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Abstract

A recently developed robust stabilization method for uncertain dynamical systems is applied to

the problem of stabilizing the atmospheric carbon concentration. The underlying uncertain carbon

cycle dynamics is treated as a class of deterministic nonlinear dynamical systems, containing

the “real” one, which is unknown. The stabilization methodology incorporates a special learning

mechanism allowing to reduce the uncertainty. Relations between the learning rate and parameters

of the emission control strategy are analyzed. The analysis is based on numerical simulations

using, among others, basic IPCC emission scenarios.
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Robust Stabilization of Atmospheric Carbon

within a Family of Uncertain Carbon Cycle Dynamics

Nikolai Melnikov (melnikov@cs.msu.ru)

Introduction

The problem of the stabilization of the atmospheric carbon concentration is widely discussed in

the context of global warming nowadays (see, e.g., Wigley, 2004). One of the key difficulties in

solving this problem is the uncertainty of the physical model of the circulation of carbon in the

biosphere. Since the carbon cycle process as well as its impacts on climate change are not well

understood so far, it is reasonable to consider a “pool of admissible models” which contains the

real one. A feedback stabilization procedure should be then model-robust, e.g., it should work for

any admissible model, making use of an on-line information on the process. We briefly present

this approach in Section 1.

In order to implement the approach, we apply the robust stabilization method suggested in

Kryazhimskiy and Maksimov, 2003, 2004. The method is based on a special learning effect that

allows to reduce the uncertainty gradually. A brief outline of the method is given in Section 2.

The aim of this paper is to analyze the relations of the learning rate to the cost for the updates

of the basic emission scenario, the delay in the implementation of the scenario updates, and the

target level of the atmospheric carbon concentration. In Section 3, we analyze these relations

numerically for two sets of basic emission scenarios. One set of scenarios is designed through

the use of a simple analytic expression determined by the total value of accumulated emission.

The other set comprises emission scenarios suggested by the Intergovernmental Panel on Climate

Change (IPCC). Some open questions are discussed in Section 4.

1 Model

Carbon cycle models describe the process of the circulation of carbon across several reservoirs.

In the “two well-mixed box” model (see Nordhaus, 1980; Svirezhev, et al., 1999) the carbon-

containing reservoirs are divided into two groups according to the speed of their reaction to the

carbon emission; those that respond quickly to the carbon emission (the atmosphere, biosphere,

mixed layer of ocean, etc.) and those where the deposition is slow (the deep ocean). The model

dynamics is represented by the following system of nonlinear differential equations:

ẋ = ϕ(t) + g(x, y),
ẏ = −g(x, y)

(1)

where x and y stand for the deviations of the total mass of carbon from its pre-industrial level. The

following table provides a more precise description of the variables:
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x(t) – elevation of the average CO2 concentration in the atmosphere

and quick response reservoirs (the deviation from the pre-industrial level);

y(t) – elevation of the average CO2 concentration in deep ocean

(the deviation from the pre-industrial level);

ϕ(t) – anthropogenicCO2 emission into the atmosphere per year.

A common assumption is that the anthropogenic emission ϕ(t) tends to zero as time grows to

infinity; this is a transformation of the view that in the future new energy carriers will be utilized.

Once the emission is fixed, two types of uncertainty are present in the model: the dynamics g(x, y)
and the initial states

x(0) = x0 y(0) = y0. (2)

Each admissible model (1), (2) is determined by an (unknown) function g(x, y)decreasing in x and

increasing in y, and initial values x0, y0 measured with some errors. The stabilization problem,

in which ϕ(t) acts as a control, consists in reaching a prescribed target value for the atmospheric

carbon concentration:

lim
t→∞

x(t) = x̂. (3)

A control strategy is constructed using the observations of the actual atmospheric carbon concen-

tration x(t) evolving in time.

Prior to discussing the proposed method for stabilizing an uncertain dynamical system, let

us make a small remark on the stabilization of a system without uncertainty. The solution to

equation (1) satisfies the balance equation

x(t) + y(t) = x0 + y0 + Φ(t), Φ(t) =
∫
t

0

ϕ(τ) dτ, (4)

where Φ(t) is the accumulated emission. Eliminating y(t) from (1), one comes to

ẋ = ϕ(t) + g(x,−x+ x0 + y0 + Φ(t)). (5)

Provided the accumulated emission tends to a saturation level Φ̄ as time goes to infinity, the latter

equation determines the “limit dynamics”:

ẋ = g(x,−x+ x0 + y0 + Φ̄). (6)

If the “limit dynamics” has the unique rest point, then given a target value x̂, one can identify the

corresponding saturation level for the accumulated emission Φ̂ from the equation

g(x̂,−x̂+ x0 + y0 + Φ̂) = 0. (7)

Any emission scenario with this saturation level stabilize x(t) at the target level x̂ as time ap-

proaches infinity.

The uncertainty in the system dynamics g and in the initial values x0 and y0 does not allow

us to use this simple method for finding a desired emission scenario. The task appears to be more

challenging.

2 Method

Here we introduce the notation and briefly outline the method for stabilizing an uncertain system

of form (1). A proof of the convergence of the method as well as a more general setting can be

found in Kryazhimskiy and Maksimov, 2003, 2004.
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¿From now on, ϕ(t) stands for the basic emission scenario and u(t) stands for the scenario

correction input. In this view, system (5) is modified into

ẋ = ϕ(t) + u(t) + g(x, y),
ẏ = −g(x, y).

(8)

The class of admissible models is defined as follows. Each admissible function g(x, y) is con-

tinuously differentiable; moreover, it vanishes at the origin, g(0, 0) = 0, monotonically decreases

in x, monotonically increases in y and satisfies the growth constraints

−a2 ≤
∂g

∂x
≤ −a1, b1 ≤

∂g

∂y
≤ b2

with some fixed positive constants a1, a2, b1, b2. Each admissible initial state satisfied interval

constraints:

x− ≤ x0 ≤ x+, y− ≤ y0 ≤ y+.

Introducing the new control variable

w(t) =

∫
t

0

u(τ) dτ,

analogously to (5) we get

ẋ(t) = f(t, x(t), y(t), w(t), ẇ(t)),

where

f(t, x, w, ẇ) = ϕ(t) + ẇ + g(x,−x+ x0 + y0 +w + Φ(t)).

We also assume that

lim
t→∞
ẇ(t) = 0, lim

t→∞
w(t) = w̄.

The contoller’s task is to form an admissible control w(t) such that the rest point x̄ for the “limit

dynamics”

ẋ(t) = f̄(x(t), w(t)),

where

f̄(x, w) = g(x,−x+ x0 + y0 + w̄ + Φ̄),

takes the prescribed value x̂. The control strategy is implemented as a sequence of extensions of

current controls; each new control wm+1(t) extends the previous control wm(t) beyond some tm,

i.e., coincides with w(t) on the interval [0, tm).
At the initial time t = 0 the controller selects an initial admissible control w0(t) and estimates

the inconsistency subset W̄0 that comprises all limit values w̄ that are unable to solve the stabiliza-

tion problem. The motion of the real system starts under w0(t) and goes along a trajectory x0(t).
At each time t ≥ 0 the controller observes x0(t) and decides whether w0(t) must be switched

to another extension w1(t). If the controller decides to switch at a t∗1, he/she updates the initial

inconsistency set W̄0, forming a W̄1, fixes a delay δ(t∗1) ≥ 0 and switches the admissible control

from w0(t) to w1(t) at time t1 = t
∗

1 + δ(t
∗

1).
The performance ofm steps of the control process results in the formation of admissible con-

trols w0(t), w1(t), . . . , wm(t) switched on sequentially at 0, t1, . . . , tm and a set estimate W̄m of

inconsistent limit values of admissible controls. On [ti, ti+1) the real system goes along a trajec-

tory xi(t) corresponding to wi(t) (i = 0, 1, . . . , m− 1). At each time t ≥ tm the controller ob-

serves xm(t) and decides whether wm(t) must be switched to another extension. If the controller

decides to switch at a time t∗m+1, he/she formes W̄m+1 instead of W̄m, fixes a delay δ(t∗m+1) ≥ 0
and switches from wm(t) to wm+1(t) at time tm+1 = t

∗

m+1 + δ(t
∗

m+1). The time t∗
m+1, at which
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the controller decides to switch, will further be called the time of the receipt of the inconsistency

signal. Note that the receipt of the inconsistency signal at time t∗
m+1 implies that the limit value

w̄m is inconsistent with the target value x̂. Therefore, at time t∗m+1 the controller can update W̄m,

i.e., form W̄m+1, by adding w̄m (and possibly some other elements).

The sequence (tm, wm(t)) (generally infinite) of switching times and corresponding exten-

sions forms a control flow; and the sequence (tm, xm(t)) forms a trajectory flow. The entire

trajectory x(t) is formed through pasting together the “flow” trajectories at the switching times:

x(t) = xm(t) for all tm ≤ t ≤ tm+1 (or tm ≤ t < ∞ if tm is the latest switching time). Within

this pattern, major technical tasks are obviously to identify the inconsistency of each current con-

trol wm(t) and to choose its extension wm+1(t) upon the receipt of the inconsistency signal.

An important fact used for the identification of an inconsistency signal is the existence of a

positive continuous calibration function ν(t) that vanishes at infinity and satisfies

|xm(t)− x̄m| ≤ ν(t− tm), tm ≤ t (9)

for the trajectory flow (tm, xm(t)) corresponding to any admissible model (see Kryazhimskiy and

Maksimov, 2003, 2004). Once the target value x̂ is given, the calibration function ν(t) defines a

funnel around x̂, located between x̂ − ν(t) and x̂ + ν(t). Then either the trajectory xm(t) never

leaves the funnel, and thus goes to the target value automatically, or it crosses one of the ridges.

In the latter case, the first instant t∗
m+1 of crossing is identified as the time of the receipt of the

inconsistency signal.

Admissible control flows (tm, wm(t)) are defined so that the limit values of the extensions

wm(t) are uniformly bounded:

w− ≤ w̄m ≤ w
+,

and the bounds w− and w+ are calculated in advance using the constraints on the class of admis-

sible models. Namely, the interval (w−, w+) is chosen so that it contains zero and the inequalities

g(x̂,−x̂+ x0 + y0 + Φ̄) + b1w
− ≤ 0, (10)

g(x̂,−x̂+ x0 + y0 + Φ̄) + b1w
+ ≥ 0 (11)

hold for all admissible models. Moreover, as each admissible controlw(t) vanishes at infinity, it is

assumed that each extension wm(t) is constrained by |ẇm(t)| ≤ γ(tm), where limt→∞ γ(t) = 0.
This inequality is ensured if we set ẇm(t) = ±γ(tm) for tm ≤ t ≤ τm and ẇm(t) = 0 otherwise.

Thus we fix the structure of the extensions wm(t) so that the absolute value |ẇm(t)| takes its

maximal value till the stopping time τm and vanishes afterwards. It is also assumed that each

extension starts not earlier than the previous one is terminated: tm+1 = t
∗

m+1 + δ(t
∗

m+1) ≥ τm.

Let us specify the algorithm. It starts with W̄0 = ∅, w
−

0 = w
− and w+0 = w

− and in

each period m produces an inconsistency set Wm that complements some interval [w−m, w
+
m]

to [w−, w+]. The interval [w−m, w
+
m] represents the current uncertainty interval, containing all

adimissible limit values of the controls, which are (so far) consistent with the tarject value x̂. In

each period m the inconsistency set Wm is transformed into a larger set Wm+1. Accordingly,

the current uncertainty interval [w−m, w
+
m] = [w

−, w+] \ W̄m is transformed into a smaller one,

[w−
m+1
, w+
m+1
] = [w−, w+] \ W̄m+1. This transformation, which reduces the uncertainty, acts as

a step in a learning procedure that accompanies the stabilization process. In the transformation of

Wm intoWm+1 at time t∗
m+1 (at which xm(t) crosses one of the ridges of the funnel (9)) the fact,

which of the ridges is crossed, is crucial:

xm(t
∗

m+1) = x̂− ν(t
∗

m+1 − tm) (the funnel’s lower ridge is crossed),

or

xm(t
∗

m+1) = x̂+ ν(t
∗

m+1 − tm) (the funnel’s upper ridge is crossed)
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Let us consider the case where the trajectory xm(t) crosses the lower ridge of the funnel. In this

case x̄ > x̂; since the limit value x̄ increases in w̄, the whole interval [w+m, w̄m] is inconsistent with

the target value x̂; therefore we implement the largest possible emission reduction rate, ẇm+1(t) =
−γ(tm+1), and set W̄m+1 = W̄m ∪ [w+m, w̄m]. The limit level for the extension wm+1(t) is

assigned as the median of the compliment to the inconsistency set: w̄m+1(t) = (w̄m + w
−

m)/2.
Similarly, for the case where the upper ridge of the funnel is crossed, we allow the maximal

possible emission growth rate, ẇm+1(t) = γ(tm+1), and set W̄m+1 = W̄m ∪ [w̄m, w+m] and

w̄m+1(t) = (w
+
m + w̄m)/2.

Note that in both cases, the uncertainty is reduced two times; more specifically, the uncertainty

interval [w−m, w
+
m] is reduced to the new one, [w−

m+1, w
+
m+1], whose length is two times shorter.

A theoretical result states that w̄m→ ŵ and x̄m → x̂.

3 Results

3.1 Linear models

In our numerical simulations we use uncertain linear models of the form (see Nordhaus, 1980)

ẋ = ϕ(t)− αx+ βy,
ẏ = αx− βy,

(12)

where positive α and β are uncertain transfer coefficients. The values of α and β as well as the

initial states x0 and y0 range, respectively, in intervals [a1, a1], [b1, b2], [x
−, x+] and [y−, y+],

which account for the uncertainty. The graph of the limit atmospheric carbon concentration x̂ as a

function of the transfer coefficients, for the initial states x0 = 145 GtC, y0 = 76GtC (Svirezhev

et al., 1999) is presented in Figure 1. We see that the limit atmospheric carbon concentration x̂
decreases in α and increases in β, and if the basic emission scenario is not corrected, the spread

of admissible limit values is considerable.

3.2 Exponential emission scenarios

In the first series of runs (see Figure 2), we take an exponentially decreasing basic emission sce-

nario: ϕ(t) = Φ̄ exp (−t). For the total accumulated emission we take Φ̄ = 500 GtC (see

Svirezhev et al., 1999). We also assume thatw0 ≡ 0, i.e., the basic scenario is not corrected before

the first switching time. The upper bound for the correction inputs is set to be γ(t) = 300/(1+ t),
and the delay δ is assigned as 10k, where k is the current number of switches. The calibration

function ν(t) can be found explicitly, however, to shorten the running time of the algorithm we

take the crude estimate ν(t) = G exp (−(α+ β)t) instead. The value of the parameter G depends

on ϕ(t); here we set G = 600 GtC. The values of other parameters are given in Table 1. The in-

tervals for the uncertain coefficients α and β and initial states x0, y0 are taken so that they contain

the values given in Svirezhev et al., 1999 (Table 1, (a)); the latter values are assumned here to be

the exact ones.

Figure 2 shows that the stabilization process depends considerably on the target value x̂. It

suggests that the greater is the difference between the target value x̂ and the model’s limit value x̄,

the higher is the oscillation amplitude of the atmospheric carbon concentration x(t) as it goes to

the target value.

3.3 IPCC scenarios

In order to make the simulations more realistic, we introduce IPCC Working Group I (WGI)

scenarios (for other scenarios see, e.g., Wigley, et al., 1996; O’Neill and Oppenheimer, 2002).
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Five IPCC WGI scenarios (Figure 3) ϕ(t) were developed to stabilize the atmospheric CO2 at the

levels of 350, 450, 550, 650 and 750 p.p.m.v. over the next few hundred years (see Schimel et

al., 1992 for details). Figure 4 shows the CO2 profiles with and without corrections of the 450

p.p.m.v. IPCC scenario, produced by model (12) with data from Table 1 and κ = 0.2. Let us note

that in all runs the first correction of the basic emission scenario is implemented after the peek of

the atmospheric carbon concentration.

3.4 Assessment of learning rate

Let us recall that in each period m, the switch of a control in the described scenario correction

stabilization procedure implies that the length of the uncertainty interval [w−m, w
+
m] is reduced two

times. Therefore the sequence of the switching times t1, t2, . . . – or the sequence of the inconsis-

tency times t∗1, t
∗

2, . . .— characterizes the learning rate in the stabilization process; indeed, the

smaller is the distance between the neighbouring times in the sequence, the faster the uncertainty

is being reduced, or, equivalently, the higher is the learning rate.

For one of the IPCC WGI scenarios ϕ(t), we study the learning rate, determined by the se-

quence of the inconsistency times t∗1, t
∗

2, . . ., as a function of the parameters of the stabilization

algorithm. The first inconsistency time t∗1 appears to be a monotonically increasing, practically lin-

ear, function of the target value x̂ (see Figure 6). Therefore, we arrive at the following qualitative

observation:

The deeper is the target value x̂ below the initial limit value x̄, the earlier the first in-

consistency signal is received and, hence, the faster the uncertainty is reduced (twice)

the first time.

We define the economic cost κ for the corrections of the basic emission scenario ϕ(t) as the

relative value of the correction with respect to ϕ(t). More accurately, we set κ to be a parameter

determining the upper bound for the emission correction through γ(t) = ±κϕ(t), 0 < κ < 1.
The delay δ is another important parameter of the stabilization algorithm. Figure 7 shows the

second inconsistency time t∗2 as a function of the delay δ = t1 − t
∗

1 between the first switching

time and the time of the first receipt of the inconsistency signal. We see the following:

There exists an optimal value δ∗ for the delay δ, at which the second inconsistency

times t∗2 corresponding to different values of the cost for the correction inputs, κ,

reach their minimum; moreover, at point δ∗ all t∗2’s practically coincide. In other

words, the delay δ∗ that is most favourable for learning after the first correction is

strongly robust with respect to the cost parameter κ.

The first switching time evidently does not depend on the cost κ; it is represented as the

horizontal line in Figure 8. The length of the time interval between the second and first switching

times monotonically decreases as κ grows to 1. Thus, our experiment shows the following.

The increase of the cost for the corrections of the basic emission scenario, κ, accel-

erates the learning process after the first correction.

3.5 A modified algorithm

Figure 2 shows a strong increase of the atmospheric carbon concentration during a starting interval

(in both on-line and off-line modes); eventually it goes far above the target level. At the same time,

the tolerable windows approach (WBGU, 1995) implies certain bounds for the carbon concentra-

tion. Though a certain overshoot over the target value is admissible (see, e.g., Wigley, 2004), one
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should try to make the peak smoother. One of the possibilities is to implement a correction from

the beginning, not waiting for the first inconsistency signal.

Our numerical experiments suggest that in order to make the peak smoother, the minimal value

u = −κϕ(t) should be assigned till either the lower bound w̄ = w− is reached, or the inconsis-

tency signal appears. Figure 5 presents the results for κ = 0.2. It is readily seen that the carbon

concentration follows a much lower profile. One should not be confused by the fact that the curve

goes upwards after reaching the target level: that only means that more corrections must be applied

to stabilize the amount of carbon (compare with Figure 2). Like in the case of no corrections im-

plemented in the beginning, the first switching time t∗1 is also a monotonically decreasing function

of the cost κ (the grey line in Figure 8). It is however greater than the first swithing time in the

case of no corrections implemented in the beginning. A summarizing conclusion is the following.

In the situation where the basic emission scenario is corrected from the beginning,

the increase of the cost for corrections, κ, accelerates the learning rate in the starting

period. However, at the start the learning process is slower compared to the case

where the basic emission scenario in not corrected from the beginning.

4 Discussion

Finally, we list several open questions that seem to be of interest for a future study.

• Adequate continuations of the IPCC scenarios.

The IPCC WGI scenarios (see Fig. 3) were calculated (Schimel et al., 1992) so as to reach certain

levels of carbon concentration in the year 2300. However, the initial scenarios should be defined

at a much longer time interval, which would allow one to try stabilization strategies with longer

time horizons. This would make it possible to carry out a more detailed analysis of the impact of

the delays, costs and other parameters of the stabilization strategies on the learning rate.

• An appropriate choice of the calibration function ν (see (9)).

As we mentioned already, a proper choice of the calibration function is crucial for specifying

the learning rate.

• The sensitivity of the stabilization strategy with respect to the transition coefficients.

In this paper, we mostly studied the dependencies of the learning rate on the parameters of the

stabilization algorithm under the assumption that the structure of the carbon cycle model is fixed.

A next step could be a sensitivityanalysis with respect to variations of the set of admissible models.

• A parametrization of the pool of admissible carbon cycle models.

This issue closely related to the previous one becomes especially important once we are interested

in complementing the stabilization process with the identification of the actual model.
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Figure 1: The landscape of the admissible limit levels for the atmospheric carbon concentration

(GtC).

parameter (a) (b) (c) (IPCC450) units

α 1.5 · 10−2 0.95 · 10−2 0.5 · 10−2 1.5 · 10−2 yr−1

β 0.25 · 10−2 0.5 · 10−2 10−2 0.25 · 10−2 yr−1

x0 145 145 145 145 GtC

y0 76 500 0 76 GtC

x̂ 20 200 200 200 GtC

w− −1000 −800 −1000 −800 GtC · yr−1

w+ 50 50 20 50 GtC · yr−1

Table 1: The values of the model’s parameters.
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Figure 2: Three pairs of atmospheric carbon concentration trajectories, corresponding to three

admissible parameters sets of the model: (a), (b) and (c) of Table 1. The trajectories driven by

the off-line emission control strategy and their limit values (horizontal lines) are shown in grey.

The trajectories driven by the on-line (feedback) emission control strategy and its limit values (a

horizontal line) are shown in black. The limits of the off-line-controlled trajectories deviate from

the target values essentially, whereas all on-line-controlled trajectories stabilize at the target levels.
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Figure 3: Five IPCC WGI scenarios corresponding to 350, 450, 550, 650 and 750 p.p.m.v. (ordered

from the bottom to the top).
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Figure 4: The grey and black curves show, respectively, the off-line- and on-line-controlled at-

mospheric carbon concentration trajectories corresponding to the IPCC-450 scenario parameters

(Table 1); the horizontal lines show their limit values; the limit value of the on-line-controlled

trajectory coincides with the target value for the atmospheric carbon concentration.
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Figure 5: This figure is similar to Figure 3, with the exception that the on-line-controlled trajectory

is generated by the modified stabilization algorithm.
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Figure 6: The first inconsistency time (at which the uncertainty in the limit of the accumulated

emission is reduced two times the first time) as a function of the target value of the atmospheric

carbon concentration for the IPCC-450 parameters (Table 1).
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Figure 7: The second inconsistency time (at which the uncertainty is reduced two times the second

time) as a function of the delay for κ = 0.2, 0.3 and 0.4 (ordered bottom-up) for the IPCC-450

parameters (Table 1).
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Figure 8: The black line on the bottom and the black curve on the top show, respectively, the

first and second inconsistency times as functions of the target value of the atmospheric carbon

concentration. The grey curve shows the second inconsistency time as a function of the target

value for the modified algorithm. For simulations, the IPCC-450 parameters (Table 1) were used.
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