9,943 research outputs found

    Robustness Verification of Support Vector Machines

    Get PDF
    We study the problem of formally verifying the robustness to adversarial examples of support vector machines (SVMs), a major machine learning model for classification and regression tasks. Following a recent stream of works on formal robustness verification of (deep) neural networks, our approach relies on a sound abstract version of a given SVM classifier to be used for checking its robustness. This methodology is parametric on a given numerical abstraction of real values and, analogously to the case of neural networks, needs neither abstract least upper bounds nor widening operators on this abstraction. The standard interval domain provides a simple instantiation of our abstraction technique, which is enhanced with the domain of reduced affine forms, which is an efficient abstraction of the zonotope abstract domain. This robustness verification technique has been fully implemented and experimentally evaluated on SVMs based on linear and nonlinear (polynomial and radial basis function) kernels, which have been trained on the popular MNIST dataset of images and on the recent and more challenging Fashion-MNIST dataset. The experimental results of our prototype SVM robustness verifier appear to be encouraging: this automated verification is fast, scalable and shows significantly high percentages of provable robustness on the test set of MNIST, in particular compared to the analogous provable robustness of neural networks

    Explain3D: Explaining Disagreements in Disjoint Datasets

    Get PDF
    Data plays an important role in applications, analytic processes, and many aspects of human activity. As data grows in size and complexity, we are met with an imperative need for tools that promote understanding and explanations over data-related operations. Data management research on explanations has focused on the assumption that data resides in a single dataset, under one common schema. But the reality of today's data is that it is frequently un-integrated, coming from different sources with different schemas. When different datasets provide different answers to semantically similar questions, understanding the reasons for the discrepancies is challenging and cannot be handled by the existing single-dataset solutions. In this paper, we propose Explain3D, a framework for explaining the disagreements across disjoint datasets (3D). Explain3D focuses on identifying the reasons for the differences in the results of two semantically similar queries operating on two datasets with potentially different schemas. Our framework leverages the queries to perform a semantic mapping across the relevant parts of their provenance; discrepancies in this mapping point to causes of the queries' differences. Exploiting the queries gives Explain3D an edge over traditional schema matching and record linkage techniques, which are query-agnostic. Our work makes the following contributions: (1) We formalize the problem of deriving optimal explanations for the differences of the results of semantically similar queries over disjoint datasets. (2) We design a 3-stage framework for solving the optimal explanation problem. (3) We develop a smart-partitioning optimizer that improves the efficiency of the framework by orders of magnitude. (4)~We experiment with real-world and synthetic data to demonstrate that Explain3D can derive precise explanations efficiently

    A methodology for the generation of efficient error detection mechanisms

    Get PDF
    A dependable software system must contain error detection mechanisms and error recovery mechanisms. Software components for the detection of errors are typically designed based on a system specification or the experience of software engineers, with their efficiency typically being measured using fault injection and metrics such as coverage and latency. In this paper, we introduce a methodology for the design of highly efficient error detection mechanisms. The proposed methodology combines fault injection analysis and data mining techniques in order to generate predicates for efficient error detection mechanisms. The results presented demonstrate the viability of the methodology as an approach for the development of efficient error detection mechanisms, as the predicates generated yield a true positive rate of almost 100% and a false positive rate very close to 0% for the detection of failure-inducing states. The main advantage of the proposed methodology over current state-of-the-art approaches is that efficient detectors are obtained by design, rather than by using specification-based detector design or the experience of software engineers

    View Selection in Semantic Web Databases

    Get PDF
    We consider the setting of a Semantic Web database, containing both explicit data encoded in RDF triples, and implicit data, implied by the RDF semantics. Based on a query workload, we address the problem of selecting a set of views to be materialized in the database, minimizing a combination of query processing, view storage, and view maintenance costs. Starting from an existing relational view selection method, we devise new algorithms for recommending view sets, and show that they scale significantly beyond the existing relational ones when adapted to the RDF context. To account for implicit triples in query answers, we propose a novel RDF query reformulation algorithm and an innovative way of incorporating it into view selection in order to avoid a combinatorial explosion in the complexity of the selection process. The interest of our techniques is demonstrated through a set of experiments.Comment: VLDB201
    corecore