
IS - Multiscale Modeling of Concrete and Concrete Structures3D-Mesomechanical analysis of the external sulfate attack in concrete

XIV International Conference on Computational Plasticity. Fundamentals and Applications 

COMPLAS 2017 

E. Oñate, D.R.J. Owen, D. Peric and M. Chiumenti (Eds) 

 

 

 

3D-MESOMECHANICAL ANALYSIS OF EXTERNAL SULFATE 
ATTACK IN CONCRETE  

A. PÉREZ*, C.RIERA*, C.M. LÓPEZ* AND I.CAROL* 

* Department of Civil and Environmental Engineering  

Universidad Politécnica de Cataluña 

Jordi Girona 1, Edif. D2, E-08034 Barcelona, Spain 

e-mail:adria.perez@upc.edu, carlos.maria.lopez@upc.edu, ignacio.carol@upc.edu 

Key words: External sulfate attack, Concrete degradation, Finite element method, Interface 

element, Meso-mechanical analysis. 

Abstract: The present study focuses on degradation of concrete by external sulfate attack. 

The numerical model developed by the MECMAT/UPC group, incorporates coupled C-M 

analysis using a meso-mechanical approach with discrete cracking, using the MEF and zero 

thickness interface elements with a constitutive law based on nonlinear fracture mechanics 

concepts. Examples of application are run on 2D and 3D samples, with geometries and FE 

meshes generated with a code developed also in-house. The numerical analysis is carried out 

using two independent codes and a “staggered” procedure. The first code performs the 

mechanical analysis and the second the diffusive/reaction chemical problem. 2D uncoupled 

and coupled analysis are presented and discussed. Preliminary coupled 3D results are also 

presented and compared with equivalent 2D results, and the differences are detected and 

analyzed. 

 

1 INTRODUCTION 

External sulfate attack is a chemical-mechanical degradation process that can lead to 

differential material expansions producing the type of cracking known as concrete "spalling" 

(figure 1), loss of strength and even the complete disintegration of the material under severe 

attack conditions. The main conditions that have to be fulfilled are the existence of a medium 

rich in sulfates, a high permeability (or diffusivity) of the concrete and the presence of a 

humid environment, which favors the general diffusion of sulfates [1]. Three processes are 

present in the attack: 

1) Transport of sulfate ions through the pore network, mainly controlled by the 

permeability of the concrete (being the water/cement ratio the key parameter), as well as 

through the cracking system, 

2) chemical reactions between the cement paste components and the sulfate ions (once 

these ions have entered the material, the type of cement and the content of aluminates will 

mainly determine the importance of reactions that may occur), 

3) expansion phenomena as a consequence of the formation of new crystalline phases. 
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Figure 1: Cubic mortar specimen under the effects of the external magnesium sulfate attack at 360 days [2] 

The presence of sulfates from external sources results in the formation of new phases 

inside the concrete such as secondary ettringite and gypsum. Most of the experimental 

evidence has shown that secondary ettringite formation is the major factor involved in 

expansions [3-5]. 

The intensity of the attack (or degree of degradation) depends on the quality of the 

concrete (cement type, w/c ratio, mineral additions or the concrete deterioration before the 

sulfate attack) and the environmental conditions (concentration, distribution and type of 

sulfates, humidity, temperature, pH of the solution, combined effect of different degradation 

processes, etc.). A complete treatment of the problem should involve both chemical and 

mechanical aspects of sulfate ingress, and its consequences on overall behavior, in order to 

reliably predict the durability of the concrete structures under sulfate attack. 

In recent years, the research group of “Mechanics of Materials” at UPC has developed and 

consolidated a methodology for the numerical analysis of concrete and other heterogeneous 

quasi-brittle materials under mechanical and environmental actions, considering the 

corresponding THMC couplings. In the approach employed, a main focus is on cracking and 

fracture via a discrete approach using zero-thickness interface elements, which is combined 

with a meso-level representation of the main aggregate particles. Interface elements are pre-

inserted along all lines in the FE mesh, which therefore become potential crack lines, 

equipped with a traction-separation constitutive model based on principles of non-linear 

fracture mechanics [6, 7]. 

This work focuses on the study of the external sulfate attack problem in concrete. First, 

results of a 2D analysis are presented, and then preliminary results of the extension of the 3D 

analysis are also presented. The study is an extension of a previous work [8, 9], in which the 

numerical formulation of the model was developed and some application examples in 2D 

were also presented. Subsequently, the study was continued in [10, 11] with an extension of 

the analysis with different size samples in 2D and 3D. 

2 DESCRIPTION OF THE DIFUSSION/REACTION MODEL 

The model is based in the formulation proposed by Mobasher [12] with the introduction of 

some improvements [8]. Due to the complexity of the problem, in [12] a simplified point of 

view of the problem has been considered, in which the external sulfate attack can be analyzed 

by the diffusion of a single type of ion, the sulfate ions.  

It is assumed that the incoming sulfates react first with the portlandite to form gypsum 

(CSH), and subsequently react with the different phases of non-diffusive calcium aluminates 
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in the hydrated cement paste, eventually forming secondary ettringite. A further reaction of 

ettringite formation, not considered in the original model [12], can also be added from the 

alumina-ferrite phase, resulting in a total of 4 possible reactions shown in expression (1). 

( ) ( )

34 13 2 6 32

34 12 2 6 32

33 2 6 32

4 2 6 3 32 3

C AH 3CSH 14H C AS H CH

C ASH 2 CSH 16H C AS H

C A 3CSH 26H C AS H

3C AF + 12CSH + xH 4 C AS H 2 A, F H

+ + → +

+ + →

+ + →

 → +  

 

(1) 

While in [12] a grouped reaction is considered to simplify the analysis, in the formulation 

developed it is possible to treat each of the reactions separately, thus allowing consideration 

of different kinetics for each individual reaction [8].However, the kinetics of the individual 

reactions for the formation of ettringite are a priori unknowns, so that it may be convenient to 

proceed as in [8] where the first three reactions presented in (1) have been grouped, in a 

unique expression given by: 

36 32CA qS C AS H+ →  (2) 

where q is the  stoichiometric weighted coefficient of the grouped reaction. Reaction (2), 

takes place according to the availability of calcium sulfates and aluminates, which is 

determined in time and space through a second order diffusion-reaction equation for the 

concentration of sulfates (U [mol/m
3
]) plus an equation for the decrease of calcium aluminate: 

U

U U
D - kUC

t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
 

(3) 

C UC
- k

t q

∂ =
∂

 (4) 

where C [mol/m
3
] is the quantity of calcium aluminate equivalent by the grouping of the 

reactions (CA in equation (2)), and k is the grouped sulfate reaction rate. 

The formulation presented in [12] considers an increase of the chemical diffusion 

coefficient when microcracking of the concrete occurs, using a damage variable. In the model 

developed in [8, 9] and used in this work, an improvement is included, considering that the 

diffusion coefficient decreases as the pores are filled with the precipitated chemicals. On the 

other hand, the diffusion through the cracks is explicitly considered with the use of the 

interface elements. In this way, the model used considers the decrease of the diffusivity due to 

the filling of the pores, simultaneously with an increase of the effective general diffusivity due 

to cracking phenomena [8, 9]. For this, a variation of the diffusion coefficient has been 

adopted in terms of a scale function according to the following expressions: 

( ) ( ) ( )βΦ Φ = + − Φcap 0 1 0 D capD D D D f ,  (5) 
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αΦ =Φ −cap ini s reactCA  if  α <Φs react iniCA  (else 0) (8) 

where D0, D1, are lower and upper reference values, respectively, βD is a parameter that 

determines the non linearity of the function, 
iniΦ  is the initial capillary porosity, 

capΦ  is the 

updated capillary porosity that takes into account the increase of ettringite, νc is the 

volumetric fraction of cement, w/c is the ratio water-cement, α is the hydratation level and αs 

y 
reactCA are defined later. Figure 2 shows the variation of the proposed law for βD = 1.5, which 

is compared with other formulations of the literature (normalized values of diffusion 

coefficient and capillary porosity). 

 

Figure 2: Comparison of the law of variation of the diffusion coefficient proposed in this work [8] with other 

formulations. 

It is assumed that ettringite is the only product of the reactions that produce expansions. 

The volumetric strain is obtained from the amount of reacted calcium aluminate and the 

volume change associated therewith. For any of the individual reactions shown above, the 

volumetric change can be calculated as [12]: 

1
ettr

i

i gypsum

i i

V m

V m a m

∆ = −
+ ⋅

 
(9) 

where m
i
 is the molar volume [m

3
/mol] of each chemical species and ai is the stoichiometric 

coefficient involved in each reaction. To calculate the total volumetric strain, it is necessary to 

calculate the amount of reacted alumina phases (
reactCA in the case of the grouped reaction and 

i

reactC  for the extended model). For the complete version of the model, the volumetric 

deformation is calculated as: 

1
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where 
0

iC  represents the initial concentration of the different alumina phases, i

unrC  is the 

amount of non-reacted aluminates (given by the updated values of the internal values) and f is 

the porosity fraction of the capillary porosity that has to be filled before any expansion occurs.  

For the simplified model, an average scheme for the different phases is used again, in 

which the increase of volume is related to the calcium aluminate reacted by a coefficient αs. 

The typical values of f found by inverse analysis are in the range of 0.05-0.40 [12]. Additional 

details of the model and the verification tests can be found in [8, 9]. 

3 MESOMECHANICAL MODEL 

3.1 Geometry and mesh generation 

The numerical simulation is based on a meso-structural model in which the largest 

aggregate particles are represented explicitly, surrounded by a homogeneous matrix 

representing the average behavior of mortar plus the smaller aggregates. The shape and 

distribution of the large aggregate particles are randomly generated by a procedure based on 

the Voronoi-Delaunay theory [13]. In order to capture the main potential crack trajectories, 

zero-thickness interface elements are inserted a priori of the analysis, along all the aggregate-

mortar and some of the mortar-mortar mesh lines. 

3.2 Constitutive law for interface elements 

The zero-thickness interface elements are equipped with a nonlinear constitutive law based 

on elasto-plasticity and concepts of fracture mechanics, which is formulated in terms of 

normal and shear components of the stress on the interface plane and the corresponding 

relative displacement variables. The initial loading (failure) surface F = 0 is given as three-

parameter hyperbola (tensile strengthχ, asymptotic cohesion c and asymptotic friction angle 

tanφ). The evolution of F (hardening-softening laws), is based on the internal variable Wcr 

(work spent in fracture processes), with the two material parameters GF
I 

and GF
IIa

 that 

represent the classical fracture energy in Mode I, plus a second fracture energy for an 

“asymptotic” Mode IIa under shear and high confinement. A more detailed description of this 

elasto-plastic constitutive law can be found in the literature [6, 7]. Results of the meso-

mechanical model for normal concrete specimens subject to a variety of loading cases in 2D 

and 3D can also be found elsewhere [7, 8, 14, 15].  

3.3 Chemo-Mechanical Coupling 

The chemo-mechanical coupling (CM) has been achieved using a "staggered" approach 

that relates the two independent codes. For each time step, the first code performs the 

nonlinear diffusion-reaction analysis, and the results in terms of local expansions are imposed 

in the second code, solving the mechanical problem. The new displacement field obtained 

from the mechanical problem will modify the diffusion-reaction process due to the cracking, 

accelerating the sulfate ingress inside the specimen. As a result, this loop must be 

successively repeated within each time step until a certain tolerance is satisfied. The same 

FEM mesh is used for both analyses, using zero-thickness interface elements with double-

nodes, whose formulation for the diffusion problem is explained in [16]. 

280



A. Pérez, C. Riera, C.M. López and I. Carol 

 6

4 RESULTS 

Results of 2D and 3D coupled calculations are presented in which the samples are 

immersed in a solution of 5% sodium sulfate, corresponding to a concentration of 35.2 

mol/m
3
. Both the 2D and 3D meshes have a 26% aggregate fraction of the total volume and 

the same parameters that characterize a CEM I52.5N/SR concrete have been adopted. The 

parameters of the chemical-reaction problem are: D1=1.70x10
-03

, k= 2x10
-05

(m
3
/(mol·day)), 

q=3, f=0.05, w/c=0.5, ⍺=0.9, D0/D1=5x10
-02

, βD=1.5, ⍺s=1.33x10
-04

, [C3A]inicial=200(mol/m
3
). 

For the mechanical analysis, the aggregate and the mortar are considered linear elastic with 

parameters: =70000  (aggregates), =25000  (mortar) and =0.20 (both). For the 

aggregate-mortar interfaces the parameters are: ==100000 /, 0=0.70, 

res=0.40, 0=2, 0=7, I
F=0.03 , II

F=0.3 , =40. For the 

mortar-mortar interfaces the same parameters are used with the exception of 0=4, 

0=14 and =0.06  (and therefore, II
F=0.6 ). 

4.1 2D mesh 

A mesh of 6 cm side with 4 aggregates per side is used (1720 nodes, 1272 continuous 

medium elements and 650 zero-thickness inteface elements). It is simulated that the mesh is 

immersed in a solution of sodium sulfate on the four outer edges (Dirichlet condition). The 

mechanical calculation is carried out under conditions of plane stress. Figure 3 shows the 

evolution of sulfate penetration for four different ages, Figure 4 shows the concentrations of 

precipitated ettringite for those same times and in Figure 5 presents the deformed 

configuration corresponding to 540 and 740 days. 

Figure 3 shows the progressive ingress of sulfates from the edges to the center of the 

sample. For the last time shown (740 days) sulfates have advanced considerably with values 

similar to the external concentration in most areas except in the central zone (Fig. 3d).  

Figure 4 shows that the ettringite formation front advances towards the center of the 

sample as time passes. Ettringite precipitation is delayed with respect to the advance of the 

sulfates, due the reaction rate. Figure 5, shows the deformation of the mesh at 540 and 740 

days. In that figure, one can see a perimeter cracking that practically has formed a closed line 

(spalling) for the last graphical age (740 days). 

4.2 3D mesh 

In this case, a 4cm side 3D cubic mesh with 28 aggregates is used (35673 nodes, 12749 

continuum elements and 18346 zero-thickness interface elements). The specimen (Figure 6) 

represents a quarter of a pillar, with boundary conditions for the mechanical problem that 

restrict the movement in the normal direction of all faces in contact with the rest of the pillar 

material (see Figure 9). For the diffusion problem, unlike the 2D case, a convective boundary 

condition is applied to these free faces. The reason for applying this condition is that, unlike 

the 2D mesh and due to its complexity, the 3D mesh has not been refined in the area close to 

the surfaces in contact with the sulfates, and when applying plain Dirichlet conditions it 

results in numerical oscillations and negative values of sulfate concentrations, both in the 

matrix and in the aggregates. In contrast to the 2D case, in 3D there are faces of aggregates 

that are on the edges of the specimen, and for this reason the code has been modified and the 

aggregates do not intervene in the diffusion-reaction analysis. 
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a) 210 days  b) 420 days  

 

 

 

 

 

c) 540 days  d) 740 days  

 

 

 

 

 

Figure 3: Sulfate progress for the following time values: a) 210 days, b) 420 days, c) 540 days and d) 740 days. 

a) 210 days  b) 420 days  

     

 

      

 

 
c) 540 days  d) 740 days  

     

 

      

 

 

Figure 4: Ettringite precipitation due to the intrusion of the sulfates for the following time values: a) 210 days, 

b) 420 days, c) 540days and d) 740 days. 
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                    a) 540 days   b) 740 days 

 

  

 
Figure 5: Deformed mesh for the following time values: a) 540 days and b) 740 days (deformation factor x50). 

Figure 7 shows the distribution of sulfates and Figure 8 shows the precipitation of ettringite 

for the ages of 250, 450 and 740 days, from two different perspectives and without 

representing the aggregates, which allows to appreciate the corresponding penetration towards 

the interior of the mortar matrix. 

 

 
Figure 6: 3D mesh: representation of the mortar and aggregate phases (left), only the aggregates (center) and the 

two families of interfaces (right): aggregate-mortar (dark gray) and mortar-mortar (gray) interfaces. 

As expected, the sulfate penetration front (Fig. 7) and the formation of ettringite (Fig. 8) in 

the mortar matrix from the two lateral edges towards the center of the sample are observed. 
However, Figure 7 shows that the sulfate advance occurs in a more attenuated and uniform 

manner if compared to the 2D results shown in Figure 3. These 3D results seem to be closed 

to the 2D uncoupled behavior, as shown in Figure 9, where the sulfate advance of the 3D case 

(right) is compared with the 2D case decoupled (left) at the age of 740 days. 

Figure 10 shows the results of the deformation and the work consumed during the cracking 

process at 740 days. The column on the left shows the results as seen from a top view, and the 

right column shows them in side-view. Figure 10a clearly shows that at the corner of the faces 

in contact with the sulfate there is a concentration of volumetric deformations, which results 

in the formation of fractures. In Figures 10c and 10e it is observed that these fractures are 

located in vertical planes inclined with respect to the corner. The graphs on the right show that 

the main planes of fracture propagate vertically along the sample, running in between two 

rows of aggregates. It is observed that the cracks reach the edges in contact to the sulfates, and 

283



A. Pérez, C. Riera, C.M. López and I. Carol 

 9

therefore should become preferential paths of penetration and accelerate the deterioration 

process. However, this effect appears in the 2D analysis but does not occur in the 3D case.  

Probably, the anomalous behavior is due to the fact that the convective-type boundary 

condition generates lower sulfate concentration values at the interface nodes located on the 

boundaries,  resulting in much lower localized inflow via open cracks than in the 2D analysis. 

 

 
 

a) 250 days 

 
 

b) 450 days 

 
 

c) 740 days 

 

Figure 7: 3D representation of sulfate concentrations for: a) 250 days, b) 450 days and c) 740 days. 
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a) 250 days 

 
 

b) 450 days 

 
 

c) 740 days 

 

Figure 8: 3D representation of ettringite precipitation for the following time values: a) 250 days, b) 450 days and 

c) 740 days. 

 

 

Figure 9: Representation of the sulfate advance front: 2D decoupled (left) and 3D coupled (right) at the age of 

740 days. 
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a) Top view of deformed specimen 

    

b) Side-view of the deformed specimen 

    
c) Top view of fracture planes with aggregates 

    

d) Side-view of fracture planes with aggregates 

    
e) Top view of fracture planes 

    

f) Side-view of fracture planes 

    
Figure 10: 3D deformed mesh (factor x50) and work dissipated by the fracture process at the age of 740 days. 

 

5 CONCLUDING REMARKS 

The 2D coupled results show that the model is able to simulate that, as the interfaces open, 

creating new channels, the sulfate ingress increases drastically thus forming penetration fronts 

into the sample. A preliminary 3D coupled analysis has shown that, in terms of depth and 

penetration of the sulfates and cracking scheme, the results obtained are more similar to those 

obtained from the 2D uncoupled analysis than to the coupled 2D analysis. In a first 

interpretation this fact could be explained on the basis of the boundary conditions imposed (of 

the Newmann-convective type) which were used in order to overcome a lack of mesh 

refinement near the specimen surface. Current work is oriented to verify this conjecture, and 

to run the analysis of a more refined 3D cube specimen so that Dirichlet boundary conditions 

can be applied directly on the specimen surface.  
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