96,027 research outputs found

    Developing BP-driven web application through the use of MDE techniques

    Full text link
    Model driven engineering (MDE) is a suitable approach for performing the construction of software systems (in particular in the Web application domain). There are different types of Web applications depending on their purpose (i.e., document-centric, interactive, transactional, workflow/business process-based, collaborative, etc). This work focusses on business process-based Web applications in order to be able to understand business processes in a broad sense, from the lightweight business processes already addressed by existing proposals to long-running asynchronous processes. This work presents a MDE method for the construction of systems of this type. The method has been designed in two steps following the MDE principles. In the first step, the system is represented by means of models in a technology-independent manner. These models capture the different aspects of Web-based systems (these aspects refer to behaviour, structure, navigation, and presentation issues). In the second step, the model transformations (both model-to- model and model-to-text) are applied in order to obtain the final system in terms of a specific technology. In addition, a set ofEclipse-based tools has been developed to provide automation in the application of the proposed method in order to validate the proposal.Torres Bosch, MV.; Giner Blasco, P.; Pelechano Ferragud, V. (2012). Developing BP-driven web application through the use of MDE techniques. Software and Systems Modeling. 11(4):609-631. doi:10.1007/s10270-010-0177-5S609631114Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language for Web services version 1.1 (May 2003)Barna, P., Frasincar, F., Houben, G.J.: A workow-driven design of Web information systems. In: Wolber, D., Calder, N., Brooks, C., Ginige, A. (eds.) ICWE, ACM, pp. 321–328Bakshi, K., Karger, D.R.: Semantic Web applications. In: Proceedings of the ISWC 2005 Workshop on End User Semantic Web Interaction (November 2005)Brambilla M., Ceri S., Fraternali P., Manolescu I.: Process modeling in Web applications. ACM Trans. Softw. Eng. Methodol. 15(4), 360–409 (2006)Brambilla, M., Preciado, J.C., Trigueros, M.L., Sánchez-Figueroa F.: Business process-based conceptual design of rich internet applications. In: ICWE, pp. 155–161 (2008)Brambilla, M., Butti, S., Fraternali, P.: Webratio bpm: a tool for designing and deploying business processes on the Web. In: ICWE, pp. 415–429 (2010)Business process modeling notation (BPMN). OMG final adopted specification. dtc/06-02-01 (February 2006)Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (Webml): a modeling language for designing Web sites. In: Proceedings of the 9th international World Wide Web conference on Computer networks : the international journal of computer and telecommunications networking, Amsterdam, The Netherlands, pp. 137–157. North-Holland Publishing Co., The Netherlands (2000)Davis J.: Open Source SOA. Manning Publications Co, Greenwich (2009)Distante, D.: Reengineering legacy applications and Web transactions: an extended version of the UWA transaction design model. Ph.D. thesis, University of Lecce, Italy (2004)Distante D., Rossi G., Canfora G., Tilley S.R.: A comprehensive design model for integrating business processes in Web applications. Int. J. Web Eng. Technol. 3(1), 43–72 (2007)Duhl, J.: Rich internet applications. Technical report, IDC (November 2003)Fons, J.: OOWS: A model driven method for the development of web applications. Ph.D. thesis, Universidad Politécnica de Valencia (2008)Fons, J., Pelechano, V., Pastor, O., Valderas, P., Torres, V.: Applying the OOWS model-driven approach for developing web applications. The internet movie database case study. In: Web Engineering: Modelling and Implementing Web Applications. Human–Computer Interaction Series, pp. 65–108. Springer, London (2008)Fowler, M.: Inversion of control containers and the dependency injection pattern. http://martinfowler.com/articles/injection.html (January 2004)Gershenfeld N., Krikorian R., Cohen D.: The internet of things. Sci Am 291(4), 76–81 (2004)Giner P., Cetina C., Fons J., Pelechano V.: Developing mobile business processes for the internet of things. IEEE Pervasive Comput. 9, 18–26 (2010)Gómez J., Cachero C., Pastor O.: Extending a conceptual modelling approach to Web application design. In: Wangler, B., Bergman, L. (eds) CAiSE. Lecture Notes in Computer Science, vol. 1789, pp. 79–93. Springer, London (2000)Goth G.: The task-based interface: not your father’s desktop. IEEE Software 26(6), 88–91 (2009)Holmes, T., Tran, H., Zdun, U., Dustdar, S.: Modeling human aspects of business processes—a view-based, model-driven approach. In: ECMDA-FA, pp. 246–261 (2008)Kappel, G., Pröll, B., Reich, S., Retschitzegger, W. (eds): Web Engineering—The Discipline of Systematic Development of Web Applications. Wiley, England (2006)Koch, N.: Software Engineering for Adaptive Hypermedia Systems: Reference Model, Modeling Techniques and Development Process. Ph.D. thesis, Ludwig-Maximilians-University Munich, Germany (2001)Koch N., Kraus A., Cachero C., Meliá S.: Integration of business processes in Web application models. J. Web Eng. 3(1), 22–49 (2004)Limbourg, Q., Vanderdonckt, J.: Usixml: a user interface description language supporting multiple levels of independence. In: ICWE Workshops, pp. 325–338 (2004)Linaje M., Preciado J.C., Sánchez-Figueroa F.: Engineering rich internet application user interfaces over legacy Web models. IEEE Internet Comput. 11(6), 53–59 (2007)Link, S., Hoyer, P., Schuster, T., Abeck, S.: Model-driven development of human tasks for workflows. In: ICSEA ‘08: Proceedings of the 2008 third international conference on software engineering advances, Washington, DC, USA, pp. 329–335. IEEE Computer Society, Washington, DC (2008)Marcos, E., Cáceres, P., Castro, V. D.: An approach for navigation model construction from the use cases model. In: CAiSE Forum. Held in conjunction with the 16th Conference On Advanced Information Systems Engineering (June 2004)Pietschmann, S., Voigt, M., Meissner, K.: Adaptive rich user interfaces for human interaction in business processes. In: Proceedings of the 10th International Conference on Web Information Systems Engineering (WISE 2009), WISE, pp. 351–364. Springer LNCS (October 2009)Schwabe D., Rossi G.: An object oriented approach to Web-based applications design. Theor. Pract. Object Syst. 4(4), 207–225 (1998)Schmid H.A., Rossi G.: Modeling and designing processes in e-commerce applications. IEEE Internet Comput. 8(1), 19–27 (2004)Schwinger W., Retschitzegger W., Schauerhuber A., Kappel G., Wimmer M., Pröll B., Cachero C., Casteleyn S., Troyer O.D., Fraternali P., Garrigós I., Garzotto F., Ginige A., Houben G.J., Koch N., Moreno N., Pastor O., Paolini P., Pelechano V., Rossi G., Schwabe D., Tisi M., Vallecillo A., van der Sluijs K., Zhang G.: A survey on Web modeling approaches for ubiquitous Web applications. IJWIS 4(3), 234–305 (2008)Sousa K.S., Mendona H., Vanderdonckt J.: A model-driven approach to align business processes with user interfaces. J. UCS 14(19), 3236–3249 (2008)Sukaviriya, N., Sinha, V., Ramachandra, T., Mani, S.: Model-driven approach for managing human interface design life cycle. In: MoDELS, pp. 226–240 (2007)Tedre M.: What should be automated?. Interactions 15(5), 47–49 (2008)Torres, V., Giner, P., Bonet, B., Pelechano, V.: Adapting BPMN to Public Administration. In: Proceedings BPMN 2010 Springer’s Lecture Notes in Business Information Processing (LNBIP). Postdam, Germany (to appear)Troyer, O.D., Casteleyn, S.: Modeling complex processes for Web applications using wsdm. In: Proceedings of the Third International Workshop on Web-Oriented Software Technologies (held in conjunction with ICWE2003), IWWOST2003 (2003

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework

    Business Process Innovation using the Process Innovation Laboratory

    Get PDF
    Most organizations today are required not only to establish effective business processes but they are required to accommodate for changing business conditions at an increasing rate. Many business processes extend beyond the boundary of the enterprise into the supply chain and the information infrastructure therefore is critical. Today nearly every business relies on their Enterprise System (ES) for process integration and the future generations of enterprise systems will increasingly be driven by business process models. Consequently process modeling and improvement will become vital for business process innovation (BPI) in future organizations. There is a significant body of knowledge on various aspect of process innovation, e.g. on conceptual modeling, business processes, supply chains and enterprise systems. Still an overall comprehensive and consistent theoretical framework with guidelines for practical applications has not been identified. The aim of this paper is to establish a conceptual framework for business process innovation in the supply chain based on advanced enterprise systems. The main approach to business process innovation in this context is to create a new methodology for exploring process models and patterns of applications. The paper thus presents a new concept for business process innovation called the process innovation laboratory a.k.a. the Ð-Lab. The Ð-Lab is a comprehensive framework for BPI using advanced enterprise systems. The Ð-Lab is a collaborative workspace for experimenting with process models and an explorative approach to study integrated modeling in a controlled environment. The Ð-Lab facilitates innovation by using an integrated action learning approach to process modeling including contemporary technological, organizational and business perspectivesNo; keywords

    A model-driven method for the systematic literature review of qualitative empirical research

    Get PDF
    This paper explores a model-driven method for systematic literature reviews (SLRs), for use where the empirical studies found in the literature search are based on qualitative research. SLRs are an important component of the evidence-based practice (EBP) paradigm, which is receiving increasing attention in information systems (IS) but has not yet been widely-adopted. We illustrate the model-driven approach to SLRs via an example focused on the use of BPMN (Business Process Modelling Notation) in organizations. We discuss in detail the process followed in using the model-driven SLR method, and show how it is based on a hermeneutic cycle of reading and interpreting, in order to develop and refine a model which synthesizes the research findings of previous qualitative studies. This study can serve as an exemplar for other researchers wishing to carry out model-driven SLRs. We conclude with our reflections on the method and some suggestions for further researc

    Environments to support collaborative software engineering

    Get PDF
    With increasing globalisation of software production, widespread use of software components, and the need to maintain software systems over long periods of time, there has been a recognition that better support for collaborative working is needed by software engineers. In this paper, two approaches to developing improved system support for collaborative software engineering are described: GENESIS and OPHELIA. As both projects are moving towards industrial trials and eventual publicreleases of their systems, this exercise of comparing and contrasting our approaches has provided the basis for future collaboration between our projects particularly in carrying out comparative studies of our approaches in practical use

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    Domain-Specific Modeling and Code Generation for Cross-Platform Multi-Device Mobile Apps

    Get PDF
    Nowadays, mobile devices constitute the most common computing device. This new computing model has brought intense competition among hardware and software providers who are continuously introducing increasingly powerful mobile devices and innovative OSs into the market. In consequence, cross-platform and multi-device development has become a priority for software companies that want to reach the widest possible audience. However, developing an application for several platforms implies high costs and technical complexity. Currently, there are several frameworks that allow cross-platform application development. However, these approaches still require manual programming. My research proposes to face the challenge of the mobile revolution by exploiting abstraction, modeling and code generation, in the spirit of the modern paradigm of Model Driven Engineering
    corecore