336 research outputs found

    Affine extractors over large fields with exponential error

    Full text link
    We describe a construction of explicit affine extractors over large finite fields with exponentially small error and linear output length. Our construction relies on a deep theorem of Deligne giving tight estimates for exponential sums over smooth varieties in high dimensions.Comment: To appear in Comput. Comple

    Improved Extractors for Recognizable and Algebraic Sources

    Get PDF

    Almost-Uniform Sampling of Points on High-Dimensional Algebraic Varieties

    Get PDF
    We consider the problem of uniform sampling of points on an algebraic variety. Specifically, we develop a randomized algorithm that, given a small set of multivariate polynomials over a sufficiently large finite field, produces a common zero of the polynomials almost uniformly at random. The statistical distance between the output distribution of the algorithm and the uniform distribution on the set of common zeros is polynomially small in the field size, and the running time of the algorithm is polynomial in the description of the polynomials and their degrees provided that the number of the polynomials is a constant

    Two-sources Randomness Extractors for Elliptic Curves

    Get PDF
    This paper studies the task of two-sources randomness extractors for elliptic curves defined over finite fields KK, where KK can be a prime or a binary field. In fact, we introduce new constructions of functions over elliptic curves which take in input two random points from two differents subgroups. In other words, for a ginven elliptic curve EE defined over a finite field Fq\mathbb{F}_q and two random points PPP \in \mathcal{P} and QQQ\in \mathcal{Q}, where P\mathcal{P} and Q\mathcal{Q} are two subgroups of E(Fq)E(\mathbb{F}_q), our function extracts the least significant bits of the abscissa of the point PQP\oplus Q when qq is a large prime, and the kk-first Fp\mathbb{F}_p coefficients of the asbcissa of the point PQP\oplus Q when q=pnq = p^n, where pp is a prime greater than 55. We show that the extracted bits are close to uniform. Our construction extends some interesting randomness extractors for elliptic curves, namely those defined in \cite{op} and \cite{ciss1,ciss2}, when P=Q\mathcal{P} = \mathcal{Q}. The proposed constructions can be used in any cryptographic schemes which require extraction of random bits from two sources over elliptic curves, namely in key exchange protole, design of strong pseudo-random number generators, etc

    Deterministic Extractors for Additive Sources

    Full text link
    We propose a new model of a weakly random source that admits randomness extraction. Our model of additive sources includes such natural sources as uniform distributions on arithmetic progressions (APs), generalized arithmetic progressions (GAPs), and Bohr sets, each of which generalizes affine sources. We give an explicit extractor for additive sources with linear min-entropy over both Zp\mathbb{Z}_p and Zpn\mathbb{Z}_p^n, for large prime pp, although our results over Zpn\mathbb{Z}_p^n require that the source further satisfy a list-decodability condition. As a corollary, we obtain explicit extractors for APs, GAPs, and Bohr sources with linear min-entropy, although again our results over Zpn\mathbb{Z}_p^n require the list-decodability condition. We further explore special cases of additive sources. We improve previous constructions of line sources (affine sources of dimension 1), requiring a field of size linear in nn, rather than Ω(n2)\Omega(n^2) by Gabizon and Raz. This beats the non-explicit bound of Θ(nlogn)\Theta(n \log n) obtained by the probabilistic method. We then generalize this result to APs and GAPs

    Three-Source Extractors for Polylogarithmic Min-Entropy

    Full text link
    We continue the study of constructing explicit extractors for independent general weak random sources. The ultimate goal is to give a construction that matches what is given by the probabilistic method --- an extractor for two independent nn-bit weak random sources with min-entropy as small as logn+O(1)\log n+O(1). Previously, the best known result in the two-source case is an extractor by Bourgain \cite{Bourgain05}, which works for min-entropy 0.49n0.49n; and the best known result in the general case is an earlier work of the author \cite{Li13b}, which gives an extractor for a constant number of independent sources with min-entropy polylog(n)\mathsf{polylog(n)}. However, the constant in the construction of \cite{Li13b} depends on the hidden constant in the best known seeded extractor, and can be large; moreover the error in that construction is only 1/poly(n)1/\mathsf{poly(n)}. In this paper, we make two important improvements over the result in \cite{Li13b}. First, we construct an explicit extractor for \emph{three} independent sources on nn bits with min-entropy kpolylog(n)k \geq \mathsf{polylog(n)}. In fact, our extractor works for one independent source with poly-logarithmic min-entropy and another independent block source with two blocks each having poly-logarithmic min-entropy. Thus, our result is nearly optimal, and the next step would be to break the 0.49n0.49n barrier in two-source extractors. Second, we improve the error of the extractor from 1/poly(n)1/\mathsf{poly(n)} to 2kΩ(1)2^{-k^{\Omega(1)}}, which is almost optimal and crucial for cryptographic applications. Some of the techniques developed here may be of independent interests

    Two Structural Results for Low Degree Polynomials and Applications

    Get PDF
    In this paper, two structural results concerning low degree polynomials over finite fields are given. The first states that over any finite field F\mathbb{F}, for any polynomial ff on nn variables with degree dlog(n)/10d \le \log(n)/10, there exists a subspace of Fn\mathbb{F}^n with dimension Ω(dn1/(d1))\Omega(d \cdot n^{1/(d-1)}) on which ff is constant. This result is shown to be tight. Stated differently, a degree dd polynomial cannot compute an affine disperser for dimension smaller than Ω(dn1/(d1))\Omega(d \cdot n^{1/(d-1)}). Using a recursive argument, we obtain our second structural result, showing that any degree dd polynomial ff induces a partition of FnF^n to affine subspaces of dimension Ω(n1/(d1)!)\Omega(n^{1/(d-1)!}), such that ff is constant on each part. We extend both structural results to more than one polynomial. We further prove an analog of the first structural result to sparse polynomials (with no restriction on the degree) and to functions that are close to low degree polynomials. We also consider the algorithmic aspect of the two structural results. Our structural results have various applications, two of which are: * Dvir [CC 2012] introduced the notion of extractors for varieties, and gave explicit constructions of such extractors over large fields. We show that over any finite field, any affine extractor is also an extractor for varieties with related parameters. Our reduction also holds for dispersers, and we conclude that Shaltiel's affine disperser [FOCS 2011] is a disperser for varieties over F2F_2. * Ben-Sasson and Kopparty [SIAM J. C 2012] proved that any degree 3 affine disperser over a prime field is also an affine extractor with related parameters. Using our structural results, and based on the work of Kaufman and Lovett [FOCS 2008] and Haramaty and Shpilka [STOC 2010], we generalize this result to any constant degree

    Two Source Extractors for Asymptotically Optimal Entropy, and (Many) More

    Full text link
    A long line of work in the past two decades or so established close connections between several different pseudorandom objects and applications. These connections essentially show that an asymptotically optimal construction of one central object will lead to asymptotically optimal solutions to all the others. However, despite considerable effort, previous works can get close but still lack one final step to achieve truly asymptotically optimal constructions. In this paper we provide the last missing link, thus simultaneously achieving explicit, asymptotically optimal constructions and solutions for various well studied extractors and applications, that have been the subjects of long lines of research. Our results include: Asymptotically optimal seeded non-malleable extractors, which in turn give two source extractors for asymptotically optimal min-entropy of O(logn)O(\log n), explicit constructions of KK-Ramsey graphs on NN vertices with K=logO(1)NK=\log^{O(1)} N, and truly optimal privacy amplification protocols with an active adversary. Two source non-malleable extractors and affine non-malleable extractors for some linear min-entropy with exponentially small error, which in turn give the first explicit construction of non-malleable codes against 22-split state tampering and affine tampering with constant rate and \emph{exponentially} small error. Explicit extractors for affine sources, sumset sources, interleaved sources, and small space sources that achieve asymptotically optimal min-entropy of O(logn)O(\log n) or 2s+O(logn)2s+O(\log n) (for space ss sources). An explicit function that requires strongly linear read once branching programs of size 2nO(logn)2^{n-O(\log n)}, which is optimal up to the constant in O()O(\cdot). Previously, even for standard read once branching programs, the best known size lower bound for an explicit function is 2nO(log2n)2^{n-O(\log^2 n)}.Comment: Fixed some minor error

    Linear-algebraic list decoding of folded Reed-Solomon codes

    Full text link
    Folded Reed-Solomon codes are an explicit family of codes that achieve the optimal trade-off between rate and error-correction capability: specifically, for any \eps > 0, the author and Rudra (2006,08) presented an n^{O(1/\eps)} time algorithm to list decode appropriate folded RS codes of rate RR from a fraction 1-R-\eps of errors. The algorithm is based on multivariate polynomial interpolation and root-finding over extension fields. It was noted by Vadhan that interpolating a linear polynomial suffices if one settles for a smaller decoding radius (but still enough for a statement of the above form). Here we give a simple linear-algebra based analysis of this variant that eliminates the need for the computationally expensive root-finding step over extension fields (and indeed any mention of extension fields). The entire list decoding algorithm is linear-algebraic, solving one linear system for the interpolation step, and another linear system to find a small subspace of candidate solutions. Except for the step of pruning this subspace, the algorithm can be implemented to run in {\em quadratic} time. The theoretical drawback of folded RS codes are that both the decoding complexity and proven worst-case list-size bound are n^{\Omega(1/\eps)}. By combining the above idea with a pseudorandom subset of all polynomials as messages, we get a Monte Carlo construction achieving a list size bound of O(1/\eps^2) which is quite close to the existential O(1/\eps) bound (however, the decoding complexity remains n^{\Omega(1/\eps)}). Our work highlights that constructing an explicit {\em subspace-evasive} subset that has small intersection with low-dimensional subspaces could lead to explicit codes with better list-decoding guarantees.Comment: 16 pages. Extended abstract in Proc. of IEEE Conference on Computational Complexity (CCC), 201
    corecore