23,670 research outputs found

    Robust Stabilization of Atmospheric Carbon within a Family of Uncertain Carbon Cycle Dynamics

    Get PDF
    A recently developed robust stabilization method for uncertain dynamical systems is applied to the problem of stabilizing the atmospheric carbon concentration. The underlying uncertain carbon cycle dynamics is treated as a class of deterministic nonlinear dynamical systems, containing the .real. one, which is unknown. The stabilization methodology incorporates a special learning mechanism allowing to reduce the uncertainty. Relations between the learning rate and parameters of the emission control strategy are analyzed. The analysis is based on numerical simulations using, among others, basic IPCC emission scenarios

    Meta-State-Space Learning: An Identification Approach for Stochastic Dynamical Systems

    Full text link
    Available methods for identification of stochastic dynamical systems from input-output data generally impose restricting structural assumptions on either the noise structure in the data-generating system or the possible state probability distributions. In this paper, we introduce a novel identification method of such systems, which results in a dynamical model that is able to produce the time-varying output distribution accurately without taking restrictive assumptions on the data-generating process. The method is formulated by first deriving a novel and exact representation of a wide class of nonlinear stochastic systems in a so-called meta-state-space form, where the meta-state can be interpreted as a parameter vector of a state probability function space parameterization. As the resulting representation of the meta-state dynamics is deterministic, we can capture the stochastic system based on a deterministic model, which is highly attractive for identification. The meta-state-space representation often involves unknown and heavily nonlinear functions, hence, we propose an artificial neural network (ANN)-based identification method capable of efficiently learning nonlinear meta-state-space models. We demonstrate that the proposed identification method can obtain models with a log-likelihood close to the theoretical limit even for highly nonlinear, highly stochastic systems.Comment: Submitted to Automatic

    Can we identify non-stationary dynamics of trial-to-trial variability?"

    Get PDF
    Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial) to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation). This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies the observed trial-to-trial variability. Thus, the empirical tool developed within this study potentially allows us to infer the source of variability in in-vivo neural recordings

    A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition

    Full text link
    The Koopman operator is a linear but infinite dimensional operator that governs the evolution of scalar observables defined on the state space of an autonomous dynamical system, and is a powerful tool for the analysis and decomposition of nonlinear dynamical systems. In this manuscript, we present a data driven method for approximating the leading eigenvalues, eigenfunctions, and modes of the Koopman operator. The method requires a data set of snapshot pairs and a dictionary of scalar observables, but does not require explicit governing equations or interaction with a "black box" integrator. We will show that this approach is, in effect, an extension of Dynamic Mode Decomposition (DMD), which has been used to approximate the Koopman eigenvalues and modes. Furthermore, if the data provided to the method are generated by a Markov process instead of a deterministic dynamical system, the algorithm approximates the eigenfunctions of the Kolmogorov backward equation, which could be considered as the "stochastic Koopman operator" [1]. Finally, four illustrative examples are presented: two that highlight the quantitative performance of the method when presented with either deterministic or stochastic data, and two that show potential applications of the Koopman eigenfunctions
    • …
    corecore