13,417 research outputs found

    Deterministic Polynomial Time Algorithms for Matrix Completion Problems

    Get PDF
    We present new deterministic algorithms for several cases of the maximum rank matrix completion problem (for short matrix completion), i.e. the problem of assigning values to the variables in a given symbolic matrix as to maximize the resulting matrix rank. Matrix completion belongs to the fundamental problems in computational complexity with numerous important algorithmic applications, among others, in computing dynamic transitive closures or multicast network codings (Harvey et al SODA 2005, Harvey et al SODA 2006). We design efficient deterministic algorithms for common generalizations of the results of Lovasz and Geelen on this problem by allowing linear functions in the entries of the input matrix such that the submatrices corresponding to each variable have rank one. We present also a deterministic polynomial time algorithm for finding the minimal number of generators of a given module structure given by matrices. We establish further several hardness results related to matrix algebras and modules. As a result we connect the classical problem of polynomial identity testing with checking surjectivity (or injectivity) between two given modules. One of the elements of our algorithm is a construction of a greedy algorithm for finding a maximum rank element in the more general setting of the problem. The proof methods used in this paper could be also of independent interest.Comment: 14 pages, preliminar

    Weakening Assumptions for Deterministic Subexponential Time Non-Singular Matrix Completion

    Get PDF
    In (Kabanets, Impagliazzo, 2004) it is shown how to decide the circuit polynomial identity testing problem (CPIT) in deterministic subexponential time, assuming hardness of some explicit multilinear polynomial family for arithmetical circuits. In this paper, a special case of CPIT is considered, namely low-degree non-singular matrix completion (NSMC). For this subclass of problems it is shown how to obtain the same deterministic time bound, using a weaker assumption in terms of determinantal complexity. Hardness-randomness tradeoffs will also be shown in the converse direction, in an effort to make progress on Valiant's VP versus VNP problem. To separate VP and VNP, it is known to be sufficient to prove that the determinantal complexity of the m-by-m permanent is mω(logm)m^{\omega(\log m)}. In this paper it is shown, for an appropriate notion of explicitness, that the existence of an explicit multilinear polynomial family with determinantal complexity m^{\omega(\log m)}isequivalenttotheexistenceofanefficientlycomputablegenerator is equivalent to the existence of an efficiently computable generator G_nformultilinearNSMCwithseedlength for multilinear NSMC with seed length O(n^{1/\sqrt{\log n}}).ThelatterisacombinatorialobjectthatprovidesanefficientdeterministicblackboxalgorithmforNSMC.MultilinearNSMCindicatesthat. The latter is a combinatorial object that provides an efficient deterministic black-box algorithm for NSMC. ``Multilinear NSMC'' indicates that G_nonlyhastoworkformatrices only has to work for matrices M(x)of of poly(n)sizein size in nvariables,forwhich variables, for which det(M(x))$ is a multilinear polynomial

    Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix

    Get PDF
    Given a nonsingular n×nn \times n matrix of univariate polynomials over a field K\mathbb{K}, we give fast and deterministic algorithms to compute its determinant and its Hermite normal form. Our algorithms use O~(nωs)\widetilde{\mathcal{O}}(n^\omega \lceil s \rceil) operations in K\mathbb{K}, where ss is bounded from above by both the average of the degrees of the rows and that of the columns of the matrix and ω\omega is the exponent of matrix multiplication. The soft-OO notation indicates that logarithmic factors in the big-OO are omitted while the ceiling function indicates that the cost is O~(nω)\widetilde{\mathcal{O}}(n^\omega) when s=o(1)s = o(1). Our algorithms are based on a fast and deterministic triangularization method for computing the diagonal entries of the Hermite form of a nonsingular matrix.Comment: 34 pages, 3 algorithm

    Learning probability distributions generated by finite-state machines

    Get PDF
    We review methods for inference of probability distributions generated by probabilistic automata and related models for sequence generation. We focus on methods that can be proved to learn in the inference in the limit and PAC formal models. The methods we review are state merging and state splitting methods for probabilistic deterministic automata and the recently developed spectral method for nondeterministic probabilistic automata. In both cases, we derive them from a high-level algorithm described in terms of the Hankel matrix of the distribution to be learned, given as an oracle, and then describe how to adapt that algorithm to account for the error introduced by a finite sample.Peer ReviewedPostprint (author's final draft

    A Characterization of Deterministic Sampling Patterns for Low-Rank Matrix Completion

    Full text link
    Low-rank matrix completion (LRMC) problems arise in a wide variety of applications. Previous theory mainly provides conditions for completion under missing-at-random samplings. This paper studies deterministic conditions for completion. An incomplete d×Nd \times N matrix is finitely rank-rr completable if there are at most finitely many rank-rr matrices that agree with all its observed entries. Finite completability is the tipping point in LRMC, as a few additional samples of a finitely completable matrix guarantee its unique completability. The main contribution of this paper is a deterministic sampling condition for finite completability. We use this to also derive deterministic sampling conditions for unique completability that can be efficiently verified. We also show that under uniform random sampling schemes, these conditions are satisfied with high probability if O(max{r,logd})O(\max\{r,\log d\}) entries per column are observed. These findings have several implications on LRMC regarding lower bounds, sample and computational complexity, the role of coherence, adaptive settings and the validation of any completion algorithm. We complement our theoretical results with experiments that support our findings and motivate future analysis of uncharted sampling regimes.Comment: This update corrects an error in version 2 of this paper, where we erroneously assumed that columns with more than r+1 observed entries would yield multiple independent constraint
    corecore