712 research outputs found

    Nowcasting Thunderstorms for Munich Airport

    Get PDF
    The successful demonstration and assessment of the DLR thunderstorm nowcasting algorithms at Munich Airport during two campaigns in the summers of 2010 and 2011 are described. The algorithms Cb-TRAM and Rad-TRAM, that detect, monitor, and forecast up to one hour (nowcast) thunderstorm cells from satellite and radar data, run in real time and provided new thunderstorm products for users at the airport. The products were presented on displays the users were already familiar with as well as on webpages designed by DLR. On the webpages, also additional information like measurements with DLR’s polarimetric radar and model forecasts was shown. Moreover, thunderstorm warnings were is-sued and sent via email to the users whenever a thunderstorm was detected in the terminal manoeu-vring area of the airport of Munich. The nowcasting skills of Rad-TRAM and Cb-TRAM are encouraging, especially for lead times up to 30 minutes, and the user feedback on the DLR thunderstorm products was very positive. The Rad-TRAM and Cb-TRAM products provide a good overview on the situation and its future development, and the thunderstorm warnings were very helpful for the collaborative decision making at the airport. However, some suggestions for improvements were made like the demand for nowcasts beyond one hour. This will be considered within the integrated weather forecast system, WxFUSION, which has been further developed during the campaigns

    Numerical Weather Prediction Applied to Aeronautical Meteorology : Study of Local Hazardous Phenomena

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, leída el 27-11-2020Aviation and meteorology are intrinsically related. Even if the safety level of the industry is indisputable, the sustained growth represents a constant challenge to maintain the standards assumed today. In this task weather hazards are one of the priorities, as some of these still pose alarge risk for aircraft operation. The main objective of this doctoral thesis is to improve the knowledge of numerical weather prediction models when applied to aeronautical meteorology events. This is done by means of the evaluation of four different hazards: mountain wave icing, low visibility, deep convective precipitation and microbursts. These phenomena are linked not only by the disruption they may create to aircraft operation, but also by the fact that they can occur in very local and reduced spatiotemporal domains, which renders them very difficult to predict. The events are analysed using simulations run by a mesoscale atmospheric numerica lmodel, mostly the Weather Research and Forecasting (WRF) model. Different parametrizations and configurations are tested. Several skill scores and validation methods are applied, adapted to each phenomenon. Other nowcasting techniques, not based in numerical weather prediction, are used to support the assessment...La aviación y la meteorología están intrínsecamente relacionadas. A pesar de que los niveles de seguridad operacional de la industria son indiscutibles, el crecimiento sostenido supone un desafío constante para mantener los estándares asumidos a día de hoy. En esta tarea, los peligros relacionados con la meteorología son una de las prioridades, ya que algunos de ellos todavía suponen un gran riesgo para la operación de aeronaves. El objetivo principal de esta tesis doctorales mejorar el conocimiento de la predicción numérica aplicada a eventos de meteorología aeronáutica. El mismo se lleva a cabo a través de la evaluación de cuatro eventos peligrosos diferentes: engelamiento en onda de montaña, baja visibilidad, precipitación por convección profunda y micro bursts. Estos fenómenos están relacionados no solo por la alteración que pueden ocasionar en la operación de aeronaves, sino también por el hecho de que pueden darse endominios espacio-temporales muy reducidos y locales, lo cual los hace muy difíciles de predecir. Los eventos se analizan usando simulaciones realizadas con un modelo atmosférico mesoescalar, mayormente el modelo Weather Research and Forecasting (WRF). Se prueban diferentes parametrizaciones y configuraciones. También se aplican diferentes métodos de validación y criterios de cualificación. La evaluación se complementa con el uso de otras técnicas de nowcasting, no basadas en predicción numérica...Fac. de Ciencias FísicasTRUEunpu

    A review of high impact weather for aviation meteorology

    Get PDF
    This review paper summarizes current knowledge available for aviation operations related to meteorology and provides suggestions for necessary improvements in the measurement and prediction of weather-related parameters, new physical methods for numerical weather predictions (NWP), and next-generation integrated systems. Severe weather can disrupt aviation operations on the ground or in-flight. The most important parameters related to aviation meteorology are wind and turbulence, fog visibility, aerosol/ash loading, ceiling, rain and snow amount and rates, icing, ice microphysical parameters, convection and precipitation intensity, microbursts, hail, and lightning. Measurements of these parameters are functions of sensor response times and measurement thresholds in extreme weather conditions. In addition to these, airport environments can also play an important role leading to intensification of extreme weather conditions or high impact weather events, e.g., anthropogenic ice fog. To observe meteorological parameters, new remote sensing platforms, namely wind LIDAR, sodars, radars, and geostationary satellites, and in situ instruments at the surface and in the atmosphere, as well as aircraft and Unmanned Aerial Vehicles mounted sensors, are becoming more common. At smaller time and space scales (e.g., < 1 km), meteorological forecasts from NWP models need to be continuously improved for accurate physical parameterizations. Aviation weather forecasts also need to be developed to provide detailed information that represents both deterministic and statistical approaches. In this review, we present available resources and issues for aviation meteorology and evaluate them for required improvements related to measurements, nowcasting, forecasting, and climate change, and emphasize future challenges

    Técnicas inteligentes para la identificación y el seguimiento de fenómenos meteorológicos que podrían afectar la seguridad de vuelo

    Get PDF
    En la aviación, los fenómenos meteorológicos son uno de los aspectos más importantes para tener en cuenta en todas las etapas de vuelo, desde la planificación hasta el aterrizaje. El desarrollo de sistemas de predicción meteorológica aplicados a la aviación puede apoyar el proceso de toma de decisiones de los controladores de tráfico aéreo y los pilotos, facilitando el análisis de las variables meteorológicas y proporcionando una primera interpretación a disposición de todos los usuarios del sistema aéreo. Por esta razón el Centro de desarrollo Tecnológico para la Defensa (CETAD) tiene como principal objetivo en este documento describir los resultados del desarrollo de una metodología sistematizada que utiliza técnicas inteligentes para la detección, identificación y seguimiento de cualquier tipo de formación que por sus características pueda representar un riesgo para la aviación, generando a su vez información de soporte al controlador aéreo. Para esto es necesario primero identificar las formaciones convectivas, clasificarlas, filtrar el ruido e individualizarlas. Este tipo de procesos pueden ser automatizados a través del análisis inteligente de productos disponibles en cualquier sistema aéreo como las imágenes satelitales multiespectrales.   Posterior a una identificación, se deben determinar un grupo de características que permitan desarrollar algoritmos eficientes capaces de realizar un seguimiento del comportamiento de la formación convectiva, que permita generar pronósticos de las características de los sistemas convectivos en el corto plazo, para lo que se requiere conocer otras variables como el viento en las áreas de análisis. Este tipo de aplicaciones integradas a los sistemas de control de tráfico aérea disminuirían los riesgos debidos factores meteorológicos

    Human-Centered Systems Analysis of Aircraft Separation from Adverse Weather

    Get PDF
    Adverse weather significantly impacts the safety and efficiency of flight operations. Weather information plays a key role in mitigating the impact of adverse weather on flight operations by supporting air transportation decision-makers’ awareness of operational and mission risks. The emergence of new technologies for the surveillance, modeling, dissemination and presentation of information provides opportunities for improving both weather information and user decision-making. In order to support the development of new weather information systems, it is important to understand this complex problem thoroughly. This thesis applies a human-centered systems engineering approach to study the problem of separating aircraft from adverse weather. The approach explicitly considers the role of the human operator as part of the larger operational system. A series of models describing the interaction of the key elements of the adverse aircraft-weather encounter problem and a framework that characterizes users’ temporal decisionmaking were developed. Another framework that better matches pilots’ perspectives compared to traditional forecast verification methods articulated the value of forecast valid time according to a spacetime reference frame. The models and frameworks were validated using focused interviews with ten national subject matter experts in aviation meteorology or flight operations. The experts unanimously supported the general structure of the models and made suggestions on clarifications and refinements which were integrated in the final models. In addition, a cognitive walk-through of three adverse aircraft-weather encounters was conducted to provide an experiential perspective on the aviation weather problem. The scenarios were chosen to represent three of the most significant aviation weather hazards: icing, convective weather and low ceilings and visibility. They were built on actual meteorological information and the missions and pilot decisions were synthesized to investigate important weather encounter events. The cognitive walkthrough and the models were then used to identify opportunities for improving weather information and training. Of these, the most significant include opportunities to address users’ four-dimensional trajectorycentric perspectives and opportunities to improve the ability of pilots to make contingency plans when dealing with stochastic information

    Improving meteorological information to air transport

    Get PDF
    Meteorological information and services supporting the various operations of air transport enable a safe, efficient and cost-effective operating environment for airspace users, air navigation service providers and air traffic management. The continuing pursuit towards an improved quality of observation, forecasting and decision support services is driven by an increasingly weather-sensitive society and growing impacts of hazardous weather events. This thesis provides an overview of the field of aeronautical meteorological research by introducing the organisations involved, global and regional strategies, impacts of weather on air transport, current state of the art in meteorological research and decision support systems serving air transport needs with a view of where the field should evolve next. This thesis is an attempt to highlight key findings and point the reader towards the direction of further research on the given topics. Research supporting air transport operations with the optimal use of weather information is a specialized field where advances are led by the needs of various airspace users. Research institutions for example in the United States have contributed greatly due to the severe weather impacts experienced by the National Airspace System (NAS), the ability of the Federal Aviation Administration (FAA) and the National Oceanic and Atmospheric Administration (NOAA) to direct long-term funding to solve specific aviation-related research questions. The creation and maintenance of long-lived teams of scientists and engineers working together to produce end-to-end solutions that meet the needs of the aviation industry is the key to improving meteorological information to aviation users while university research is typically shorter duration and typical does not result in operational systems. From a global perspective, research is yet to be organised in a way that would contribute to solving aviation issues beyond single research projects and/or programmes. There is a lot more the scientific community could do to develop tailored information to decision support systems used by the aviation sector, but it would require systematic investments and the establishment of research groups focusing on the applied science questions and technology transfer. This thesis provides an overview of recommended decision support system development topics with an outline of potential milestones.Tieto ilmakehän nykyisestä ja tulevasta tilasta sekä tätä tietoa ilmailun tarpeisiin tuottavat palvelut mahdollistavat turvallisen, toimivan sekä kustannustehokkaan toimintaympäristön ilmatilan käyttäjille, ilmailun palveluiden tuottajille sekä ilmatilan hallintaa toteuttaville tahoille. Vaarallisille sääilmiöille herkemmäksi kehittyvä yhteiskunta vaatii havaintojen, ennusteiden sekä päätöksenteon tukijärjestelmien jatkuvaa kehittämistä asiakkaiden tarpeisiin. Tämä lisensiaatintutkielma tarjoaa maailmanlaajuisen yleiskatsauksen ilmailun sääpalveluiden tutkimukseen ja tuotekehitykseen pyrkimyksenään esitellä keskeiset toimijat, alueelliset ja kansalliset kehittämisohjelmat ja strategiat, sään vaikutukset ilmailulle, ilmailun sääpalveluiden nykytila sekä tulevaisuuden toimintaympäristön edellyttämät uudet lentosääpalvelut. Tavoitteena on korostaa ilmailun kannalta tärkeimpiä meteorologisia kehityskohteita ja ohjata lukija jo tehdyn tutkimuksen pariin. Ilmailun toimintoja tukevien sääpalveluiden kehittämiseen tähtäävä tutkimus on hyvin soveltava erikoisala, missä asiakkaiden tarpeet määrittävät tutkimuskohteet. Kehitys on keskittynyt voimakkaasti Yhdysvaltoihin, mihin on syynä kapasiteetin äärirajoilla toimiva ilmatila sekä kyky rahoittaa pitkäkestoisia meteorologisia tutkimushankkeita ilmailun tarpeisiin. Meteorologian tutkijoiden ja insinöörien pitkäkestoinen yhteistyö tuottaa koko arvoketjun kattavia projekteja, joiden lopputuloksena syntyy asiakkaan tarpeisiin räätälöityjä palveluita hyödyntäen yliopistoissa tehtävää tutkimusta sekä tietoteknisten ratkaisujen kehittymistä. Maailmanlaajuisesti katsottuna ilmailun sääpalveluiden tutkimusta ja tuotekehitystä ei ole toistaiseksi järjestetty yhtenäisen strategian tai tavoitteiden alle. Tieteellinen yhteisö pystyisi kasvattamaan merkittävästi panostaan ilmailun turvallisuuden kehittämiseksi, mikäli tuotekehityksen rahoitus organisoitaisiin paremmin ja osaaminen keskitettäisiin soveltavan tutkimuksen ryhmiin. Tämä tutkielma sisältää suosituksia päätöksenteon tukijärjestelmiin integroitavista sääpalveluista, joiden avulla säätilan vaikutus lentotoiminnalle voidaan viedä suoraan päätöksentekotasolle. Tutkielmassa esitettyjen projektiaihioiden tarkoituksena esittää konkreettisia toimenpiteitä, joilla varmistutaan tutkimuksen soveltuvuudesta loppukäyttäjien toimintaan

    Current research on aviation weather (bibliography)

    Get PDF
    This bibliography of 326 readily usable references of basic and applied research programs related to the various areas of aviation meteorology was assembled. A literature search was conducted which surveyed the major abstract publications such as the International Aerospace Abstracts, the Meteorological and Geoastrophysical Abstracts, and the Scientific and Technical Aerospace Reports. In addition, NASA and DOT computer literature searches were run; and NASA, NOAA, and FAA research project managers were requested to provide writeups on their ongoing research

    Improving meteorological information to air transport

    Get PDF
    Meteorological information and services supporting the various operations of air transport enable a safe, efficient and cost-effective operating environment for airspace users, air navigation service providers and air traffic management. The continuing pursuit towards an improved quality of observation, forecasting and decision support services is driven by an increasingly weather-sensitive society and growing impacts of hazardous weather events. This thesis provides an overview of the field of aeronautical meteorological research by introducing the organisations involved, global and regional strategies, impacts of weather on air transport, current state of the art in meteorological research and decision support systems serving air transport needs with a view of where the field should evolve next. This thesis is an attempt to highlight key findings and point the reader towards the direction of further research on the given topics. Research supporting air transport operations with the optimal use of weather information is a specialized field where advances are led by the needs of various airspace users. Research institutions for example in the United States have contributed greatly due to the severe weather impacts experienced by the National Airspace System (NAS), the ability of the Federal Aviation Administration (FAA) and the National Oceanic and Atmospheric Administration (NOAA) to direct long-term funding to solve specific aviation-related research questions. The creation and maintenance of long-lived teams of scientists and engineers working together to produce end-to-end solutions that meet the needs of the aviation industry is the key to improving meteorological information to aviation users while university research is typically shorter duration and typical does not result in operational systems. From a global perspective, research is yet to be organised in a way that would contribute to solving aviation issues beyond single research projects and/or programmes. There is a lot more the scientific community could do to develop tailored information to decision support systems used by the aviation sector, but it would require systematic investments and the establishment of research groups focusing on the applied science questions and technology transfer. This thesis provides an overview of recommended decision support system development topics with an outline of potential milestones

    New methods using in-situ and remote-sensing observations for improved meteorological analysis

    Get PDF
    Observations have been and are an important part of today's meteorological developments. Surface observations are very useful as they are, providing weather information for a point location. ough they do not give much information, if any, on what happens between the stations across a larger area. With models one can create an analysis of the meteorological situation, i.e. calculate and estimate what happens between these fixed observation points. Remote-sensing data, such as radar and satellite, are being processed and the output is given over a domain as an analysed product of their measurements. For example, radar gives a plot of where the rain is located, i.e. an analysis of the current precipitation. With a series of radar images, a human (subjectively) or a computer objectively) can process this information to estimate where the rain will move and be located within the next few minutes (even hours), i.e. a short forecast also called "nowcast". is applies to some extent also for other observations, such as satellite data (cloud propagation). But for most quantities (such as temperature, wind, etc) it is significantly harder to make such a nowcast, since these are influenced by many other factors and there is no linear development of them. Therefore, there are forecast models that solve physical and dynamic equations, so that one can estimate the future weather for the coming hours and days. A prerequisite for generating a forecast of high quality is to capture the initial weather conditions as best as possible. This is done using observations and they are introduced into the forecast model through different techniques, where the model creates its own analysis as the initial step. There remain problems since forecast models often are affected by physical disagreements, as the dynamic conditions are not in balance. This results in the model having a spin-up effect, where the meteorological quantities are not yet in balance with each other and the resulting weather conditions are not always reliable during the first hours. Hence, a lot of research is spent on how to reduce this spin-up effect and on the use of nowcast models, in order to deliver the best model results for the first few hours of the forecast period. In this dissertation, the research work has been to improve the meteorological analysis, algorithms and functionality, using the Local Analysis and Prediction System (LAPS) model. Different kinds of observations were used and their interdependencies have been studied, in order to combine and merge information from variousinstruments. Primarily focus has been to improve the estimation of precipitation accumulation and meteorological quantities that affect wind energy. The LAPS developments have been used for several end-users and nowcasting applications, and experimentally as initial conditions for forecast modelling. The studies have been concentrated on Finland and nearby sea areas, with the available datasets for this domain. By combining surface-station measurements, radar and lightning information, one can improve the precipitation-amount estimations. The use of lightning data further improves the estimates and gives the advantage of having additional data outside radar coverage, which can potentially be very useful for example over sea areas. In addition, the improved LAPS analyses (cloud-related quantities) and a newly developed model (LOWICE), calculating the electricity production during wintertime (taking into account the icing of wind turbine rotor blades which reduces efficiency), have shown good results

    CIRA annual report FY 2016/2017

    Get PDF
    Reporting period April 1, 2016-March 31, 2017
    corecore