255 research outputs found

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Performance Analysis of Compressive Sensing based LS and MMSE Channel Estimation Algorithm

    Get PDF
    In this paper, we have developed and implemented Minimum Mean Square Channel Estimation with Compressive Sensing (MMSE-CS) algorithm in MIMO-OFDM systems. The performance of this algorithm is analyzed by comparing it with Least Square channel estimation with compressive sensing (LS-CS), Least Square (LS) and Minimum Mean Square Estimation (MMSE) algorithms. It is observed that the performance of MMSE-CS in terms of Bit Error Rate (BER) metric is definitely better than LS-CS and LS algorithms and it is at par with MMSE algorithm. Moreover the role of compressive sensing theory in channel estimation is accentuated by the fact that in MMSE-CS algorithm only a very small number of channel coefficients are sensed to recreate the transmitted data faithfully as compared to MMSE algorithm

    D4.2 Intelligent D-Band wireless systems and networks initial designs

    Get PDF
    This deliverable gives the results of the ARIADNE project's Task 4.2: Machine Learning based network intelligence. It presents the work conducted on various aspects of network management to deliver system level, qualitative solutions that leverage diverse machine learning techniques. The different chapters present system level, simulation and algorithmic models based on multi-agent reinforcement learning, deep reinforcement learning, learning automata for complex event forecasting, system level model for proactive handovers and resource allocation, model-driven deep learning-based channel estimation and feedbacks as well as strategies for deployment of machine learning based solutions. In short, the D4.2 provides results on promising AI and ML based methods along with their limitations and potentials that have been investigated in the ARIADNE project

    Near-Field Communications: A Comprehensive Survey

    Full text link
    Multiple-antenna technologies are evolving towards large-scale aperture sizes, extremely high frequencies, and innovative antenna types. This evolution is giving rise to the emergence of near-field communications (NFC) in future wireless systems. Considerable attention has been directed towards this cutting-edge technology due to its potential to enhance the capacity of wireless networks by introducing increased spatial degrees of freedom (DoFs) in the range domain. Within this context, a comprehensive review of the state of the art on NFC is presented, with a specific focus on its 1) fundamental operating principles, 2) channel modeling, 3) performance analysis, 4) signal processing, and 5) integration with other emerging technologies. Specifically, 1) the basic principles of NFC are characterized from both physics and communications perspectives, unveiling its unique properties in contrast to far-field communications. 2) Based on these principles, deterministic and stochastic near-field channel models are investigated for spatially-discrete (SPD) and continuous-aperture (CAP) antenna arrays. 3) Rooted in these models, existing contributions on near-field performance analysis are reviewed in terms of DoFs/effective DoFs (EDoFs), power scaling law, and transmission rate. 4) Existing signal processing techniques for NFC are systematically surveyed, encompassing channel estimation, beamforming design, and low-complexity beam training. 5) Major issues and research opportunities associated with the integration of NFC and other emerging technologies are identified to facilitate NFC applications in next-generation networks. Promising directions are highlighted throughout the paper to inspire future research endeavors in the realm of NFC.Comment: 56 pages, 23figures; submit for possible journa

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Lens antenna arrays: an efficient framework for sparse-aware large-MIMO communications

    Get PDF
    The recent increase in the demand for higher data transmission rates in wireless communications has entailed many implementation issues that can only be resolved by going through a full paradigm shift. Making use of the millimetric spectrum bands is a very attractive solution to the shortage of radio resources but, to garner all their potential, new techniques must be developed. Most of them are contained in the Massive Multiple Input Multiple Output (M-MIMO) framework: the idea of using very large antenna arrays for cellular communications. In this thesis, we propose the usage of Lens Antenna Arrays (LAA) to avoid the unbearable power and infrastructure costs posed by traditional M-MIMO architectures. This novel communication system exploits the angular-dependent power focusing capabilities of an electromagnetic lens to discern between waves with different angles of arrival and departure, without explicit signal processing. The work presented in this document motivates the use of LAAs in mmWave communications, studies some of their mathematical properties and proposes their application in noncoherent schemes. Numerical results validate the performance of this novel kind of systems and confirm their strengths in both multi-user and block fading settings. LAAs that use noncoherent methods appear to be very suitable for vehicular communications and densely populated cellular networks.En los últimos tiempos, el incremento en la demanda de mayor velocidad de transmisión de datos en redes de comunicación inalámbricas ha conllevado varios problemas de implementación que solo se podrán resolver a través de un cambio total de paradigma. Utilizar bandas milimétricas del espectro es una solución muy atractiva a la escasez de recursos de radio pero, para poder extraer todo su potencial, es necesario desarrollar nuevas técnicas. La mayor parte de éstas pasa por la infraestructura Massive Multiple Input Multiple Output (M-MIMO): la idea de usar matrices de antenas muy grandes para comunicaciones celulares. En esta tesis, proponemos el uso de matrices de antenas con lente, o Lens Antenna Arrays (LAA), para evitar los inasumibles costes energéticos y de instalación propios de las arquitecturas M-MIMO tradicionales. Este novedoso sistema de comunicaciones explota las capacidades de concentración de energía con dependencia angular de las lentes electromagnéticas para distinguir entre ondas con distintas direcciones de llegada y de salida, sin procesado de la señal explícito. El trabajo presentado en este documento motiva el uso de los LAAs en comunicaciones en bandas milimétricas (mmWave), estudia varias propiedades matemáticas y propone su aplicación en esquemas no coherentes. Resultados numéricos validan su ejecución y confirman sus fortalezas en entornos multiusuario y con desvanecimiento en bloque. Los LAAs que utilizan métodos no coherentes parecen ser idóneos para comunicaciones vehiculares y para redes celulares altamente pobladas.En els darrers temps, l'increment en la demanda de major velocitat de transmissió de dades en xarxes de comunicació inalàmbriques ha comportat diversos problemes d'implementació que tan sols es podran resoldre a través d'un canvi total de paradigma. Utilitzar les bandes mil·limètriques de l'espectre és una solució molt atractiva a l'escassetat de recursos de ràdio però, per tal d'extreure'n tot el seu potencial, és necessari desenvolupar noves tècniques. La majoria d'aquestes passa per la infraestructura Massive Multiple Input Multiple Output (M-MIMO): la idea d'utilitzar matrius d'antenes molt grans per a comunicacions cel·lulars. En aquesta tesi, proposem l'ús de matrius d'antenes amb lent, o Lens Antenna Arrays (LAA), per tal d'evitar els inassumibles costos energètics i d'instal·lació propis d'arquitectures M-MIMO tradicionals. Aquest innovador sistema de comunicacions explota les capacitats de concentració d'energia amb dependència angular de les lents electromagnètiques per tal de distingir entre ones amb diferents direccions d'arribada i de sortida, sense processament de senyal explícit. El treball presentat en aquest document motiva l'ús dels LAAs per comunicacions en bandes mil·limètriques (mmWave), n'estudia diverses propietats matemàtiques i proposa la seva aplicació en esquemes no coherents. Resultats numèrics en validen l'execució i confirmen les seves fortaleses en entorns multi-usuari i amb esvaïment en bloc. Els LAAs que utilitzen mètodes no coherents semblen ser idonis per a comunicacions vehiculars i per a xarxes cel·lulars altament poblades
    corecore