25 research outputs found

    Detour Planning for Fast and Reliable Failure Recovery in SDN with OpenState

    Get PDF
    A reliable and scalable mechanism to provide protection against a link or node failure has additional requirements in the context of SDN and OpenFlow. Not only it has to minimize the load on the controller, but it must be able to react even when the controller is unreachable. In this paper we present a protection scheme based on precomputed backup paths and inspired by MPLS crankback routing, that guarantees instantaneous recovery times and aims at zero packet-loss after failure detection, regardless of controller reachability, even when OpenFlow's "fast-failover" feature cannot be used. The proposed mechanism is based on OpenState, an OpenFlow extension that allows a programmer to specify how forwarding rules should autonomously adapt in a stateful fashion, reducing the need to rely on remote controllers. We present the scheme as well as two different formulations for the computation of backup paths.Comment: 8 pages, pre-print, Design of Reliable Communication Networks (DRCN), 2015 11th International Conference on th

    SPIDER: Fault Resilient SDN Pipeline with Recovery Delay Guarantees

    Full text link
    When dealing with node or link failures in Software Defined Networking (SDN), the network capability to establish an alternative path depends on controller reachability and on the round trip times (RTTs) between controller and involved switches. Moreover, current SDN data plane abstractions for failure detection (e.g. OpenFlow "Fast-failover") do not allow programmers to tweak switches' detection mechanism, thus leaving SDN operators still relying on proprietary management interfaces (when available) to achieve guaranteed detection and recovery delays. We propose SPIDER, an OpenFlow-like pipeline design that provides i) a detection mechanism based on switches' periodic link probing and ii) fast reroute of traffic flows even in case of distant failures, regardless of controller availability. SPIDER can be implemented using stateful data plane abstractions such as OpenState or Open vSwitch, and it offers guaranteed short (i.e. ms) failure detection and recovery delays, with a configurable trade off between overhead and failover responsiveness. We present here the SPIDER pipeline design, behavioral model, and analysis on flow tables' memory impact. We also implemented and experimentally validated SPIDER using OpenState (an OpenFlow 1.3 extension for stateful packet processing), showing numerical results on its performance in terms of recovery latency and packet losses.Comment: 8 page

    Traffic Management Applications for Stateful SDN Data Plane

    Get PDF
    The successful OpenFlow approach to Software Defined Networking (SDN) allows network programmability through a central controller able to orchestrate a set of dumb switches. However, the simple match/action abstraction of OpenFlow switches constrains the evolution of the forwarding rules to be fully managed by the controller. This can be particularly limiting for a number of applications that are affected by the delay of the slow control path, like traffic management applications. Some recent proposals are pushing toward an evolution of the OpenFlow abstraction to enable the evolution of forwarding policies directly in the data plane based on state machines and local events. In this paper, we present two traffic management applications that exploit a stateful data plane and their prototype implementation based on OpenState, an OpenFlow evolution that we recently proposed.Comment: 6 pages, 9 figure

    Analyzing performance of openstate in software defined network with multiple failures scenarios

    Get PDF
    Software Defined Network (SDN) is an emerging network that decouples the control plane and data planes. Like other networks, SDN undergoes a recovery process upon occurrences of link or node failures. Openflow is considered as the popular standard used in SDN. In Openflow, the process of detecting the failure and communications with controller to recompute alternative path result to long recovery time. However, there is limit with regards time taken to recover from the failures. If it takes more than 50 msec, a lot of packet will be lost, and communication overhead and Round Trip Time (RTT) between switch – controller may be high. Openstate is an Openflow extension that allows a programmer to specify how forwarding rules should be adapted in a stateful fashion. Openstate has been tested only on single failure. This research conduct experiment based on Openstate pipeline design that provides detections mechanism based on switches periodic link probing and fast reroute of traffic flow even when controller is not reachable. In this research, the experiments use Mininet simulation software to analyse and evaluate the performance of Openstate with multiple failure scenarios. The research has compared Overhead communication, Round Trip Time (RTT) between switch – controller and number of packet loss with Openflow and Openstate. On the average, in Openstate packet loss is zero when the recovery time is less than or equal to 70 msec while communication overhead involves 60 packet-in. In Openflow, packet loss is zero when the recovery time is less than or equal to 85 msec while communication overhead involves 100 packet-in. Finally, the average RTTs for Openstate and Openflow are 65 msec and 90 msec respectively. Based on the results obtained, it can be concluded that Openstate has better performance compare to Openflow

    Software-based fast failure recovery in load balanced SDN-based datacenter networks

    Get PDF
    Load balancing is currently considered as a candidate solution to tackle the emerging problem of increasing bandwidth demand in intra-datacenter networks. Furthermore, because a short disruption of data transfer would corrupt the result of a long procedure of computation, fast failure management mechanisms are considered as integral part of current datacenters. In this paper, we propose a method which uses active probing to detect and manage failures in an OpenFlow based datacenter network exploiting load balancing among equal cost multiple paths. The proposed method is scalable and effective based on the actions it takes without involving the controller in the fast failure recovery procedure

    Technology-related disasters:a survey towards disaster-resilient software defined networks

    Get PDF
    Resilience against disaster scenarios is essential to network operators, not only because of the potential economic impact of a disaster but also because communication networks form the basis of crisis management. COST RECODIS aims at studying measures, rules, techniques and prediction mechanisms for different disaster scenarios. This paper gives an overview of different solutions in the context of technology-related disasters. After a general overview, the paper focuses on resilient Software Defined Networks

    Stateful Data Plane Abstractions for Software-Defined Networks and Their Applications

    Get PDF
    RESUMÉ Le Software-Defined Networking (SDN) permet la programmation du réseau. Malheureusement, la technologie SDN actuelle limite la programmabilité uniquement au plan de contrôle. Les opérateurs ne peuvent pas programmer des algorithmes du plan de données tels que l’équilibrage de charge, le contrôle de congestion, la détection de pannes, etc. Ces fonctions sont implémentées à l’aide d’hardware dédié, car elles doivent fonctionner au taux de ligne, c’est-à-dire 10-100 Gbit/s sur 10-100 ports. Dans ce travail, nous présentons deux abstractions de plan de données pour le traitement de paquets à états (stateful), OpenState et OPP. OpenState est une extension d’OpenFlow qui permet la définition des règles de flux en tant que machines à états finis. OPP est une abstraction plus flexible qui généralise OpenState en ajoutant des capacités de calcul, permettant la programmation d’algorithmes de plan de données plus avancés. OpenState et OPP sont à la fois disponibles pour les implémentations d’haute performance en utilisant des composants de commutateurs hardware courants. Cependant, les deux abstractions sont basées sur un choix de design problématique : l’utilisation d’une boucle de rétroaction dans le pipeline de traitement des paquets. Cette boucle, si elle n’est pas correctement contrôlée, peut nuire à la cohérence des opérations d’état. Les approches de verrouillage de la mémoire peuvent être utilisées pour éviter les incohérences, au détriment du débit. Nous présentons des résultats de simulations sur des traces de trafic réelles, montrant que les boucles de rétroaction de plusieurs cycles d’horloge peuvent être supportées avec peu ou pas de dégradation des performances, même avec les charges de travail des plus défavorables. Pour mieux prouver les avantages d’un plan de données programmables, nous présentons deux nouvelles applications : Spider et FDPA. Spider permet de détecter et de réagir aux pannes de réseau aux échelles temporelles du plan de données (i.e., micro/nanosecondes), également dans le cas de pannes à distance. En utilisant OpenState, Spider fournit des fonctionnalités équivalentes aux protocoles de plans de contrôle anciens tels que BFD et MPLS Fast Reroute, mais sans nécessiter un plan de contrôle.---------- ABSTRACT Software-Defined Networking (SDN) enables programmability in the network. Unfortunately, current SDN limits programmability only to the control plane. Operators cannot program data plane algorithms such as load balancing, congestion control, failure detection, etc. These capabilities are usually baked in the switch via dedicated hardware, as they need to run at line rate, i.e. 10-100 Gbit/s on 10-100 ports. In this work, we present two data plane abstractions for stateful packet processing, namely OpenState and OPP. These abstractions allow operators to program data plane tasks that involve stateful processing. OpenState is an extension to OpenFlow that permits the definition of forwarding rules as finite state machines. OPP is a more flexible abstraction that generalizes OpenState by adding computational capabilities, opening for the programming of more advanced data plane algorithms. Both OpenState and OPP are amenable for highperformance hardware implementations by using commodity hardware switch components. However, both abstractions are based on a problematic design choice: to use a feedback-loop in the processing pipeline. This loop, if not adequately controlled, can represent a harm for the consistency of the state operations. Memory locking approaches can be used to prevent inconsistencies, at the expense of throughput. We present simulation results on real traffic traces showing that feedback-loops of several clock cycles can be supported with little or no performance degradation, even with near-worst case traffic workloads. To further prove the benefits of a stateful programmable data plane, we present two novel applications: Spider and FDPA. Spider permits to detect and react to network failures at data plane timescales, i.e. micro/nanoseconds, also in the case of distant failures. By using OpenState, Spider provides functionalities equivalent to legacy control plane protocols such as BFD and MPLS Fast Reroute, but without the need of a control plane. That is, both detection and rerouting happen entirely in the data plane. FDPA allows a switch to enforce approximate fair bandwidth sharing among many TCP-like senders. Most of the mechanisms to solve this problem are based on complex scheduling algorithms, whose feasibility becomes very expensive with today’s line rate requirements. FDPA, which is based on OPP, trades scheduling complexity with per-user state. FDPA works by dynamically assigning users to few (3-4) priority queues, where the priority is chosen based on the sending rate history of a user

    Self-healing and SDN: bridging the gap

    Get PDF
    Achieving high programmability has become an essential aim of network research due to the ever-increasing internet traffic. Software-Defined Network (SDN) is an emerging architecture aimed to address this need. However, maintaining accurate knowledge of the network after a failure is one of the largest challenges in the SDN. Motivated by this reality, this paper focuses on the use of self-healing properties to boost the SDN robustness. This approach, unlike traditional schemes, is not based on proactively configuring multiple (and memory-intensive) backup paths in each switch or performing a reactive and time-consuming routing computation at the controller level. Instead, the control paths are quickly recovered by local switch actions and subsequently optimized by global controller knowledge. Obtained results show that the proposed approach recovers the control topology effectively in terms of time and message load over a wide range of generated networks. Consequently, scalability issues of traditional fault recovery strategies are avoided.Postprint (published version

    Smart routing: towards proactive fault handling of software-defined networks

    Get PDF
    In recent years, the emerging paradigm of software-defined networking has become a hot and thriving topic in both the industrial and academic sectors. Software-defined networking offers numerous benefits against legacy networking systems by simplifying the process of network management through reducing the cost of network configurations. Currently, data plane fault management is limited to two mechanisms: proactive and reactive. These fault management and recovery techniques are activated only after a failure occurrence and hence packet loss is highly likely to occur. This is due to convergence time where new network paths will need to be allocated in order to forward the affected traffic rather than drop it. Such convergence leads to temporary service disruption and unavailability. Practically, not only the speed of recovery mechanisms affects the convergence, but also the delay caused by the process of failure detection. In this paper, we define a new approach for data plane fault management in software-defined networks where the goal is to eliminate the convergence process altogether rather than accelerate the failure detection and recovery. We propose a new framework, called Smart Routing, which allows the network controller to receive forewarning signs on failures and hence avoid risky paths before the failure incidents occur. The proposed approach aims to decrease service disruption, which in turn increases network service availability. We validate our framework through a set of experiments that demonstrate how the underlying model runs and its impact on improving service availability. We take as example of the applicability of the new framework three types of topologies covering real and simulated networks
    corecore