14,915 research outputs found

    Rational design and dynamics of self-propelled colloidal bead chains: from rotators to flagella

    Full text link
    The quest for designing new self-propelled colloids is fuelled by the demand for simple experimental models to study the collective behaviour of their more complex natural counterparts. Most synthetic self-propelled particles move by converting the input energy into translational motion. In this work we address the question if simple self-propelled spheres can assemble into more complex structures that exhibit rotational motion, possibly coupled with translational motion as in flagella. We exploit a combination of induced dipolar interactions and a bonding step to create permanent linear bead chains, composed of self-propelled Janus spheres, with a well-controlled internal structure. Next, we study how flexibility between individual swimmers in a chain can affect its swimming behaviour. Permanent rigid chains showed only active rotational or spinning motion, whereas longer semi-flexible chains showed both translational and rotational motion resembling flagella like-motion, in the presence of the fuel. Moreover, we are able to reproduce our experimental results using numerical calculations with a minimal model, which includes full hydrodynamic interactions with the fluid. Our method is general and opens a new way to design novel self-propelled colloids with complex swimming behaviours, using different complex starting building blocks in combination with the flexibility between them.Comment: 27 pages, 10 figure

    Towards the development of a smart flying sensor: illustration in the field of precision agriculture

    Get PDF
    Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology

    Inertial-sensor bias estimation from brightness/depth images and based on SO(3)-invariant integro/partial-differential equations on the unit sphere

    Full text link
    Constant biases associated to measured linear and angular velocities of a moving object can be estimated from measurements of a static scene by embedded brightness and depth sensors. We propose here a Lyapunov-based observer taking advantage of the SO(3)-invariance of the partial differential equations satisfied by the measured brightness and depth fields. The resulting asymptotic observer is governed by a non-linear integro/partial differential system where the two independent scalar variables indexing the pixels live on the unit sphere of the 3D Euclidian space. The observer design and analysis are strongly simplified by coordinate-free differential calculus on the unit sphere equipped with its natural Riemannian structure. The observer convergence is investigated under C^1 regularity assumptions on the object motion and its scene. It relies on Ascoli-Arzela theorem and pre-compactness of the observer trajectories. It is proved that the estimated biases converge towards the true ones, if and only if, the scene admits no cylindrical symmetry. The observer design can be adapted to realistic sensors where brightness and depth data are only available on a subset of the unit sphere. Preliminary simulations with synthetic brightness and depth images (corrupted by noise around 10%) indicate that such Lyapunov-based observers should be robust and convergent for much weaker regularity assumptions.Comment: 30 pages, 6 figures, submitte

    Dynamic characterization of cellulose nanofibrils in sheared and extended semi-dilute dispersions

    Get PDF
    New materials made through controlled assembly of dispersed cellulose nanofibrils (CNF) has the potential to develop into biobased competitors to some of the highest performing materials today. The performance of these new cellulose materials depends on how easily CNF alignment can be controlled with hydrodynamic forces, which are always in competition with a different process driving the system towards isotropy, called rotary diffusion. In this work, we present a flow-stop experiment using polarized optical microscopy (POM) to study the rotary diffusion of CNF dispersions in process relevant flows and concentrations. This is combined with small angle X-ray scattering (SAXS) experiments to analyze the true orientation distribution function (ODF) of the flowing fibrils. It is found that the rotary diffusion process of CNF occurs at multiple time scales, where the fastest scale seems to be dependent on the deformation history of the dispersion before the stop. At the same time, the hypothesis that rotary diffusion is dependent on the initial ODF does not hold as the same distribution can result in different diffusion time scales. The rotary diffusion is found to be faster in flows dominated by shear compared to pure extensional flows. Furthermore, the experimental setup can be used to quickly characterize the dynamic properties of flowing CNF and thus aid in determining the quality of the dispersion and its usability in material processes.Comment: 45 pages, 13 figure
    • …
    corecore