3,562 research outputs found

    Leader Election for Anonymous Asynchronous Agents in Arbitrary Networks

    Get PDF
    We study the problem of leader election among mobile agents operating in an arbitrary network modeled as an undirected graph. Nodes of the network are unlabeled and all agents are identical. Hence the only way to elect a leader among agents is by exploiting asymmetries in their initial positions in the graph. Agents do not know the graph or their positions in it, hence they must gain this knowledge by navigating in the graph and share it with other agents to accomplish leader election. This can be done using meetings of agents, which is difficult because of their asynchronous nature: an adversary has total control over the speed of agents. When can a leader be elected in this adversarial scenario and how to do it? We give a complete answer to this question by characterizing all initial configurations for which leader election is possible and by constructing an algorithm that accomplishes leader election for all configurations for which this can be done

    Time vs. Information Tradeoffs for Leader Election in Anonymous Trees

    Full text link
    The leader election task calls for all nodes of a network to agree on a single node. If the nodes of the network are anonymous, the task of leader election is formulated as follows: every node vv of the network must output a simple path, coded as a sequence of port numbers, such that all these paths end at a common node, the leader. In this paper, we study deterministic leader election in anonymous trees. Our aim is to establish tradeoffs between the allocated time τ\tau and the amount of information that has to be given a priori\textit{a priori} to the nodes to enable leader election in time τ\tau in all trees for which leader election in this time is at all possible. Following the framework of algorithms with advice\textit{algorithms with advice}, this information (a single binary string) is provided to all nodes at the start by an oracle knowing the entire tree. The length of this string is called the size of advice\textit{size of advice}. For an allocated time τ\tau, we give upper and lower bounds on the minimum size of advice sufficient to perform leader election in time τ\tau. We consider nn-node trees of diameter diamDdiam \leq D. While leader election in time diamdiam can be performed without any advice, for time diam1diam-1 we give tight upper and lower bounds of Θ(logD)\Theta (\log D). For time diam2diam-2 we give tight upper and lower bounds of Θ(logD)\Theta (\log D) for even values of diamdiam, and tight upper and lower bounds of Θ(logn)\Theta (\log n) for odd values of diamdiam. For the time interval [βdiam,diam3][\beta \cdot diam, diam-3] for constant β>1/2\beta >1/2, we prove an upper bound of O(nlognD)O(\frac{n\log n}{D}) and a lower bound of Ω(nD)\Omega(\frac{n}{D}), the latter being valid whenever diamdiam is odd or when the time is at most diam4diam-4. Finally, for time αdiam\alpha \cdot diam for any constant α<1/2\alpha <1/2 (except for the case of very small diameters), we give tight upper and lower bounds of Θ(n)\Theta (n)

    Beeping a Deterministic Time-Optimal Leader Election

    Get PDF
    The beeping model is an extremely restrictive broadcast communication model that relies only on carrier sensing. In this model, we solve the leader election problem with an asymptotically optimal round complexity of O(D + log n), for a network of unknown size n and unknown diameter D (but with unique identifiers). Contrary to the best previously known algorithms in the same setting, the proposed one is deterministic. The techniques we introduce give a new insight as to how local constraints on the exchangeable messages can result in efficient algorithms, when dealing with the beeping model. Using this deterministic leader election algorithm, we obtain a randomized leader election algorithm for anonymous networks with an asymptotically optimal round complexity of O(D + log n) w.h.p. In previous works this complexity was obtained in expectation only. Moreover, using deterministic leader election, we obtain efficient algorithms for symmetry-breaking and communication procedures: O(log n) time MIS and 5-coloring for tree networks (which is time-optimal), as well as k-source multi-broadcast for general graphs in O(min(k,log n) * D + k log{(n M)/k}) rounds (for messages in {1,..., M}). This latter result improves on previous solutions when the number of sources k is sublogarithmic (k = o(log n))
    corecore