W = (W1, W2, . . . , W |A|) = (W 0, W 0, . . . , W 0)

Let Ḡ = (Ḡ1, ̄G2, . . . , ̄G |A|) = (�0, �0, . . . , �0)

s0 ← random initial state
for t = 1, 2, 3, . . . do

π ← Solve MDP using transition model T (W̄ )

a ← π(st , ε) #ε-greedy action selection
Take action a yielding effect e, next state st+1

(Wa, Ḡa) ← mDAGL(t, e, x(st ), Wa, ̄Ga, λ, α)

end for

We initialize the parameters W to a K × d matrix of all zeros. Let Gt
ki be the partial derivatives of function lt(W ) with 

respect to Wki at W t (Gt
ki = ∂lt

∂Wki
(W t)). We define Ḡt to be a matrix of average partial derivatives, i.e., Ḡt

ki = 1
t

∑t
τ=1 Gτ

ki , 
where taking the gradient of the loss function lτ with respect to the parameter Wki gives us the formula

Gτ
ki = −xτ

i (I(yτ = k) − P (k|xτ ; W τ )). (2)

We notice that this partial derivative points either away or towards the observed feature xτ
i depending on whether the 

observation belongs to the class k or not.
For any data observed at time t , we use the average gradient Ḡt to update the coefficient matrix W via

W t+1 = arg min
W

(
〈Ḡt, W 〉 + �(W ) + βt

t
h(W )

)
, (3)

where βt is a non-negative, non-decreasing sequence of real numbers, and 〈·, ·〉 denotes an inner product between two 
matrices; 〈Ḡt , W 〉 = ∑

k,i Ḡt
ki Wki . The first term is minimized by W that points to the direction −Ḡt . While the first term 

prefers long vectors, the regularization term �(W ) balances this out. The third term introduces an extra regularization in 
terms of a strongly convex function h(W ) that is needed for convergence and sparsity. In practice we use the Froebenius 
norm h(W ) = ∑

k,i W 2
ki and βt = √

t .
Solving the minimization problem above leads to an update rule (Algorithm 5) in which each column of the W t+1 is a 

scaled version of the corresponding column of the Ḡt . Furthermore, if the length of the average gradient matrix column is 
small enough, the corresponding parameter column should be truncated to zero. This amounts to feature selection. The full 
definition and proof of the rule are detailed in Appendix A.

A regret analysis confirms that the solution will converge and that the average maximal regret asymptotically approaches 
zero with rate O ( 1√

t
). The full analysis is detailed in Appendix B.

4.2. Model-based RL with multinomial logistic regression: loreRL

Our main task is to turn transition model learning into the learning of conditional distributions P (E | s, f (s), a) using 
multinomial logistic regression for which attention to relevant features can be efficiently implemented online via mDAGL.

The key steps of our method, called loreRL (RL with regularized logistic regression), are presented in Algorithm 6. Inputs 
to loreRL are the CMDP components (except the transition function), regularization parameters λ and α of mDAGL algorithm, 
and the ε that determines the probability of taking a random action. We first initialize logistic regression parameters Wa

and the average gradient matrices Ḡa for each action a ∈ A. We also randomly select a starting state s0.
At each time step, a random action a is chosen with a small probability ε , but otherwise we calculate the optimal policy 

π for an MDP with the transition model T (W ) is based on the current effect predictors. While we have used value iteration 
(like in Rmax) for finding the optimal policy, any other model-based RL technique can be used as well. We do not focus on 
the planning part of RL here, but search heuristics such as those used in Dyna-Q [34] or Prioritized Sweeping [35] can be 
deployed for a more scalable algorithm. After performing an action a in state st and observing its effect e, the experience 
(e, st, f (st)) will be presented to the mDAGL algorithm that updates the parameter matrix Wa and the gradient matrix Ḡa .

As we just do ε-greedy random sampling, it is impossible to guarantee PAC convergence to an optimal policy. Assuming 
that observed data is i.i.d., we can prove that difference in optimal value functions of two CMDPs with different logistic 
regression based transition functions is bounded by the difference in their parameters. This leads to a corollary for conver-
gence to near optimal policy.
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Theorem 1 (Difference in value function). Let M1 = (S, f , A, T (W M1 ), E, R, γ ) and M2 = (S, f , A, T (W M2 ), E, R, γ ) be two 
CMDPs with optimal policies π1 and π2 respectively. Let us denote by V M

π the value function for policy π in CMDP M. Let

ε1 = 2
√

max
a∈A,e∈E

‖W (a),M1
e − W (a),M2

e ‖1 sup
s

‖x(s)‖1,

then

max
s∈S

(
V M2

π1
(s) − V M2

π2
(s)

)
≤ 2γ V maxε1

1 − γ
,

where W (a),M1
e and W (a),M2

e refer to the vector of coefficients corresponding to class E = e under action a in model M1 and M2
respectively, ‖ · ‖1 is the 1-norm of vector, and V max is the maximum value of any state for any policy in either of the CMDPs.

By taking M2 to be a CMDP based on the optimal W ∗ and M1 an estimated CMDP based on mDAGL, we can derive 
a vanishing bound for value difference of policies. In case the true transition model is representable by a sparse W ∗ , we 
would most probably converge to a near optimal policy. The full proof for the theorem is in Appendix C.

When we cannot express the true transition dynamics as logistic regression based on available state features, it is hard to 
give guarantees of performance. However, we can still have some confidence in doing well. The logistic regression model P ∗

l
closest (in Kullback–Leibler distance) to the true model Ptrue (possibly not a logistic regression model) is the one2 that has 
the smallest expected log-loss. While our optimality criterion is the expected regularized log-loss, we expect the regularized 
log-loss optimal model P∗

� to be close to P∗
l thus almost as close to Ptrue as we can get. This relatively small KL-distance 

can be converted to relatively small distances in actual transition probabilities, which can then further be converted to a 
relatively small bound on value differences by the same arguments used in proving Theorem 1 (in Appendix C). Therefore, 
since our model would very likely converge close to P∗

� , we can expect to do almost as well as P∗
� .

5. Experiments

We examine the performance of our expectation transfer algorithm TES that transfers views to speed-up the learning 
process across different complex, feature-rich, heterogeneous, and dynamic environments. We show that TES can efficiently:

1. learn the appropriate views online;
2. select views using the proposed scoring metric;
3. achieve a good jump start; and
4. perform well in the long run.

We first evaluate our approach in a simulated navigation domain where the assumptions hold. We then conduct a 
case-study in a real robotic domain to see if the theoretical results are useful in practice.

5.1. Simulated robot navigation

Environment. We consider a grid-based robot navigation problem in which each grid-cell has the surface of either sand, 
soil, water, brick, or fire. In addition, there may be walls between cells. The surfaces and walls determine the stochastic 
dynamics of the world. However, the agent also observes numerous other features in the environment. The agent has to 
learn to focus on the important features to learn the environment dynamics model, and consequently to achieve its goal.

Action, states, and rewards. The agent can perform four actions (move up, down, left, right), which will lead it to one 
of the four states around it or leave it in its current state. Effects of the actions are captured in five outcomes (moved up, 
left, down, right, did not move). The states are defined by the (x,y)-coordinates of the agent. The agent spends 0.01 units of 
energy to perform an action. It loses 1 unit if falling into a state of fire, but gains 1 unit when successfully reaching an exit 
door.

Goal. The goal is to reach any exit door in the world consuming as little energy as possible. A task ends when agent 
reaches a terminal state, i.e., any exit door or state with fire.

Tasks. We design fifteen tasks with grid sizes ranging from 20 × 20 to 30 × 30. Each task has a different state space 
and different terminal states. Each state (cell) is characterized by its surface materials and the walls around it, and 200
additional irrelevant, random binary features. The tasks may involve different dynamics as well as different distributions of 
the surface materials. In our experiments, the environment transition dynamics is generated using three different sets of 
multinomial logistic regression models; each combination of cell surfaces and walls around the cell will lead to different 

2 Such model may not always exist since the parameter set is open. However, for our argument, any model with almost infimum distance to the true 
model will do.
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Fig. 3. Accumulated rewards in a 900 state CMDP for various model-based RL-methods.

Table 1
Average running time per episode in 800 episodes when acting in an environment with 210 features. (Slow RL-DT, LSE-Rmax could only be run with 10
features.) Run on Intel Xeon CPU 2.13 GHz, 32 GB RAM.

Algorithm fRmax fEpsG RL-DT LSE-R. bloreRL loreRL

Time (sec.) 0.26 0.25 9.09 67.53 4.3 0.55

transition dynamics at the cell. The probability of going through a wall is rounded to zero and the freed probability mass is 
evenly distributed to other effects. The agent’s starting position is randomly picked in each episode.

Transfer learning. The maximum size M of the view library, initially empty, is set to be 20; threshold c = log 300. In 
a new environment, the TES-agent mainly relies on its transferred knowledge. However, we allow some ε-greedy explo-
ration with ε = 0.05. The parameters for view learning algorithm are that λ = 0.05, α = 1.5. We conduct leave-one-out 
cross-validation experiment with fifteen different tasks. In each scenario the agent is first allowed to experience fourteen 
tasks, over 100 episodes in each, and it is then tested on the remaining task. No recency weighting is used to calculate the 
goodness of the views in the library. We next discuss experimental results averaged over 20 runs showing 95% confidence 
intervals for some representative tasks.

5.1.1. Online view learning in feature-rich environments
We show the empirical evaluation results of loreRL in a 900 cell/state world. We aim to demonstrate that the “single 

expectation” model-based RL, loreRL, can a) learn views that generalize and approximate the transition model to achieve 
fast convergence to near optimal policy, and b) with feature selection, perform well in complex, feature rich environments. 
We also want to see if the theoretical promises derived under assumption of i.i.d. sampling can be realized in practice. We 
compare accumulated rewards of loreRL with factored Rmax (fRmax), in which the network structures of transition models 
are known [36], and with factored ε-greedy (fEpsG), in which the optimistic Rmax exploration of fRmax is replaced by 
an ε-greedy strategy. We also compare our method with RL-DT [37] and LSE-Rmax [38], which are the state of the art 
model-based RL algorithms for learning transition models. For these tests, we run loreRL with α = 1.5, λ = 0.05, γ = 0.95, 
exploration ε = 0.05, parameter m = 10 for fRmax, m = 5 for Rmax (m = 5 is small for Rmax, but increasing it did not 
yielded better result), fixed m = 10, σ = 0.99 for LSE-Rmax (values originally used in [38]).

Generalization and convergence. We first show that when the feature space is small, loreRL performs as efficiently 
as the state of the art methods. RL-DT employs a decision tree to generalize transition dynamics knowledge over states, 
but it is implemented with an ε-greedy exploration strategy. LSE-Rmax appears to be the best structure learning method 
for ergodic factored MDPs [38]. fRmax and fEpsG have correct DBN structures provided by an oracle. All the methods are 
implemented with our customized DBN to incorporate domain knowledge. Rmax is included as a reference to show the 
effect of knowledge generalization.

As seen in Fig. 3a, loreRL can approximate the world dynamics using samples in all the states, thus it converges as fast 
as fEpsG, and RL-DT to near optimal policy. Although fRmax is provided with the correct DBN structure, its accumulated 
rewards are lower due to aggressive exploration to find the optimal model. After exploration the policy is guaranteed to 
be near optimal, but it may still take a long time (or forever) to catch up with loreRL. While LSE-Rmax follows the Rmax
scheme, it starts with a simple model and explores a bit less aggressively than fRmax, gaining some advantage in early 
episodes. However, LSE-Rmax appears to require much more data to choose a more complex model. Its accumulated reward 
drops below fRmax after 150 episodes, and the angle of the curve suggests that its DBN structure is still not correct. We do 
not run LSE-Rmax for more episodes, as the algorithm is computationally very demanding (Table 1).

When the feature set includes many irrelevant features (Fig. 3b), loreRL is able to learn the relevant ones and still gain 
nearly as high accumulated rewards as fEpsG which has relevant features provided by an oracle. loreRL’s running time is also 
not much longer than fRmax’s or fEpsG’s (Table 1). Other methods are too slow to run in this high-dimensional environment.

These results also suggest that with ε-greedy exploration and random restarts, near optimal policy can be found even 
without i.i.d. data sampling.
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Fig. 4. Performance difference to TES in early trials in a) same dynamics, b) heterogeneous environments. c) Convergence.

Table 2
Cumulative reward after first episodes. For example, in Task 1 TES could save (0.616 − 0.113)/0.01 = 50.3 actions compared to LWT.

Methods Tasks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

loreRL −0.681 −0.826 −0.814 −1.068 −0.575 −0.810 −0.529 −0.398 −0.653 −0.518 −0.528 −0.244 −0.173 −1.176 −0.692
LWT 0.113 −0.966 −0.300 0.024 −1.205 −0.345 −1.104 −1.98 −0.057 −0.664 −0.230 −1.228 0.034 0.244 −0.564
TES 0.616 −0.369 0.230 −0.044 −0.541 −0.784 −0.265 0.255 0.001 −0.298 −1.184 −0.077 0.209 0.389 −0.407

Feature selection. To understand the role of feature selection, we compare loreRL with a bloreRL that is based on multi-
nomial logistic regression without feature selection (without the regularization term). fEpsG and fRmax are base lines.

Fig. 3b shows the accumulated rewards when the environment has 200 irrelevant binary features. As seen, loreRL is still 
able to quickly converge to the optimal policy, and outperforms fRmax and bloreRL. Fig. 3c shows performances of loreRL and 
bloreRL after 800 episodes as a function of the number of irrelevant features. Only minimally affected by the actual number 
of irrelevant features, loreRL can quickly select the relevant features and outperform bloreRL. loreRL does not lose much to 
fEpsG either. While fRmax may find an optimal policy before loreRL due to aggressive exploration, its accumulated rewards 
are still lower than loreRL’s. We also observe that loreRL, through selecting a small set of features, runs much faster than 
bloreRL (Table 1).

5.1.2. View selection and multi-view transfer in complex environments
Transferring expectations between same dynamics tasks. To ensure that TES is capable of basic model transfer, we first 

evaluate it on a simple task. We train and test TES on two environments which have the same dynamics and 200 irrelevant 
binary features that challenge the agent’s ability to learn a compact model for transfer. Fig. 4a shows how much the other 
methods lose to TES in terms of accumulated rewards in the test task. loreRL is an implementation of TES equipped with the 
view learning algorithm that does not transfer knowledge. fRmax is the factored Rmax in which the network structures of 
transition models are provided by an oracle [36]; its parameter m is set to be 10 in all the experiments. fEpsG is a heuristic 
in which the optimistic Rmax exploration of fRmax is replaced by an ε-greedy strategy (ε = 0.1). The results show that 
these oracle methods still have to spend time to learn the model parameters, so they gain lower accumulated rewards than 
TES. This also suggests that the transferred view of TES is likely not only compact but also accurate. Fig. 4a further shows 
that loreRL and fEpsG are more effective than fRmax in early episodes.

View selection vs. random views. Fig. 4b shows how different views lead to different policies and accumulated rewards 
over the first 50 episodes in a given task. The Rands curves show the accumulated reward differences with respect to TES
when the agent follows some random combinations of views from the library. For clarity we show only 5 such random 
combinations. For all these curves, the differences quickly turn negative in the beginning indicating less reward in early 
episodes. We conclude that our view selection criterion outperforms random selection.

Multiple views vs. single view, and non-transfer. We compare the multi-view learning TES agent with a non-transfer 
agent loreRL, and an LWT [39] agent that tries to learn only one good model for transfer. We also compare with the oracle 
method fEpsG. As seen in Fig. 4b, TES outperforms LWT which, due to differences in the tasks, also performs worse than 
loreRL. When the earlier training tasks are similar to the test task, the LWT agent performs well. However, the TES agent 
also quickly picks the correct views, thus we never lose much but often gain a lot. We also notice that TES achieves higher 
accumulated rewards than loreRL and fEpsG that are bound to make uninformed decisions in the beginning.

We also notice that due to its fast capability of capturing the world dynamics, TES running time is just slightly longer 
than LWT’s and loreRL’s, which do not perform extra work for view switching but need more time and data to learn the 
dynamics models.

5.1.3. Jumpstart
Table 2 shows the average cumulative reward after the first episode (the jumpstart effect) for each test task in the 

leave-one-out cross-validation. We observe that TES usually outperforms both the non-transfer and the LWT approach.
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Fig. 5. Three different environments. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

5.1.4. Convergence
To study the asymptotic performance of TES, we compare with the oracle method fRmax which is known to converge to 

a (near) optimal policy. Notice that in this feature-rich domain, fRmax without the pre-defined DBN structure is just similar 
to Rmax. Therefore, we also compare with Rmax. For Rmax, the number of visits to any state before it is considered “known” 
is set to 5, and the exploration probability ε for known states starts to decrease from value 0.1.

Fig. 4c shows the accumulated rewards and their statistical dispersions over episodes. Average performance is reflected 
by the angles of the curves. As seen, TES can achieve a (near) optimal policy very fast and sustain its good performance over 
the long run. It is only gradually caught up by fRmax and Rmax. This suggests that TES can successfully learn a good library 
of views in heterogeneous environments and efficiently utilize those views in novel tasks.

5.2. Real robot navigation

The theoretical analyses presented above have shown the advantages of loreRL and TES over the state of the art model-
based RL algorithms. We have also demonstrated the efficiency of our methods through a set of empirical evaluations in 
simulated domains. These results, though valuable, are obtained under assumptions that are favorable for our approach. In 
this section, we aim to further evaluate the proposed methods in a real robotic domain where we cannot expect the effects 
of actions to follow a logistic regression model.

5.2.1. Experiment set-up
Environments. Fig. 5 shows the three environments used in our case studies. They are designed so that the robot’s 

actions would have different effects at different locations, and the environment surfaces are the main factors affecting the 
action effects. The surfaces are made of various materials such as beans, soil, hay, leaves, shells, paper board, and nylon 
Berber carpet. These materials have different physical effects on the objects moving on them. The slopes and obstacles on 
the surfaces also contribute to the different effects of the actions. In some areas, the surfaces may change because of the 
robot’s actions. We restore the surfaces to the original conditions after every episode.

For a robot to efficiently plan its path in these environments, only a small set of features based on the slopes, the 
obstacles, and the materials of the surfaces in different areas of the environments are relevant. These features, however, are 
very hard to define. It is preferable to leave the robot to automatically select the relevant features from a large set of simple 
features. To test our approach, therefore, we simply draw green and blue marks on the surfaces. The robot is marked with 
two red marks. There are also a blue ball, and several death-marked spots in the environment. Numerous features can be 
derived from these artifacts. The robot will need to select a few features that may serve as proxies to the true factors that 
affect its action effects.

Environment 1 and Environment 3 are deliberately designed so that the robot should learn its views (transition model) 
based on the blue marks. The transition dynamics in these two environments are very similar. However, the two envi-
ronments are also different (in terms of irrelevant features): the blue balls, the death places, and the green marks are at 
different locations. We will explain the features in more detail shortly. Environment 2 is very different from Environment 1 
and Environment 3. It is designed so that the robot should learn its views based on the green marks instead of the blue 
ones.

We treat the environments as discrete MDPs. We discretize the Environment 2 into a state space consisting of 8 × 8
(x,y)-locations and 8 different orientations of a robot, which yields a state space of 512 states. Environment 1 and 3 are 
larger, so we discretize them into a state space consisting of 10 × 10 (x,y) locations and 8 different orientations of a robot. 
The environments are in two different sizes, 5 × 5 feet and 6 × 6 feet (Fig. 5).
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Fig. 6. The robot. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 7. The system architecture.

Robot. We use the LEGO Mindstorms NXT v1.1 kit to build a three-wheel robot as depicted in Fig. 6. Two front wheels of 
the robot are attached to two separate motors; the back wheel is free rolling. The track width is 11.2 cm. The robot carries 
a white panel on top with a big and a small red marks for positioning and orientation detection.

The robot system comprises three main components: a central processor, an observatory system, and a command con-
troller (see Fig. 7). The positioning system is a sub-component of the observatory system. Information of the environment 
and the robot’s position is captured by a webcam and sent from the observatory system to the central processor to update 
robot’s knowledge-base as well as to plan the next action. The action command is then transmitted via Bluetooth to the 
command controller embedded in the robot for execution. We implement the controller in leJOS.3

Actions. The robot is programmed to rotate its left and right wheels in three different ways, corresponding to three 
actions. For the first action, the robot rotates both its left and right wheels 246 degrees. For the second action, the robot 
rotates its left wheel 90 and right wheel −90 degrees at the same time. For the third action, the robot rotates its left 
wheel −90 and right wheel 90 degree. As the robot may be still moving after each action, we let the system idle for 200
milliseconds after an action, waiting for the robot to stop completely. These actions, under ideal situations, correspond to 
the actions of move-forward, turn-left, and turn-right, respectively.

Action effects. Due to inaccurate robot motors, sensors, and various real world factors such as the surface materials, 
slopes of the surface, and obstacles, the actions may change the robot’s relative location in four different ways, including 
moved forward one cell, moved diagonally forward to the cell on the robot’s left, moved diagonally forward to the cell on 
the robot’s right, and did not move. The robot’s orientation can also be changed in five different ways, including: turned to 
the next orientation on left, the second next orientation on left, the next orientation on right, the second next orientation 
on right, and did not turn. That would result in a total of 20 different effects.

Sensors. We mainly process information from the web-cam in the observatory system. The web-cam is attached to the 
ceiling above the area. The robot, therefore, can fully observe the environment. However, the robot can only capture the big 
and small red marks on the top of the robot itself, and the information of the locations of the green, blue, red marks, and 

3 leJOS, Java for LEGO Mindstorms. http://lejos.sourceforge.net/.

http://lejos.sourceforge.net/
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Fig. 8. Accumulated rewards by various methods.

Table 3
Average running time per episode in 50 episodes. Run on Intel Centrino Duo T2400 (1.83 GHz), 
2 × 512 MB RAM.

Algorithm fRmax fEpsG man-loreRL loreRL

Time (sec.) 13.44 12.77 9.35 10.81

the ball in the environment. As the features are simple, we use the basic algorithms in OpenCV library4 to detect them. The 
result is nearly perfect.

State attributes and features. As mentioned, an environment is discretized to n rows×m columns×o orientations, so the 
full environment state space can be identified or factorized by those three state attributes. However, these attributes alone do 
not contain enough information for predicting action effects or transition dynamics. Therefore, it is critical that each state 
is also defined with a long vector of binary state features. The “green” binary indicator f G

i (s) of a state s is set to 1 iff there 
is a green mark that is further than i units but closer than i + 1 units from the (x, y)-center of the state s (i ∈ {0, . . . , 99}). 
A unit equals the width of the environment divided by 100. Similar features are defined for blue marks and to the blue 
target ball yielding 300 binary features. Eight indicators for different robot orientations are also included in the feature-base 
together with four intentionally redundant “there is/is-not a green/blue mark in a state”-bits. All together these yield 312
binary features per state. The intuition behind these features is that they serve as proxies to surface materials, slopes on 
the surfaces, obstacles, etc. which appear to be important factors in determining the dynamics in the environments, but the 
robot’s sensors cannot capture. Although only few among these 312 features are important for modeling robot’s actions, the 
robot does not know which ones actually matter. The robot has to learn to select the relevant features based on feedback while 
interacting with the environment.

Task. The robot is assumed to know the reward model before any start. The robot’s task is to travel in the environments 
from a random starting point to reach the blue ball, which will earn it a reward of 2 points. The robot will receive −1 point 
if it falls out of the area or into “death spots” marked with orange rectangles, and −0.05 points for reaching any other 
states. An episode ends if the robot reaches a terminal state or gets stuck, i.e., could not move, for four consecutive actions.

In other words, the robot aims for the highest cumulative reward in each episode. It tries to reach the blue ball as fast 
as possible, but it will avoid visiting the death spots or moving out of the map. In case it is very costly or impossible to 
reach the ball, the robot could give up by running into a death spot or moving out of the map.

5.2.2. Online view learning for model-based RL
The robot battery does not allow us to compare our algorithm with the slow RL-DT and LSE-Rmax algorithms, thus we 

will only compare loreRL with the fine-tuned algorithms, including fRmax, fEpsG, and man-loreRL, in which we manually 
select important features and specify the DBN-structures for the transition models. man-loreRL is based on multinomial 
logistic regression models with the 12 manually selected features, including eight indicators for different robot orientations, 
and four indicators telling if there is/is-not a green/blue mark in a state. We run the experiments with loreRL and man-loreRL
setting α = 0.5, λ = 0.05, γ = 0.95, exploration ε = 0.05, and parameter m = 10 for fRmax. All results are averaged over 20
runs, and we report the 95% confidence intervals.

As shown in Fig. 8, loreRL appears to quickly capture the environment dynamics and outperform the other methods. 
Even with manually selected features, fRmax and fEpsG require more exploration to learn the dynamics. man-loreRL gains 
the rewards a bit faster, but in the end it loses to loreRL slightly, possibly due to the (unforeseen) insufficiency of the 
manually selected features. Table 3 further shows that loreRL is fast. Its average running time per episode with 312-features 
is only slightly slower than man-loreRL with 12 manually selected features.

4 http://opencv.org/.

http://opencv.org/
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Table 4
Four robot testing scenarios.

Scenarios Transferring knowledge Experiences Developing new views Test on

1. loreRL No No Yes Env. 3
2. LWT Yes Env. 2 No Env. 3
3. TES-woRi Yes Env. 2 Yes Env. 3
4. TES Yes Env. 1 and Env. 2 Yes Env. 3

Fig. 9. Performance difference to TES in early trials in robotic domain.

The evaluations above have demonstrated that our new model-based RL, loreRL may work effectively in the real world. 
It may converge fast to a near optimal policy, achieving a high accumulated reward.

5.2.3. Transferring expectations in complex, heterogeneous environments
This case-study is designed to test if TES could effectively manage a good library of views to reduce the negative transfer 

effects and achieve better performance than the other methods. We compare the robot’s performance in four scenarios as 
detailed below, and report the results for accumulated reward, jumpstart, and running time.

1. loreRL: the robot has no experience in Environment 1 and Environment 2. It runs and learns the views (transition 
model) directly on Environment 3.

2. LWT: the robot has first experienced Environment 2, and then uses that knowledge (transition model) to learn the 
action policy and run on Environment 3. The robot does not update its knowledge of the transition model in the new 
environment. We discuss LWT in more details in the related work section.

3. TES-woRi: the robot has first experienced Environment 2, and then runs on Environment 3. Different from the scenario 
2, however, the robot here has the capability to adapt and develop new transition model for this novel Environment 3 
if necessary. This TES-woRi robot is actually the TES robot, but we do not let it to experience the environment that 
is similar to the testing environment. This set-up evaluates TES’s capability to work with novel environments and to 
reduce negative transfer effects.

4. TES: the robot has first experienced Environment 1, and then Environment 2, before it runs on Environment 3. In this 
setting, we will see how effectively TES builds the library, and selects views from the library to solve a new task.

Table 4 summarizes and highlights the differences in these four scenarios.
We do not test the setting of letting the robot to experience with Environment 1 and running on Environment 3. This 

setting would allow us to see if TES can learn good views to transfer between similar Environment 1 and Environment 3. 
However, this effect can also be observed clearly by comparing TES and TES-woRi. If TES outperforms TES-woRi, it means 
that TES learned compact views of Environment 1 into the library.

Accumulated reward. Fig. 9 shows the differences in accumulated rewards of the robot with LWT, TES-woRi, and loreRL
respectively to the robot with TES. As seen in the figure, the differences are all below 0, suggesting that TES could effec-
tively transfer the view library in heterogeneous environments. TES could select the best models to approximate the world 
dynamics quickly, and outperform the other methods. It also suggests that TES with mDAGL has successfully learned com-
pact action models, likely without redundant features, to the view library for transfer. For example, the robot has to work 
with 100 initial features related to the ball position, and the balls in Environment 1 and Environment 3 are at different 
positions, but the robot can still take advantage of the transferred knowledge. Checking the transferred model also confirms 
our hypothesis.

In addition, the data shows that LWT achieves the lowest accumulated reward, suggesting that LWT suffers from serious 
negative transfer effects, which usually appear when knowledge is transferred across heterogeneous environments. TES-woRi
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Table 5
The robot cumulative rewards after the first episodes in 10 repeats.

Method Repeat

Avg 1 2 3 4 5 6 7 8 9 10

loreRL −0.35 0.4 −2.45 −0.9 0.65 −1 −0.8 0.7 0.25 0.5 −0.85
LWT −0.26 1.45 −1.1 −0.55 −0.5 −0.45 1.4 −0.5 −2.4 1 −0.95
TES-woRi 0.36 −0.85 −0.5 1.3 1.1 −0.6 0.3 1.05 −0.75 1.45 1.1
TES 0.31 0.15 0.8 −0.4 0.95 1.3 0.8 0.75 0.85 −1.15 −0.95

Table 6
The robot’s average running time per episode in 50 episode runs. The systems are run on an Intel Core Duo Processor 
T2400 (1.83 GHz) laptop with 2 × 512 MB RAM.

Method loreRL LWT TES-woRi TES

Time (sec.) 18.32 13.13 14.34 16.23

also suffers from the negative transfer effects, but due to its ability to quickly recognize the unsuitability of the transferred 
knowledge, it could adopt new action models to alleviate the negative effects. We see that TES-woRi loses to loreRL but not 
to a large extent.

Jumpstart. To examine the jumpstart, we organize the cumulative rewards after the first episodes in 10 repeats for all 
four algorithms into Table 5. In 10 repeating runs TES wins over loreRL 7 times, LWT 6 times (draw in 1 repeat), TES-woRi
5 times; TES-woRi wins over loreRL 8 times, LWT 7 times. We see that the TES methods have lower rewards than the 
others in several runs, and do not show statistically significant superior performance over the others. The results, however, 
are expected, because TES requires explorative interactions with the environment to select the appropriate views, but the 
starting locations in this test are quite close to the terminal “death” states. Nevertheless, it should be noted that TES methods 
still perform better than the others in the majority of the runs. In addition, on average they gain higher jumpstarts.

Running time. Table 6 shows the robot’s running times per episode averaged over 50 episodes. A reason that LWT has 
the shortest average running time is that LWT transfers and uses only one model for each action. In addition, since mDAGL is 
used in the implementation of LWT, the transferred model is quite compact with only a few features and so can be learned 
quickly. Besides, the policy learned based on that “wrong” model appears to guide the robot to the terminal “death” states 
or to go out of the map, so the episodes run with LWT is often shorter than the others.

TES-woRi and TES have to manage a larger view library of 3 × 2 and 3 × 3 action models respectively, so their running 
times are longer. However it is interesting to note that they are not much slower than LWT, and even faster than loreRL
which does not spend time to process transferred knowledge. That is probably because TES can save quite a lot of time from 
not having to plan an optimal policy with complex action models. The TES methods start the planning with compact and 
simple transferred action models, and switch to use fresh models later, if necessary, after the robot has accumulated some 
data to eliminate a large number of noncritical features in the model representations. Of course, another possible reason 
may be that the libraries in this experiment are relatively small.

6. Related work

Our work addresses two main challenges in transfer learning in RL: learning the transition (or reward) models, and 
transferring the relevant knowledge to perform new tasks in possibly different, dynamic environments. In this section, we 
compare our work with existing efforts in learning transition models and those that focus on transfer learning in RL.

6.1. Learning transition models

DBN has been a popular choice for factoring and approximating transition models. In DBN learning, feature selection is 
equivalent to selecting the parents of the state variables from the previous time slice. Recent studies have led to improve-
ments in sample complexity for learning the optimal policy. Those studies assume maximum number of possible parents 
for a node [36,40], or knowledge of a planning horizon that satisfies certain conditions [38]. However, the improvements in 
sample complexity are achieved at the expense of computational complexity since these methods have to search through a 
large number of parent sets. Hence, these methods appear feasible only in manually designed, low-dimensional state-spaces.

Instead of searching for an optimal model with a minimal number of samples at almost any cost, our approach attempts 
to save costs from early on, and gradually improve the model acknowledging that the true model may actually be unattain-
able. In this spirit the structure learning study by Degris et al. [41] resembles our work, but they do not address online 
learning with large feature sets.

Ross et al. [42] use Markov chain Monte Carlo (MCMC) to sample from all possible DBN structures. However, the Markov 
Chain used has a very long burn-in period and slow mixing time, making sampling computationally prohibitive in large 
problems.
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Robinson and Hartemink [43] apply a sampling method with conjugate priors to learn the optimal structure of non-
stationary dynamic Bayesian networks by identifying relevant move sets, i.e., the edges that change over time. This approach, 
while scalable to hundreds or even thousands of variables, suffers from the same sample and computational complexity 
trade-off. Moreover, the work aims at pattern recognition instead of prediction, and does not address online learning.

Kroon and Whiteson [44] propose a feature selection method that works in conjunction with KWIK-Factored-Rmax to 
learn the structure and parameters of a factored MDP. This framework can extract a minimal set of features for representing 
the transition (and reward) model. Experiments show that planning on the reduced model yields improved performance. 
However, the computational cost of this method is still relatively high, since the KWIK-Factored-Rmax algorithm needs to 
search through a large combinatoric space of possible DBN structures to find the candidate structures for the proposed 
feature extraction method.

Leffler et al. [10] also suggest to predict relative changes in states, which corresponds to the action effects in our formu-
lation. However, the important features are manually selected to aggregate information from similar states for action effect 
prediction, as compared with our focus on learning those features automatically.

Hester and Stone employ Quinlan’s C4.5 [45] to learn a decision tree in RL-DT [37] to predict relative changes of every 
state variable. Despite adapting C4.5 for online learning, the method is still very slow as a costly tree induction procedure 
has to be repeated many times in a large feature space. In addition, all the data needs to be stored for the purpose, which is 
undesirable in some applications. TEXPLORE [9] is an extension of RL-DT by the same authors to integrate a special heuristic 
for exploration to the RL algorithm; the model learning part, however, remains the same as RL-DT. The exploration heuristic 
in TEXPLORE is quite general, and could be also incorporated into our algorithm.

Strehl and Littman [46], and Walsh et al. [47] propose an online linear regression method with L2-regularization to 
approximate the transition model in continuous MDP. L2, however, does not implement feature selection.

6.2. Transfer learning in reinforcement learning

The surveys by Taylor and Stone [12] and Lazaric [21] offer a comprehensive exposition of recent methods to transfer var-
ious forms of knowledge in RL. Most of these methods attempt to transfer structure and experiential knowledge in the forms 
of low level knowledge such as task instances, action-value pairs, full policies, full task models, prior distributions, or high 
level knowledge such as relevant action sets, partial policies, rules, relevant feature sets, or proto-value functions. In het-
erogeneous domains with different state-action spaces, inter-task transfers are often implemented through 1) task invariant 
representations that distinguish between the fixed sensor agent-space and the varying environmental problem-space [15] or 
2) specific mapping criteria established through policy reuse [16], action correlation [17], state abstraction [18], inter-space 
relation [19], or other methods. Most of the task invariant representations and inter-task mappings have to be pre-defined, 
which renders these approaches difficult to be implemented in real-world tasks.

Not much research, however, has focused on compactly transferring represented transition or reward models in terms 
of action effects for online learning, without pre-defined invariant representations or mapping strategies in heterogeneous 
domains.

6.2.1. Transferring a library of options
While superficially similar to our framework, the case-based reasoning approaches [48,49] focus on collecting good 

decisions instead of building models of world dynamics. Skill learning methods [50,51] focus on building and using abstract 
actions in different tasks. In their recent work [52], Brunskill and Li analyze the bound on the sample complexity when 
abstract actions, or options, are introduced. Options are discovered using a greedy approach, but they are only adopted if 
they reduce or match the sample complexity for future RL tasks. This way negative transfer in the form of worse sample 
complexity can be avoided. While the empirical results are impressive, the source tasks and target tasks all share the same 
transition model and have a small state space. The empirical effectiveness in larger and heterogeneous domains is still to 
be investigated.

6.2.2. Transferring multiple models
Like us, Wilson et al. [53] aim at transferring knowledge in heterogeneous domains. They formalize the problem as 

learning a generative Dirichlet process for MDPs and suggest an approximate solution using Gibbs sampling. Our method 
can be seen as a structure learning enhanced alternative implementation of this generative model. Our online-method is 
computationally more efficient, but the MCMC estimation should eventually yield more accurate estimates. Both models can 
also be adjusted to deal with non-stationary task sources. Wilson et al., however, demonstrate the method for transferring 
reward models, and it is unclear how to extend the approach for transferring transition models.

Multiple models have previously been used to guide behavior in non-stationary environments [54,55]. Unlike our work, 
these studies usually assume a common concrete state space. In representation selection, Konidaris and Barto [51] focus on 
selecting the best abstraction to assist the agent’s skill learning, and Van et al. [56] study using multiple representations 
together to solve a RL problem. Talvitie and Singh [57] and Fernandez et al. [16] both transfer a library of policies learned 
in previous tasks to bias exploration in new tasks. This method assumes a constant inter-task state space, otherwise a state 
mapping strategy is needed.
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Lazaric and Restelli [58] suggest three different algorithms to transfer samples from multiple source tasks to solve a 
target task. While they are able to show many advantages of their approach with the offline learning fitted Q-iteration 
algorithm [59] on several experiments, a potential drawback is the need of a large number of samples in all the source 
tasks, and the strong assumptions on the similarity amongst the different tasks.

6.2.3. Learning inter-task mappings for transfer
Instead of keeping multiple models for transfer, Liu and Stone [60] learn a mapping function between actions and 

features in the source and the target tasks, but need to assume the availability of the structures of the QDBN in the 
pair of tasks. Taylor proposes TIMBREL [20] to transfer observations in a source to a target task via manually tailored 
inter-task mapping. This work is extended into MASTER [61] that attempts to automate the feature mapping. Similar to our 
view transferring approach, the MASTER algorithm automatically learns an efficient mapping through the task instances for 
transfer by leveraging a classification technique. However, the offline search strategy in MASTER to do one-to-one mapping 
from a source to a target task is costly in complex environments with large irrelevant feature sets; the trade-off between 
computational complexity and sample efficiency renders this approach difficult to apply in real-world tasks. Ammar et 
al. [62] most recently propose to use a special Restricted Boltzman Machine for supporting inter-task mapping. While this 
approach improves learning performance, the computational cost is still high, and many random samples in the source and 
target tasks are needed to effectively learn the mapping.

6.2.4. Transferring knowledge about dynamics with feature selection
Jong and Stone [63] propose hypothesis testing and Monte-Carlo simulation methods for detecting state variables that 

can be ignored without sacrificing the optimality of the policy. These methods require the task to be solved in order to learn 
such a state abstraction from Q-values. This differs substantially from loreRL which selects features online through mDAGL 
within one episode.

Calandriello et al. [64] recently propose interesting extensions to the fitted Q-iteration algorithm [59] based on sparse 
linear regression models. These extensions could enable an agent to efficiently share knowledge between tasks in heteroge-
neous domains to do feature selection, and to learn Q-value functions. Different from our setting, however, this multi-task 
RL approach aims to solve all the tasks together fast, and usually assumes to have access to sample data or models in all 
the tasks.

Among the very few efforts that actually consider transferring the transition model to a new task is the work [39]
by Atkeson et al., which suggests a locally weighted transfer learning technique called LWT to adapt previously learned 
transition models into a new situation [39]. While their work is conducted in continuous state space using a fixed state 
similarity measure, it can be adapted to a discrete case. Doing so corresponds to adopting a fixed single view. This approach 
could also be extended to be compatible with our work by learning a library of state similarity measures and developing a 
method to choose among those similarities for each task.

7. Discussion

Transfer learning research in artificial intelligence is commonly divided into two subfields [14]: one focuses on the 
classification, regression, and clustering tasks involving different domains, the other one on reinforcement learning with 
different tasks and/or different domains. While focusing on RL problems, our work addresses a set of the most challenging 
open research issues in both subfields: transferring relevant representation of the world dynamics, captured in the transition 
models, with no or little available source data or target data. Our approach adopts a new, efficient online learning strategy 
that minimizes the risk of negative transfers in exploiting the learned knowledge and by exploring the environment at the 
same time. This strategy aims directly at addressing the difficulty of, and hence the relative little existing work in handling 
negative effects in transfer learning in both subfields [12,14].

Our online transfer learning framework is also in line with the few findings on mitigating negative effects through iden-
tifying common patterns or relationships through domain adaptation, and globally and locally weighted structure mapping 
between the source and target tasks and/or domains/environments [58,65,66]. Commonalities between the old and the new 
tasks and/or domains, which are very difficult to succinctly define in real environments, are captured through the scoring 
and updating of the views in the view library. While more work is needed to show how different types of negative transfer 
effects are mitigated, the experimental results show that effective and efficient transfers are possible in our system.

Our theoretical framework relies on some assumptions that are often questionable in real environments. For example, 
the proposed representation is formulated for discrete state and action spaces, while in real domains the robot usually 
perceives a multivariate continuous domain and its actuators take many continuous parameters, such as the speed, the 
rotation directions, and rotation duration of the motors. Some of these assumptions can be easily relaxed. The features 
of states can naturally be continuous for the logistic regression. The multivariate actions can also be lifted to the same 
level with features. This will allow different (dimensions of) actions to be used differently in different environments. While 
the logistic regression requires the effect of the action to be discrete, the states themselves can be continuous as long as 
the effects map the states to the next states with a well defined (deterministic) function. Alternatively, the effect should 
be modeled as continuous. In this case sparsity promoting priors can also be used to implement feature selection as in 
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the discrete case. Naturally, changing the state space to be continuous will also require planning to be implemented in 
continuous space.

While mDAGL is fast, and lightweight, the transition model can be costly to build when there are many actions and with 
possibly numerous effects, as many regression models are required. In some problems, it would be possible to group actions 
and effects together, e.g., moving up, left, down, right can be considered as a group of moving actions. This will reduce the 
number of logistic regression models to build. Furthermore, since the action effect models are assumed to be independent, 
regression models can be learned in parallel. These extension would scale up mDAGL and TES for applications with a large 
action space.

One significant simplification we have used in our robotic studies is total observability. A camera has been attached to 
the ceiling so that the robot could have a full observation of the environment, and its own location in the environment. 
Also, the planning is based on the assumption that the world is static, so that features of the state will never change. In 
general there may be other agencies changing the world, and the next state cannot easily be expressed as a combination of 
a small set of effects and a deterministic next state function. We would need a method to learn the stochasticity as well as 
the uncertainty of the feature values given a state attribute set to address this issue in future.

In theory, RL requires the robot to try each action many times in many states before any guarantees about its good 
performance can be given. While this self guided learning liberates programmers from manually specifying behavior of the 
robot, engaging in such an exploration can be dangerous and even seriously damage the robot. In reality some estimate 
about the danger of explorative actions should be included into a model.

We have applied the more costly but simple value iteration for policy learning in our experiments with loreRL and 
TES, as we have focused on transfer learning in the RL framework. A more clever interleaving of model-building and policy 
formulation can be designed. For example, value iteration can be simply replaced by the Dyna-Q [34] or Prioritized Sweeping 
[35] algorithms. When and how to apply the planning steps can also be determined by RL. In case of discounted rewards, 
planning in large state spaces can be implemented with forward sampling methods.

In essence, the main practical limitations for this work are as follows: For a single rather static task, there will certainly 
be an unnecessary overhead, since the system always tries to build a new model instead of just trying to improve the old 
one. If the action effects are not well predicted by any logistic regression model, some other online classifier can be used, 
but building efficient online classifiers is not a trivial task. Generalizing to continuous actions and effects would also need 
extra work.

8. Conclusions

An intelligent, autonomous, and interactive agent or robot should learn to solve different tasks in different environments. 
An intelligent agent should focus attention on the most relevant task and environmental features for problem solving. An 
intelligent agent should also retain or store the knowledge learned in previous tasks, and “understands” if, how, and when 
the learned knowledge can be effectively used in new situations. Toward these objectives, we have presented a framework 
for learning and transferring multiple expectations or views about world dynamics in heterogeneous environments. Unlike 
most existing efforts, the proposed framework is scalable as it does not assume fixed actions to be taken or constant 
environmental features, nor does it require accurate mapping functions to be defined across different tasks or environments. 
The framework can work with very little or no data available in the tasks or environments, which is a major challenge in 
transfer learning in both static and dynamic domains.

When the environments are different, the combination of learning multiple views and dynamically selecting the most 
promising ones yields a system that can learn a good policy faster and gain higher accumulated reward as compared to the 
common strategy of learning just a single good model and using it on all occasions.

Applying and maintaining multiple models require additional computation and memory. We have shown that by a clever 
decomposition of the transition function, model selection and model updating can be accomplished efficiently using online 
algorithms. Our experiments have shown that performance improvements in multi-dimensional, heterogeneous environ-
ments can be achieved with a small computational cost.

In addition, we have demonstrated how online multinomial logistic regression with group lasso can be used to quickly 
obtain a parsimonious transition model in model based RL. The method leads to fast learning since a single transition 
model can be learned using samples from all the states with a small set of features. The efficiency is gained, however, at 
the expense of losing generality. Not all transition functions can be accurately represented as predicting action effects using 
state features via logistic regression. Nevertheless, we believe that this compromise between scalability and generality is 
often a useful one. The generality problem may also be alleviated by introducing non-linear features that are combinations 
of the original ones. Other generalizations such as stochastic features and vector valued effects are also possible but are left 
for future work.

The current work addresses the question of learning good models, but the problem of learning good policies in large state 
spaces still remains. Our model learning method is independent of the policy learning task, thus it can well be coupled with 
any scalable approximate policy learning algorithms.

There are still many open problems and assumptions to address, yet this study has provided some insights for future 
research and development. The proposed transfer learning framework would serve as a base intelligent agent platform for 
monitoring, problem solving, and general decision support in heterogeneous, dynamic environments. We envision that this 
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platform can be integrated with the latest agent-based or environmental sensors, navigation and localization functions, and 
higher level cognitive capabilities such as activity recognition, speech understanding, and decision making to develop a new 
generation of human-interactive robots.
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Appendix A. Update rule for mDAGL

Theorem 2 (Update rule). Given h(W ) = 1
2 ‖W ‖2

2 , a K × d average gradient matrix Ḡt , and a regularization parameter λ > 0, the 
optimal solution of (3) is achieved column-wise as follows

W t+1
·i =

⎧⎪⎨
⎪⎩

−→
0 if ‖Ḡt

·i‖2 ≤ λ
√

K ,

t
βt

(
λ
√

K
‖Ḡt

·i‖2
− 1

)
Ḡt

·i otherwise.
(A.1)

Proof sketch. For reading clarity, we delay the full proof to the next appendix, and only provide a sketch here. Since the 
minimization Problem 3 is component-wise on one column of W , we can focus on each of the column of W separately to 
find its solution. Because inner product of two vectors of same length will have smallest value when the two vectors are 
in opposite direction, the solution to each of the component-wise minimization problem should be a factor of ϕ (ϕ ≤ 0) 
to the corresponding column in the average gradient matrix. Subsequently, we can turn the problem into a basic quadratic 
function minimization problem. �
Proof. Let us rewrite the minimization problem,

W t+1 = arg min
W

(〈Ḡt , W 〉 + λ
√

K
d∑
i

‖W ·i‖2 + βt

2t

d∑
i

‖W ·i‖2
2)

Since the minimization problem is component-wise on one column of W , we can focus on each of the column of W
separately to find its solution.

W t+1
·i = arg min

W ·i

(
〈Ḡt

·i, W ·i〉 + λ
√

K‖W ·i‖2 + β

2t
‖W ·i‖2

2

)

Since inner product of 2 vectors of same length will have smallest value when the 2 vectors are in opposite direction, 
solution to the above minimization problem should be W t+1

·i = ϕḠt
·i where ϕ ≤ 0.

We now need to solve the following minimization problem,

ϕ = arg min
ϕ≤0

(
ϕ‖Ḡt

·i‖2
2 − ϕλ

√
K‖Ḡt

·i‖2 + ϕ2 β

2t
‖Ḡt

·i‖2
2

)

Solving for the minimum point of that familiar quadratic function, we have

ϕ =
⎧⎨
⎩

t
βt

(
λ
√

K
‖Ḡt

·i‖2
− 1

)
if ‖Ḡt

·i‖2 > λ
√

K ,

0 otherwise.

Therefore, the update rule is as in Theorem 1. �
Appendix B. Regret analysis of mDAGL

Theorem 3 (Regret bound). Let the sequence of {W t}t≥1 be generated by the update rule (A.1), and assume that there exists a constant 
G such that ‖Gt‖2

2 ≤ G2, ∀t ≥ 1. If we choose βt = α
√

t where α > 0, then for any t ≥ 1 and for any W that satisfies h(W ) ≤ D2

where D is a constant, the average regret is bounded as

Rt(W )

t
≤ �√

t
, t = 1,2,3.., (B.1)

where � =
(
αD2 + G2

α

)
.
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Proof sketch. The item-wise loss function lt(W ) of multinomial logistic regression is convex, thus the techniques used for 
binary case [26] can be applied for multinomial case as well. �

Since the average regret goes asymptotically to zero, it may look very feasible that the sequence (W t ) also converges to 
some optimal W ∗ . However, the regret analysis is valid for any sequence of data, and without additional assumptions about 
the data generating process there may not be any asymptotically optimal classifier W ∗ , thus convergence is not meaningful. 
To study convergence, we assume the data is to be sampled independently from some joint distribution p for data vector 
(y,x). In this case we try to find a W that minimizes the expected loss E p[l(W )] + �(W ). Now assuming that the optimal 
solution W ∗ is sparse, and some other technical assumptions, it is indeed possible to show that

P (‖W t − W ∗‖2 > ε) <

[
ε−1(ε−1 + r−1) + 2

c
�

]
t− 1

4 , (B.2)

where r and c are constants (see Lemma 13 in [67] for the result and its assumptions).

Appendix C. Proof of Theorem 1 (difference in value function)

Proof. For any action a, consider the following expression, where x is a vector of all state attributes and features extracted 
from state s and e is the action effect leading to s′ from s.∑

s′∈S

P M1(s′|s) log

(
P M1(s′|s)
P M2(s′|s)

)

=
∑
e∈E

P M1(e|s) log

(
P M1(e|s)
P M2(e|s)

)

≤ max
e∈E

log

(
P M1(e|s)
P M2(e|s)

)

= max
e∈E

log

(
exp(W M1

e x)/
∑

e′∈E exp(W M1
e′ x)

exp(W M2
e x)/

∑
e′∈E exp(W M2

e′ x)

)

= max
e∈E

[
log

(
exp(W M1

e x)

exp(W M2
e x)

)
− log

(∑
e′∈E exp(W M1

e′ x)∑
e′∈E exp(W M2

e′ x)

)]

= max
e∈E

[
(W M1

e − W M2
e )x − log

(∑
e′∈E exp(W M1

e′ x)∑
e′∈E exp(W M2

e′ x)

)]

≤ max
e∈E

[
(W M1

e − W M2
e )x − log

(
min
e′∈E

(
exp(W M1

e′ x)

exp(W M2
e′ x)

))]

= max
e∈E

[
(W M1

e − W M2
e )x − min

e′∈E

(
log

(
exp(W M1

e′ x)

exp(W M2
e′ x)

))]

= max
e∈E

[
(W M1

e − W M2
e )x − min

e′∈E

(
(W M1

e′ − W M2
e′ )x

)]

≤ max
e∈E

[‖W M1
e − W M2

e ‖1 sup
s

‖x(s)‖1 + max
e′∈E

(‖W M1
e′ − W M2

e′ ‖1 sup
s

‖x(s)‖1)]

≤ 2 max
e∈E

(‖W M1
e − W M2

e ‖1 sup
s

‖x(s)‖1)

The first step is from definition of effect. The second step is from the fact that weighted average of elements must be 
smaller than the largest one. The sixth step is from the property that if ai and bi are non-negative, then 

(∑
i ai

)
/ 
(∑

i bi
) ≥

mini(ai/bi). The seventh step is from monotonicity of logarithmic function.
By Pinsker’s inequality,∑

s′∈S

P M1(s′|s) log

(
P M1(s′|s)
P M2(s′|s)

)

≥ 1

2
(
∑
s′∈S

|P M1(s′|s) − P M2(s′|s)|)2
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which implies∑
s′∈S

|P M1(s′|s) − P M2(s′|s)|

≤ 2
√

max
e∈E

(‖W M1
e − W M2

e ‖1 sup
s

‖x(s)‖1)

Extending to all actions,∑
s′∈S

|P M1(s′|s) − P M2(s′|s)|

≤ max
a∈A

(
2
√

max
e∈E

(‖W (a),M1
e − W (a),M2

e ‖1 sup
s

‖x(s)‖1)

)

= 2
√

max
a∈A,e∈E

(‖W (a),M1
e − W (a),M2

e ‖1 sup
s

‖x(s)‖1)

To complete the theorem, the following lemma (see Lemma 33 in [68]) is used without proof.

Lemma 1. Let M1 = (S, A, P M1 , R), M2 = (S, A, P M2 , R) be two MDPs, and fixed discount factor γ . π1 and π2 are their optimal 
policies respectively. Let V M

π be the value function of π in MDP M. If∑
s′∈S

|P M1 − P M2 |(s′|s,a) ≤ ε

for every state-action (s, a), then |V M1
π2 (s) − V M2

π2 (s)| ≤ γ V maxε
1−γ and |V M2

π1 (s) − V M1
π1 (s)| ≤ γ V maxε

1−γ , for every s ∈ S.

It is clear that

max
s∈S

(
V M2

π2
− V M2

π1

)
= max

s∈S

(
V M2

π2
− V M1

π1
+ V M1

π1
− V M2

π1

)
≤ max

s∈S

(
V M2

π2
− V M1

π2
+ V M1

π1
− V M2

π1

)
≤ max

s∈S
|V M2

π2
− V M1

π2
| + max

s∈S
|V M1

π1
− V M2

π1
|

≤ 2γ V maxε

1 − γ
.

The proof is therefore complete. �
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