7,752 research outputs found

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    CGAMES'2009

    Get PDF

    Leveraging contextual-cognitive relationships into mobile commerce systems

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyMobile smart devices are becoming increasingly important within the on-line purchasing cycle. Thus the requirement for mobile commerce systems to become truly context-aware remains paramount if they are to be effective within the varied situations that mobile users encounter. Where traditionally a recommender system will focus upon the user – item relationship, i.e. what to recommend, in this thesis it is proposed that due to the complexity of mobile user situational profiles the how and when must also be considered for recommendations to be effective. Though non-trivial, it should be, through the understanding of a user’s ability to complete certain cognitive processes, possible to determine the likelihood of engagement and therefore the success of the recommendation. This research undertakes an investigation into physical and modal contexts and presents findings as to their relationships with cognitive processes. Through the introduction of the novel concept, disruptive contexts, situational contexts, including noise, distractions and user activity, are identified as having significant effects upon the relationship between user affective state and cognitive capability. Experimental results demonstrate that by understanding specific cognitive capabilities, e.g. a user’s perception of advert content and user levels of purchase-decision involvement, a system can determine potential user engagement and therefore improve the effectiveness of recommender systems’ performance. A quantitative approach is followed with a reliance upon statistical measures to inform the development, and subsequent validation, of a contextual-cognitive model that was implemented as part of a context-aware system. The development of SiDISense (Situational Decision Involvement Sensing system) demonstrated, through the use of smart-phone sensors and machine learning, that is was viable to classify subjectively rated contexts to then infer levels of cognitive capability and therefore likelihood of positive user engagement. Through this success in furthering the understanding of contextual-cognitive relationships there are novel and significant advances that are now viable within the area of m-commerce

    Innovative IoT Solutions and Wearable Sensing Systems for Monitoring Human Biophysical Parameters: A Review

    Get PDF
    none3noDigital and information technologies are heavily pervading several aspects of human activities, improving our life quality. Health systems are undergoing a real technological revolution, radically changing how medical services are provided, thanks to the wide employment of the Internet of Things (IoT) platforms supporting advanced monitoring services and intelligent inferring systems. This paper reports, at first, a comprehensive overview of innovative sensing systems for monitoring biophysical and psychophysical parameters, all suitable for integration with wearable or portable accessories. Wearable devices represent a headstone on which the IoT-based healthcare platforms are based, providing capillary and real-time monitoring of patient’s conditions. Besides, a survey of modern architectures and supported services by IoT platforms for health monitoring is presented, providing useful insights for developing future healthcare systems. All considered architectures employ wearable devices to gather patient parameters and share them with a cloud platform where they are processed to provide real-time feedback. The reported discussion highlights the structural differences between the discussed frameworks, from the point of view of network configuration, data management strategy, feedback modality, etc.Article Number: 1660openRoberto De Fazio; Massimo De Vittorio; Paolo ViscontiDE FAZIO, Roberto; DE VITTORIO, Massimo; Visconti, Paol

    Designing Human-Centered Collective Intelligence

    Get PDF
    Human-Centered Collective Intelligence (HCCI) is an emergent research area that seeks to bring together major research areas like machine learning, statistical modeling, information retrieval, market research, and software engineering to address challenges pertaining to deriving intelligent insights and solutions through the collaboration of several intelligent sensors, devices and data sources. An archetypal contextual CI scenario might be concerned with deriving affect-driven intelligence through multimodal emotion detection sources in a bid to determine the likability of one movie trailer over another. On the other hand, the key tenets to designing robust and evolutionary software and infrastructure architecture models to address cross-cutting quality concerns is of keen interest in the “Cloud” age of today. Some of the key quality concerns of interest in CI scenarios span the gamut of security and privacy, scalability, performance, fault-tolerance, and reliability. I present recent advances in CI system design with a focus on highlighting optimal solutions for the aforementioned cross-cutting concerns. I also describe a number of design challenges and a framework that I have determined to be critical to designing CI systems. With inspiration from machine learning, computational advertising, ubiquitous computing, and sociable robotics, this literature incorporates theories and concepts from various viewpoints to empower the collective intelligence engine, ZOEI, to discover affective state and emotional intent across multiple mediums. The discerned affective state is used in recommender systems among others to support content personalization. I dive into the design of optimal architectures that allow humans and intelligent systems to work collectively to solve complex problems. I present an evaluation of various studies that leverage the ZOEI framework to design collective intelligence

    Comprehensive Survey: Biometric User Authentication Application, Evaluation, and Discussion

    Full text link
    This paper conducts an extensive review of biometric user authentication literature, addressing three primary research questions: (1) commonly used biometric traits and their suitability for specific applications, (2) performance factors such as security, convenience, and robustness, and potential countermeasures against cyberattacks, and (3) factors affecting biometric system accuracy and po-tential improvements. Our analysis delves into physiological and behavioral traits, exploring their pros and cons. We discuss factors influencing biometric system effectiveness and highlight areas for enhancement. Our study differs from previous surveys by extensively examining biometric traits, exploring various application domains, and analyzing measures to mitigate cyberattacks. This paper aims to inform researchers and practitioners about the biometric authentication landscape and guide future advancements

    Advances in Technologies and Methods for Behavior, Emotion, and Health Monitoring in Pets

    Get PDF
    This research offers a detailed descriptions of existing technologies and approaches for monitoring pets in the areas of behavior, emotion, and health. The first section discusses behavior and emotion monitoring. It includes wearable devices like smart collars that are fitted with sensors for monitoring heart rate, activity levels, and temperature. These devices communicate with AI-based anomaly detection systems that send real-time alerts through various channels such as SMS, email, and mobile app notifications. Additionally, smart cameras and sound capturing devices are employed to analyze behavior and emotional states. The second section discusses health monitoring and assistance. Users can input data such as pet breed, age, and observed behaviors into dashboards. Subsequent AI algorithms analyze the data, providing health forecasts and preventive measures. Moreover, imaging technologies employ image acquisition, preprocessing, and feature extraction to detect abnormalities, the results of which are stored in databases and can trigger alerts to medical staff. The review identifies distinct modules for each sector, including data capture, processing, and alerting mechanisms. While each module specializes in specific tasks, common functionalities such as real-time alerting and data storage are pervasive across both sectors. The study asserts that current technological advancements have significantly enhanced the ability to monitor pets in real-time, providing actionable insights for pet owners and veterinary professionals

    Logging Stress and Anxiety Using a Gamified Mobile-based EMA Application, and Emotion Recognition Using a Personalized Machine Learning Approach

    Get PDF
    According to American Psychological Association (APA) more than 9 in 10 (94 percent) adults believe that stress can contribute to the development of major health problems, such as heart disease, depression, and obesity. Due to the subjective nature of stress, and anxiety, it has been demanding to measure these psychological issues accurately by only relying on objective means. In recent years, researchers have increasingly utilized computer vision techniques and machine learning algorithms to develop scalable and accessible solutions for remote mental health monitoring via web and mobile applications. To further enhance accuracy in the field of digital health and precision diagnostics, there is a need for personalized machine-learning approaches that focus on recognizing mental states based on individual characteristics, rather than relying solely on general-purpose solutions. This thesis focuses on conducting experiments aimed at recognizing and assessing levels of stress and anxiety in participants. In the initial phase of the study, a mobile application with broad applicability (compatible with both Android and iPhone platforms) is introduced (we called it STAND). This application serves the purpose of Ecological Momentary Assessment (EMA). Participants receive daily notifications through this smartphone-based app, which redirects them to a screen consisting of three components. These components include a question that prompts participants to indicate their current levels of stress and anxiety, a rating scale ranging from 1 to 10 for quantifying their response, and the ability to capture a selfie. The responses to the stress and anxiety questions, along with the corresponding selfie photographs, are then analyzed on an individual basis. This analysis focuses on exploring the relationships between self-reported stress and anxiety levels and potential facial expressions indicative of stress and anxiety, eye features such as pupil size variation and eye closure, and specific action units (AUs) observed in the frames over time. In addition to its primary functions, the mobile app also gathers sensor data, including accelerometer and gyroscope readings, on a daily basis. This data holds potential for further analysis related to stress and anxiety. Furthermore, apart from capturing selfie photographs, participants have the option to upload video recordings of themselves while engaging in two neuropsychological games. These recorded videos are then subjected to analysis in order to extract pertinent features that can be utilized for binary classification of stress and anxiety (i.e., stress and anxiety recognition). The participants that will be selected for this phase are students aged between 18 and 38, who have received recent clinical diagnoses indicating specific stress and anxiety levels. In order to enhance user engagement in the intervention, gamified elements - an emerging trend to influence user behavior and lifestyle - has been utilized. Incorporating gamified elements into non-game contexts (e.g., health-related) has gained overwhelming popularity during the last few years which has made the interventions more delightful, engaging, and motivating. In the subsequent phase of this research, we conducted an AI experiment employing a personalized machine learning approach to perform emotion recognition on an established dataset called Emognition. This experiment served as a simulation of the future analysis that will be conducted as part of a more comprehensive study focusing on stress and anxiety recognition. The outcomes of the emotion recognition experiment in this study highlight the effectiveness of personalized machine learning techniques and bear significance for the development of future diagnostic endeavors. For training purposes, we selected three models, namely KNN, Random Forest, and MLP. The preliminary performance accuracy results for the experiment were 93%, 95%, and 87% respectively for these models
    • 

    corecore