4,589 research outputs found

    The comparison between sulfate salt weathering of portland cement paste and calcium sulfoaluminate cement paste

    Get PDF
    In this paper, the damage performances of sulfate salt weathering of Portland cement paste and calcium sulfoaluminate (CSA) cement paste were compared according to authors' previous studies. It was found that the evaporation zone of speciments partially immersed in 10% Na2SO4 solution were both severely deteriorated for Portland cement and CSA cement. However, the differences were more significant: (1) the CSA cement paste were damaged just after 7 days exposure compared to the 5 months exposure of Portland cement paste under the same exposure condition of RH 60% and 20°C; (2) the cement paste specimen was split into several pieces along the shrinkage cracks, and the damaged CSA cement paste consisted of a detachment of successive paste layers; (3) gypsum and ettringite were identified in the Portland cement paste and attributed to the paste failure mechanism, however sodium sulfate crystals were clearly observed in the detached paste layers. According to the comparison the so-called sulfate weathering of Portland cement concrete was discussed

    Durability and Smart Condition Assessment of Ultra-High Performance Concrete in Cold Climates

    Get PDF
    The goals of this study were to develop ecological ultra-high performance concrete (UHPC) with local materials and supplementary cementitious materials and to evaluate the long-term performance of UHPC in cold climates using effective mechanical test methods, such as “smart aggregate” technology and microstructure imaging analysis. The optimal UHPC mixture approximately exhibited compressive strength of 15 ksi, elastic modulus of 5,000 ksi, direct tensile strength of 1.27 ksi, and shrinkage of 630 at 28 days, which are characteristics comparable to those of commercial products and other studies. The tensile strength and modulus of elasticity in tension, dynamic modulus, and wave modulus show slight increases from the original values after 300 freeze-thaw (F-T) cycles, indicating that UHPC has excellent frost resistance in cold climates. Although porosity deterioration was observed in the F-T cyclic conditioning process, no internal damage (cracks or fractures) was found during imaging analysis up to 300 cycles. Since structures for which UHPC would be used are expected to have a longer service life, more F-T cycles are recommended to condition UHPC and investigate its mechanical performance over time. Moreover, continuum damage mechanic-based models have the potential to evaluate damage accumulation in UHPC and its failure mechanism under frost attack and to predict long-term material deterioration and service life

    3D-Mesomechanical analysis of external sulfate attack in concrete

    Get PDF
    The present study focuses on degradation of concrete by external sulfate attack. The numerical model developed by the MECMAT/UPC group, incorporates coupled C-M analysis using a meso-mechanical approach with discrete cracking, using the MEF and zero thickness interface elements with a constitutive law based on nonlinear fracture mechanics concepts. Examples of application are run on 2D and 3D samples, with geometries and FE meshes generated with a code developed also in-house. The numerical analysis is carried out using two independent codes and a “staggered” procedure. The first code performs the mechanical analysis and the second the diffusive/reaction chemical problem. 2D uncoupled and coupled analysis are presented and discussed. Preliminary coupled 3D results are also presented and compared with equivalent 2D results, and the differences are detected and analyzed

    The Deleterious Chemical Effects of Concentrated Deicing Solutions on Portland Cement Concrete, Literature Review, TR-480, 2008

    Get PDF
    This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy

    Current knowledge of external sulfate attack

    Get PDF
    This paper offers an update of the current understanding of sulfate attack, with emphasis on the sulfates present in an external water source percolating through, and potentially reacting with, the cement matrix. The paper considers the explanations put forward to explain sulfate attack, both from a chemical and microstructural perspective. Similarly, this paper reviews work on the physical damage caused by the precipitation of sulfate salts in porous materials. With the increased use of binary and ternary blends, this paper also considers the impact of binder composition on sulfate resistance, and similarly reviews how the nature of the sulfate species can affect the nature and extent of any deterioration. This then leads on to the important consideration of differences between field- and lab-based studies; reviewing the effect of various experimental parameters on sulfate resistance. This latter topic is of great importance to anyone who wishes to carry out such experiments

    A Corrosion Control Manual for Rail Rapid Transit

    Get PDF
    This manual addresses corrosion problems in the design, contruction, and maintenance of rapid transit systems. Design and maintenance solutions are provided for each problem covered. The scope encompasses all facilities of urban rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. The types of corrosion and their causes as well as rapid transit properties are described. Corrosion control committees, and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual are listed. A bibliography of papers and excerpts of reports is provided and a glossary of frequently used terms is included

    Proceedings of the 4th International Conference on Service Life Design for Infrastructure (SLD4)

    Get PDF
    SLD4 is a conference on Service Life Design for Infrastructures which is jointly organised by Delft University and Tongji University as part of the RILEM week 2018 in Delft, The Netherlands. The conference builds on the success of the previous three events on this topic held in Shanghai (2006), Delft (2010) and Zhuhai (2014). Service Life Design for Infrastructure is a very broad topic involving aspects starting from the material properties and behaviour, via structural performance, serviceability and durability to integral design and asset management. All related topics from experimental research to modelling and from codes and standards to applications are welcomed to the conference. The conference consist of 3 key-note papers and 132 regular papers presented over 3 days. Parallel to the SLD4 Conference a symposium on Concrete Modelling (CONMOD2018) and a workshop honouring Professor Klaas van Breugel were organised with topics that are related to Service Life Design. In total more than 350 participants took part in the events organised during the RILEM week 2018

    Thermal analysis of 99.4% pure aluminium granules during investment casting by in-situ melting technique

    Get PDF
    Investment casting is a precision casting used for producing complex or near-net shape products such as industrial parts, aerospace, automotive and defence components (Adrian, Andreas, Carol, & Vasile, 2013; Vaezi, Safaeian, & Chua, 2011; Yadav & Karunakar, 2011). The investment casting process is further developing in conjunction with current technology including computer aided design and additive manufacturing that able to produce medical implants (Horáček et al., 2011; Kumar, Ahuja, & Singh, 2016; R. Singh & Singh, 2014). Nevertheless, the parameters involved in the investment casting process influencing the quality of the product also known as castings. Parameters such as the ceramic mould preheat temperature, pouring temperature and hydrogen content contribute to porosity problem in the castings. Careful control of the process parameters able to improve the porosity issue by lowering the ceramic mould preheat temperature and pouring temperature with low hydrogen content (Li & Li, (2001). In addition the low ceramic mould preheat and pouring temperature increasing the mechanical properties of the castings (Yadav & Karunakar, 2011)

    Sulfate Resistance of Alkali Activated Pozzolans

    Get PDF
    The consequence of sulfate attack on geopolymer concrete, made from an alkali activated natural pozzolan (AANP) has been studied in this paper. Changes in the compressive strength, expansion and capillary water absorption of specimens have been investigated combined with phases determination by means of X-ray diffraction. At the end of present investigation which was to evaluate the performance of natural alumina silica based geopolymer concrete in sodium and magnesium sulfate solution, the loss of compressive strength and percentage of expansion of AANP concrete was recorded up to 19.4% and 0.074, respectively
    corecore