11,492 research outputs found

    Open Inflation Without False Vacua

    Get PDF
    We show that within the framework of a definite proposal for the initial conditions for the universe, the Hartle-Hawking `no boundary' proposal, open inflation is generic and does not require any special properties of the inflaton potential. In the simplest inflationary models, the semiclassical approximation to the Euclidean path integral and a minimal anthropic condition lead to Ω00.01\Omega_0\approx 0.01. This number may be increased in models with more fields or extra dimensions.Comment: 10 pages, compressed and RevTex file with one postscript figure, openlet1.p

    Time-variation of higher moments in a financial market with heterogeneous agents: An analytical approach

    Get PDF
    A growing body of recent literature allows for heterogenous trading strategies and limited rationality of agents in behavioral models of financial markets. More and more, this literature has been concerned with the explanation of some of the stylized facts of financial markets. It now seems that some previously mysterious time-series characteristics like fat tails of returns and temporal dependence of volatility can be observed in many of these models as macroscopic patterns resulting from the interaction among different groups of speculative traders. However, most of the available evidence stems from simulation studies of relatively complicated models which do not allow for analytical solutions. In this paper, this line of research is supplemented by analytical solutions of a simple variant of the seminal herding model introduced by Kirman [1993]. Embedding the herding framework into a simple equilibrium asset pricing model, we are able to derive closed-form solutions for the time-variation of higher moments as well as related quantities of interest enabling us to spell out under what circumstances the model gives rise to realistic behavior of the resulting time series --

    Diverging volumetric trajectories following pediatric traumatic brain injury.

    Get PDF
    Traumatic brain injury (TBI) is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI) cohort, assessed at two time points. Children were first assessed 2-5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM) to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8-18 years old) and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT), with significant structural disruption of the white matter (WM) at 2-5 months post injury. We investigated how this subgroup (TBI-slow, N = 11) differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10) with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    A hierarchical approach to improve the ant colony optimization algorith

    Get PDF
    The ant colony optimization algorithm (ACO) is a fast heuristic-based method for finding favorable solutions to the traveling salesman problem (TSP). When the data set reaches larger values however, the ACO runtime increases dramatically. As a result, clustering nodes into groups is an effective way to reduce the size of the problem while leveraging the advantages of the ACO algorithm. The method for recombining groups of nodes is explored by treating the graph as a hierarchy of clusters, and modifying the original ACO heuristic to operate on a hypergraph. This method of using hierarchical clustering is significantly faster than the original ACO algorithm, even when normal clustering techniques are applied, while producing improved tour lengths

    Time-variation of higher moments in a financial market with heterogeneous agents: An analytical approach

    Get PDF
    A growing body of recent literature allows for heterogenous trading strategies and limited rationality of agents in behavioral models of financial markets. More and more, this literature has been concerned with the explanation of some of the stylized facts of financial markets. It now seems that some previously mysterious time-series characteristics like fat tails of returns and temporal dependence of volatility can be observed in many of these models as macroscopic patterns resulting from the assumed interaction of speculative traders. However, most of the available evidence stems from simulation studies of relatively complicated models which do not allow for analytical solutions. In this paper, this line of research is supplemented by analytical solutions of a simple variant of the seminal herding model introduced by Kirman (1993). Embedding the herding framework into a simple equilibrium asset pricing framework, we are able to derive closed-form solutions for the time-variation of higher moments as well as related quantities of interest enabling us to spell out under what circumstances the model gives rise to realistic behavior of the resulting time series. --

    Moving apart together:co-movement of a symbiont community and their ant host, and its importance for community assembly

    Get PDF
    Background: Species interactions may affect spatial dynamics when the movement of one species is determined by the presence of another one. The most direct species-dependence of dispersal is vectored, usually cross-kingdom, movement of immobile parasites, diseases or seeds by mobile animals. Joint movements of species should, however, not be vectored by definition, as even mobile species are predicted to move together when they are tightly connected in symbiont communities. Methods: We studied concerted movements in a diverse and heterogeneous community of arthropods (myrmecophiles) associated with red wood ants. We questioned whether joint-movement strategies eventually determine and speed-up community succession. Results: We recorded an astonishingly high number of obligate myrmecophiles outside red wood ant nests. They preferentially co-moved with the host ants as the highest densities were found in locations with the highest density of foraging red wood ants, such as along the network of ant trails. These observations suggest that myrmecophiles resort to the host to move away from the nest, and this to a much higher extent than hitherto anticipated. Interestingly, functional groups of symbionts displayed different dispersal kernels, with predatory myrmecophiles moving more frequently and further from the nest than detritivorous myrmecophiles. We discovered that myrmecophile diversity was lower in newly founded nests than in mature red wood ant nests. Most myrmecophiles, however, were able to colonize new nests fast suggesting that the heterogeneity in mobility does not affect community assembly. Conclusions: We show that co-movement is not restricted to tight parasitic, or cross-kingdom interactions. Movement in social insect symbiont communities may be heterogeneous and functional group-dependent, but clearly affected by host movement. Ultimately, this co-movement leads to directional movement and allows a fast colonisation of new patches, but not in a predictable way. This study highlights the importance of spatial dynamics of local and regional networks in symbiont metacommunities, of which those of symbionts of social insects are prime examples
    corecore