90 research outputs found

    IP TRACEBACK Scenarios

    Get PDF
    Internet Protocol (IP) trace back is the enabling technology to control Internet crime. In this paper, we present novel and practical IP traceback systems which provide a defense system with the ability to find out the real sources of attacking packets that traverse through the network. IP traceback is to find the origin of an IP packet on the Internet without relying on the source IP address field. Due to the trusting nature of the IP protocol, the source IP address of a packet is not authenticated. As a result, the source address in an IP packet can be falsified (IP address spoofing). Spoof IP packets can be used for different attacks. The problem of finding the source of a packet is called the IP traceback problem. IP Traceback is a critical ability for identifying sources of attacks and instituting protection measures for the Internet. Most existing approaches to this problem have been tailored toward DDoS attack detection

    Topology based packet marking for IP traceback

    Full text link
    IP source address spoofing exploits a fundamental weakness in the Internet Protocol. It is exploited in many types of network-based attacks such as session hijacking and Denial of Service (DoS). Ingress and egress filtering is aimed at preventing IP spoofing. Techniques such as History based filtering are being used during DoS attacks to filter out attack packets. Packet marking techniques are being used to trace IP packets to a point that is close as possible to their actual source. Present IP spoofing&nbsp; countermeasures are hindered by compatibility issues between IPv4 and IPv6, implementation issues and their effectiveness under different types of attacks. We propose a topology based packet marking method that builds on the flexibility of packet marking as an IP trace back method while overcoming most of the shortcomings of present packet marking techniques.<br /

    IP traceback with deterministic packet marking DPM

    Get PDF
    In this dissertation, a novel approach to Internet Protocol (IP) Traceback - Deterministic Packet Marking (DPM) is presented. The proposed approach is scalable, simple to implement, and introduces no bandwidth and practically no processing overhead on the network equipment. It is capable of tracing thousands of simultaneous attackers during a Distributed Denial of Service (DDoS) attack. Given sufficient deployment on the Internet, DPM is capable of tracing back to the slaves for DDoS attacks which involve reflectors. Most of the processing is done at the victim. The traceback process can be performed post-mortem, which allows for tracing the attacks that may not have been noticed initially or the attacks which would deny service to the victim, so that traceback is impossible in real time. Deterministic Packet Marking does not introduce the errors for the reassembly errors usually associated with other packet marking schemes. More than 99.99% of fragmented traffic will not be affected by DPM. The involvement of the Internet service providers (ISP) is very limited, and changes to the infrastructure and operation required to deploy DPM are minimal. Deterministic Packet Marking performs the traceback without revealing the internal topology of the provider\u27s network, which is a desirable quality of a traceback scheme

    Classifying DDoS packets in high-speed networks

    Full text link
    Recently high-speed networks have been utilized by attackers as Distributed Denial of Service (DDoS) attack infrastructure. Services on high-speed networks also have been attacked by successive waves of the DDoS attacks. How to sensitively and accurately detect the attack traffic, and quickly filter out the attack packets are still the major challenges in DDoS defense. Unfortunately most current defense approaches can not efficiently fulfill these tasks. Our approach is to find the network anomalies by using neural network and classify DDoS packets by a Bloom filter-based classifier (BFC). BFC is a set of spaceefficient data structures and algorithms for packet classification. The evaluation results show that the simple complexity, high classification speed and accuracy and low storage requirements of this classifier make it not only suitable for DDoS filtering in high-speed networks, but also suitable for other applications such as string matching for intrusion detection systems and IP lookup for programmable routers.<br /

    A composable approach to design of newer techniques for large-scale denial-of-service attack attribution

    Get PDF
    Since its early days, the Internet has witnessed not only a phenomenal growth, but also a large number of security attacks, and in recent years, denial-of-service (DoS) attacks have emerged as one of the top threats. The stateless and destination-oriented Internet routing combined with the ability to harness a large number of compromised machines and the relative ease and low costs of launching such attacks has made this a hard problem to address. Additionally, the myriad requirements of scalability, incremental deployment, adequate user privacy protections, and appropriate economic incentives has further complicated the design of DDoS defense mechanisms. While the many research proposals to date have focussed differently on prevention, mitigation, or traceback of DDoS attacks, the lack of a comprehensive approach satisfying the different design criteria for successful attack attribution is indeed disturbing. Our first contribution here has been the design of a composable data model that has helped us represent the various dimensions of the attack attribution problem, particularly the performance attributes of accuracy, effectiveness, speed and overhead, as orthogonal and mutually independent design considerations. We have then designed custom optimizations along each of these dimensions, and have further integrated them into a single composite model, to provide strong performance guarantees. Thus, the proposed model has given us a single framework that can not only address the individual shortcomings of the various known attack attribution techniques, but also provide a more wholesome counter-measure against DDoS attacks. Our second contribution here has been a concrete implementation based on the proposed composable data model, having adopted a graph-theoretic approach to identify and subsequently stitch together individual edge fragments in the Internet graph to reveal the true routing path of any network data packet. The proposed approach has been analyzed through theoretical and experimental evaluation across multiple metrics, including scalability, incremental deployment, speed and efficiency of the distributed algorithm, and finally the total overhead associated with its deployment. We have thereby shown that it is realistically feasible to provide strong performance and scalability guarantees for Internet-wide attack attribution. Our third contribution here has further advanced the state of the art by directly identifying individual path fragments in the Internet graph, having adopted a distributed divide-and-conquer approach employing simple recurrence relations as individual building blocks. A detailed analysis of the proposed approach on real-life Internet topologies with respect to network storage and traffic overhead, has provided a more realistic characterization. Thus, not only does the proposed approach lend well for simplified operations at scale but can also provide robust network-wide performance and security guarantees for Internet-wide attack attribution. Our final contribution here has introduced the notion of anonymity in the overall attack attribution process to significantly broaden its scope. The highly invasive nature of wide-spread data gathering for network traceback continues to violate one of the key principles of Internet use today - the ability to stay anonymous and operate freely without retribution. In this regard, we have successfully reconciled these mutually divergent requirements to make it not only economically feasible and politically viable but also socially acceptable. This work opens up several directions for future research - analysis of existing attack attribution techniques to identify further scope for improvements, incorporation of newer attributes into the design framework of the composable data model abstraction, and finally design of newer attack attribution techniques that comprehensively integrate the various attack prevention, mitigation and traceback techniques in an efficient manner

    On mitigating distributed denial of service attacks

    Get PDF
    Denial of service (DoS) attacks and distributed denial of service (DDoS) attacks are probably the most ferocious threats in the Internet, resulting in tremendous economic and social implications/impacts on our daily lives that are increasingly depending on the wellbeing of the Internet. How to mitigate these attacks effectively and efficiently has become an active research area. The critical issues here include 1) IP spoofing, i.e., forged source lIP addresses are routinely employed to conceal the identities of the attack sources and deter the efforts of detection, defense, and tracing; 2) the distributed nature, that is, hundreds or thousands of compromised hosts are orchestrated to attack the victim synchronously. Other related issues are scalability, lack of incentives to deploy a new scheme, and the effectiveness under partial deployment. This dissertation investigates and proposes effective schemes to mitigate DDoS attacks. It is comprised of three parts. The first part introduces the classification of DDoS attacks and the evaluation of previous schemes. The second part presents the proposed IP traceback scheme, namely, autonomous system-based edge marking (ASEM). ASEM enhances probabilistic packet marking (PPM) in several aspects: (1) ASEM is capable of addressing large-scale DDoS attacks efficiently; (2) ASEM is capable of handling spoofed marking from the attacker and spurious marking incurred by subverted routers, which is a unique and critical feature; (3) ASEM can significantly reduce the number of marked packets required for path reconstruction and suppress false positives as well. The third part presents the proposed DDoS defense mechanisms, including the four-color-theorem based path marking, and a comprehensive framework for DDoS defense. The salient features of the framework include (1) it is designed to tackle a wide spectrum of DDoS attacks rather than a specified one, and (2) it can differentiate malicious traffic from normal ones. The receiver-center design avoids several related issues such as scalability, and lack of incentives to deploy a new scheme. Finally, conclusions are drawn and future works are discussed

    Scalable schemes against Distributed Denial of Service attacks

    Get PDF
    Defense against Distributed Denial of Service (DDoS) attacks is one of the primary concerns on the Internet today. DDoS attacks are difficult to prevent because of the open, interconnected nature of the Internet and its underlying protocols, which can be used in several ways to deny service. Attackers hide their identity by using third parties such as private chat channels on IRC (Internet Relay Chat). They also insert false return IP address, spoofing, in a packet which makes it difficult for the victim to determine the packet\u27s origin. We propose three novel and realistic traceback mechanisms which offer many advantages over the existing schemes. All the three schemes take advantage of the Autonomous System topology and consider the fact that the attacker\u27s packets may traverse through a number of domains under different administrative control. Most of the traceback mechanisms make wrong assumptions that the network details of a company under an administrative control are disclosed to the public. For security reasons, this is not the case most of the times. The proposed schemes overcome this drawback by considering reconstruction at the inter and intra AS levels. Hierarchical Internet Traceback (HIT) and Simple Traceback Mechanism (STM) trace back to an attacker in two phases. In the first phase the attack originating Autonomous System is identified while in the second phase the attacker within an AS is identified. Both the schemes, HIT and STM, allow the victim to trace back to the attackers in a few seconds. Their computational overhead is very low and they scale to large distributed attacks with thousands of attackers. Fast Autonomous System Traceback allows complete attack path reconstruction with few packets. We use traceroute maps of real Internet topologies CAIDA\u27s skitter to simulate DDoS attacks and validate our design

    DoS and DDoS Attacks: Defense, Detection and Traceback Mechanisms - A Survey

    Get PDF
    Denial of Service (DoS) or Distributed Denial of Service (DDoS) attacks are typically explicit attempts to exhaust victim2019;s bandwidth or disrupt legitimate users2019; access to services. Traditional architecture of internet is vulnerable to DDoS attacks and it provides an opportunity to an attacker to gain access to a large number of compromised computers by exploiting their vulnerabilities to set up attack networks or Botnets. Once attack network or Botnet has been set up, an attacker invokes a large-scale, coordinated attack against one or more targets. Asa result of the continuous evolution of new attacks and ever-increasing range of vulnerable hosts on the internet, many DDoS attack Detection, Prevention and Traceback mechanisms have been proposed, In this paper, we tend to surveyed different types of attacks and techniques of DDoS attacks and their countermeasures. The significance of this paper is that the coverage of many aspects of countering DDoS attacks including detection, defence and mitigation, traceback approaches, open issues and research challenges
    • …
    corecore