1,273 research outputs found

    Crowd detection and counting using a static and dynamic platform: state of the art

    Get PDF
    Automated object detection and crowd density estimation are popular and important area in visual surveillance research. The last decades witnessed many significant research in this field however, it is still a challenging problem for automatic visual surveillance. The ever increase in research of the field of crowd dynamics and crowd motion necessitates a detailed and updated survey of different techniques and trends in this field. This paper presents a survey on crowd detection and crowd density estimation from moving platform and surveys the different methods employed for this purpose. This review category and delineates several detections and counting estimation methods that have been applied for the examination of scenes from static and moving platforms

    Unsupervised dense crowd detection by multiscale texture analysis

    Get PDF
    International audienceThis study introduces a totally unsupervised method for the detection and location of dense crowds in images without context-awareness. With the perspective of setting up fully autonomous video-surveillance systems, automatic detection and location of crowds is a crucial step that is going to point which areas of the image have to be analyzed. After retrieving multiscale texture-related feature vectors from the image, a binary classification is conducted to determine which parts of the image belong to the crowd and which to the background. The algorithm presented can be operated on images without any prior knowledge of any kind and is totally unsupervised

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    Crowd region detection in outdoor scenes using color spaces

    Get PDF

    Advances in Object and Activity Detection in Remote Sensing Imagery

    Get PDF
    The recent revolution in deep learning has enabled considerable development in the fields of object and activity detection. Visual object detection tries to find objects of target classes with precise localisation in an image and assign each object instance a corresponding class label. At the same time, activity recognition aims to determine the actions or activities of an agent or group of agents based on sensor or video observation data. It is a very important and challenging problem to detect, identify, track, and understand the behaviour of objects through images and videos taken by various cameras. Together, objects and their activity recognition in imaging data captured by remote sensing platforms is a highly dynamic and challenging research topic. During the last decade, there has been significant growth in the number of publications in the field of object and activity recognition. In particular, many researchers have proposed application domains to identify objects and their specific behaviours from air and spaceborne imagery. This Special Issue includes papers that explore novel and challenging topics for object and activity detection in remote sensing images and videos acquired by diverse platforms

    Real-time motion planning, navigation, and behavior for large crowds of virtual humans

    Get PDF
    Simulating crowds in real time is a challenging problem that touches many different aspects of Computer Graphics: rendering, animation, path planning, behavior, etc. Our work has mainly focused on two particular aspects of real-time crowds: motion planning and behavior. Real-time crowd motion planning requires fast, realistic methods for path planning as well as obstacle avoidance. The difficulty to find a satisfying trade-off between efficiency and believability is particularly challenging, and prior techniques tend to focus on a single approach. We have developed two approaches to completely solve crowd motion planning in real time. The first one is a hybrid architecture able to handle the path planning of thousands of pedestrians in real time, while ensuring dynamic collision avoidance. The scalability of this architecture allows to interactively create and distribute regions of varied interest, where motion planning is ruled by different algorithms. Practically, regions of high interest are governed by a long-term potential field-based approach, while other zones exploit a graph of the environment and short-term avoidance techniques. Our architecture also ensures pedestrian motion continuity when switching between motion planning algorithms. Tests and comparisons show that our architecture is able to realistically plan motion for thousands of characters in real time, and in varied environments. Our second approach is based on the concept of motion patches [Lee et al., 2006], that we extend to densely populate large environments. We build a population from a set of blocks containing a pre-computed local crowd simulation. Each block is called a crowd patch. We address the problem of computing patches, assembling them to create virtual environments (VEs), and controlling their content to answer designers' needs. Our major contribution is to provide a drastic lowering of computation needs for simulating a virtual crowd at runtime. We can thus handle dense populations in large-scale environments with performances never reached so far. Our results illustrate the real-time population of a potentially infinite city with realistic and varied crowds interacting with each other and their environment. Enforcing intelligent autonomous behaviors in crowds is a difficult problem, for most algorithms are too computationally expensive to be exploited on large crowds. Our work has been focused on finding solutions that can simulate intelligent behaviors of characters, while remaining computationally inexpensive. We contribute to crowd behaviors by developing situation-based behaviors, i.e., behaviors triggered depending on the position of a pedestrian. We have also extended our crowd motion planning architecture with an algorithm able to simulate group behaviors, which much enhances the user perception of the watched scene

    Applying computer analysis to detect and predict violent crime during night time economy hours

    Get PDF
    The Night-Time Economy is characterised by increased levels of drunkenness, disorderly behaviour and assault-related injury. The annual cost associated with violent incidents is approximately ÂŁ14 billion, with the cost of violence with injury costing approximately 6.6 times more than violence without injury. The severity of an injury can be reduced by intervening in the incident as soon as possible. Both understanding where violence occurs and detecting incidents can result in quicker intervention through effective police resource deployment. Current systems of detection use human operators whose detection ability is poor in typical surveillance environments. This is used as motivation for the development of computer vision-based detection systems. Alternatively, a predictive model can estimate where violence is likely to occur to help law enforcement with the tactical deployment of resources. Many studies have simulated pedestrian movement through an environment to inform environmental design to minimise negative outcomes. For the main contributions of this thesis, computer vision analysis and agent-based modelling are utilised to develop methods for the detection and prediction of violent behaviour respectively. Two methods of violent behaviour detection from video data are presented. Treating violence detection as a classification task, each method reports state-of-the-art classification performance and real-time performance. The first method targets crowd violence by encoding crowd motion using temporal summaries of Grey Level Co-occurrence Matrix (GLCM) derived features. The second method, aimed at detecting one-on-one violence, operates by locating and subsequently describing regions of interest based on motion characteristics associated with violent behaviour. Justified using existing literature, the characteristics are high acceleration, non-linear movement and convergent motion. Each violence detection method is used to evaluate the intrinsic properties of violent behaviour. We demonstrate issues associated with violent behaviour datasets by showing that state-of-the-art classification is achievable by exploiting data bias, highlighting potential failure points for feature representation learning schemes. Using agent-based modelling techniques and regression analysis, we discovered that including the effects of alcohol when simulating behaviour within city centre environments produces a more accurate model for predicting violent behaviour
    • …
    corecore