73 research outputs found

    State of B\"uchi Complementation

    Full text link
    Complementation of B\"uchi automata has been studied for over five decades since the formalism was introduced in 1960. Known complementation constructions can be classified into Ramsey-based, determinization-based, rank-based, and slice-based approaches. Regarding the performance of these approaches, there have been several complexity analyses but very few experimental results. What especially lacks is a comparative experiment on all of the four approaches to see how they perform in practice. In this paper, we review the four approaches, propose several optimization heuristics, and perform comparative experimentation on four representative constructions that are considered the most efficient in each approach. The experimental results show that (1) the determinization-based Safra-Piterman construction outperforms the other three in producing smaller complements and finishing more tasks in the allocated time and (2) the proposed heuristics substantially improve the Safra-Piterman and the slice-based constructions.Comment: 28 pages, 4 figures, a preliminary version of this paper appeared in the Proceedings of the 15th International Conference on Implementation and Application of Automata (CIAA

    Determinization of B\"uchi Automata: Unifying the Approaches of Safra and Muller-Schupp

    Full text link
    Determinization of B\"uchi automata is a long-known difficult problem and after the seminal result of Safra, who developed the first asymptotically optimal construction from B\"uchi into Rabin automata, much work went into improving, simplifying or avoiding Safra's construction. A different, less known determinization construction was derived by Muller and Schupp and appears to be unrelated to Safra's construction on the first sight. In this paper we propose a new meta-construction from nondeterministic B\"uchi to deterministic parity automata which strictly subsumes both the construction of Safra and the construction of Muller and Schupp. It is based on a correspondence between structures that are encoded in the macrostates of the determinization procedures - Safra trees on one hand, and levels of the split-tree, which underlies the Muller and Schupp construction, on the other. Our construction allows for combining the mentioned constructions and opens up new directions for the development of heuristics.Comment: Full version of ICALP 2019 pape

    Rabin vs. Streett Automata

    Get PDF
    The Rabin and Streett acceptance conditions are dual. Accordingly, deterministic Rabin and Streett automata are dual. Yet, when adding nondeterminsim, the picture changes dramatically. In fact, the state blowup involved in translations between Rabin and Streett automata is a longstanding open problem, having an exponential gap between the known lower and upper bounds. We resolve the problem, showing that the translation of Streett to Rabin automata involves a state blowup in Theta(n2)Theta(n^2), whereas in the other direction, the translations of both deterministic and nondeterministic Rabin automata to nondeterministic Streett automata involve a state blowup in 2Theta(n)2^{Theta(n)}. Analyzing this substantial difference between the two directions, we get to the conclusion that when studying translations between automata, one should not only consider the state blowup, but also the emph{size} blowup, where the latter takes into account all of the automaton elements. More precisely, the size of an automaton is defined to be the maximum of the alphabet length, the number of states, the number of transitions, and the acceptance condition length (index). Indeed, size-wise, the results are opposite. That is, the translation of Rabin to Streett involves a size blowup in Theta(n2)Theta(n^2) and of Streett to Rabin in 2Theta(n)2^{Theta(n)}. The core difference between state blowup and size blowup stems from the tradeoff between the index and the number of states. (Recall that the index of Rabin and Streett automata might be exponential in the number of states.) We continue with resolving the open problem of translating deterministic Rabin and Streett automata to the weaker types of deterministic co-B"uchi and B"uchi automata, respectively. We show that the state blowup involved in these translations, when possible, is in 2Theta(n)2^{Theta(n)}, whereas the size blowup is in Theta(n2)Theta(n^2)

    On the (In)Succinctness of Muller Automata

    Get PDF
    There are several types of finite automata on infinite words, differing in their acceptance conditions. As each type has its own advantages, there is an extensive research on the size blowup involved in translating one automaton type to another. Of special interest is the Muller type, providing the most detailed acceptance condition. It turns out that there is inconsistency and incompleteness in the literature results regarding the translations to and from Muller automata. Considering the automaton size, some results take into account, in addition to the number of states, the alphabet length and the number of transitions while ignoring the length of the acceptance condition, whereas other results consider the length of the acceptance condition while ignoring the two other parameters. We establish a full picture of the translations to and from Muller automata, enhancing known results and adding new ones. Overall, Muller automata can be considered less succinct than parity, Rabin, and Streett automata: translating nondeterministic Muller automata to the other nondeterministic types involves a polynomial size blowup, while the other way round is exponential; translating between the deterministic versions is exponential in both directions; and translating nondeterministic automata of all types to deterministic Muller automata is doubly exponential, as opposed to a single exponent in the translations to the other deterministic types

    Regular Methods for Operator Precedence Languages

    Get PDF
    The operator precedence languages (OPLs) represent the largest known subclass of the context-free languages which enjoys all desirable closure and decidability properties. This includes the decidability of language inclusion, which is the ultimate verification problem. Operator precedence grammars, automata, and logics have been investigated and used, for example, to verify programs with arithmetic expressions and exceptions (both of which are deterministic pushdown but lie outside the scope of the visibly pushdown languages). In this paper, we complete the picture and give, for the first time, an algebraic characterization of the class of OPLs in the form of a syntactic congruence that has finitely many equivalence classes exactly for the operator precedence languages. This is a generalization of the celebrated Myhill-Nerode theorem for the regular languages to OPLs. As one of the consequences, we show that universality and language inclusion for nondeterministic operator precedence automata can be solved by an antichain algorithm. Antichain algorithms avoid determinization and complementation through an explicit subset construction, by leveraging a quasi-order on words, which allows the pruning of the search space for counterexample words without sacrificing completeness. Antichain algorithms can be implemented symbolically, and these implementations are today the best-performing algorithms in practice for the inclusion of finite automata. We give a generic construction of the quasi-order needed for antichain algorithms from a finite syntactic congruence. This yields the first antichain algorithm for OPLs, an algorithm that solves the ExpTime-hard language inclusion problem for OPLs in exponential time

    Efficient Normalization of Linear Temporal Logic

    Full text link
    In the mid 80s, Lichtenstein, Pnueli, and Zuck proved a classical theorem stating that every formula of Past LTL (the extension of LTL with past operators) is equivalent to a formula of the form ⋀i=1nGF φi∨FG ψi\bigwedge_{i=1}^n \mathbf{G}\mathbf{F}\, \varphi_i \vee \mathbf{F}\mathbf{G}\, \psi_i , where φi\varphi_i and ψi\psi_i contain only past operators. Some years later, Chang, Manna, and Pnueli built on this result to derive a similar normal form for LTL. Both normalization procedures have a non-elementary worst-case blow-up, and follow an involved path from formulas to counter-free automata to star-free regular expressions and back to formulas. We improve on both points. We present direct and purely syntactic normalization procedures for LTL, yielding a normal form very similar to the one by Chang, Manna, and Pnueli, that exhibit only a single exponential blow-up. As an application, we derive a simple algorithm to translate LTL into deterministic Rabin automata. The algorithm normalizes the formula, translates it into a special very weak alternating automaton, and applies a simple determinization procedure, valid only for these special automata.Comment: Submitted to J. ACM. arXiv admin note: text overlap with arXiv:2304.08872, arXiv:2005.0047
    • …
    corecore