We present new deterministic algorithms for several cases of the maximum rank
matrix completion problem (for short matrix completion), i.e. the problem of
assigning values to the variables in a given symbolic matrix as to maximize the
resulting matrix rank. Matrix completion belongs to the fundamental problems in
computational complexity with numerous important algorithmic applications,
among others, in computing dynamic transitive closures or multicast network
codings (Harvey et al SODA 2005, Harvey et al SODA 2006).
We design efficient deterministic algorithms for common generalizations of
the results of Lovasz and Geelen on this problem by allowing linear functions
in the entries of the input matrix such that the submatrices corresponding to
each variable have rank one. We present also a deterministic polynomial time
algorithm for finding the minimal number of generators of a given module
structure given by matrices. We establish further several hardness results
related to matrix algebras and modules. As a result we connect the classical
problem of polynomial identity testing with checking surjectivity (or
injectivity) between two given modules. One of the elements of our algorithm is
a construction of a greedy algorithm for finding a maximum rank element in the
more general setting of the problem. The proof methods used in this paper could
be also of independent interest.Comment: 14 pages, preliminar