410 research outputs found

    Implementation of Adaptive Unsharp Masking as a pre-filtering method for watermark detection and extraction

    Get PDF
    Digital watermarking has been one of the focal points of research interests in order to provide multimedia security in the last decade. Watermark data, belonging to the user, are embedded on an original work such as text, audio, image, and video and thus, product ownership can be proved. Various robust watermarking algorithms have been developed in order to extract/detect the watermark against such attacks. Although watermarking algorithms in the transform domain differ from others by different combinations of transform techniques, it is difficult to decide on an algorithm for a specific application. Therefore, instead of developing a new watermarking algorithm with different combinations of transform techniques, we propose a novel and effective watermark extraction and detection method by pre-filtering, namely Adaptive Unsharp Masking (AUM). In spite of the fact that Unsharp Masking (UM) based pre-filtering is used for watermark extraction/detection in the literature by causing the details of the watermarked image become more manifest, effectiveness of UM may decrease in some cases of attacks. In this study, AUM has been proposed for pre-filtering as a solution to the disadvantages of UM. Experimental results show that AUM performs better up to 11\% in objective quality metrics than that of the results when pre-filtering is not used. Moreover; AUM proposed for pre-filtering in the transform domain image watermarking is as effective as that of used in image enhancement and can be applied in an algorithm-independent way for pre-filtering in transform domain image watermarking

    Robust Object-Based Watermarking Using SURF Feature Matching and DFT Domain

    Get PDF
    In this paper we propose a robust object-based watermarking method, in which the watermark is embedded into the middle frequencies band of the Discrete Fourier Transform (DFT) magnitude of the selected object region, altogether with the Speeded Up Robust Feature (SURF) algorithm to allow the correct watermark detection, even if the watermarked image has been distorted. To recognize the selected object region after geometric distortions, during the embedding process the SURF features are estimated and stored in advance to be used during the detection process. In the detection stage, the SURF features of the distorted image are estimated and match them with the stored ones. From the matching result, SURF features are used to compute the Affine-transformation parameters and the object region is recovered. The quality of the watermarked image is measured using the Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and the Visual Information Fidelity (VIF). The experimental results show the proposed method provides robustness against several geometric distortions, signal processing operations and combined distortions. The receiver operating characteristics (ROC) curves also show the desirable detection performance of the proposed method. The comparison with a previously reported methods based on different techniques is also provided

    Entropy Based Robust Watermarking Algorithm

    Get PDF
    Tänu aina kasvavale multimeedia andmeedastus mahtudele Internetis, on esile kerkinud mured turvalisusest ja piraatlusest. Digitaalse meedia paljundamise ja muutmise maht on loonud vajaduse digitaalse meedia vesimärgistamise järgi. Selles töös on tutvustatud vastupidavaid vesimärkide lisamise algoritme, mis lisavad vesimärgid madala entroopiaga pildi osadesse. Välja pakutud algoritmides jagatakse algne pilt blokkidesse ning arvutatakse iga bloki entroopia. Kõikide blokkide keskmine entroopia väärtus valitakse künniseks, mille järgi otsustatakse, millistesse blokkidesse vesimärk lisada. Kõik blokid, mille entroopia on väiksem kui künnis, viiakse signaali sageduse kujule kasutades Discrete Wavelet Transform algoritmi. Madala sagedusega sagedusvahemikule rakendatakse Chirp Z-Transform algoritmi ja saadud tulemusele LU-dekompositsiooni või QR-dekompositsiooni. Singular Value Decomposition meetodi rakendamisel diagonaalmaatriksile, mis saadi eelmisest sammust, saadakse iga bloki vastav väärtus. Vesimärk lisatakse pildile, liites iga bloki arvutatud väärtusele vesimärgi Singular Value Decomposition meetodi tulemused. Kirjeldatud algoritme testiti ning võrreldi teiste tavapärast ning uudsete vesimärkide lisamise tehnoloogiatega. Kvantitatiivsed ja kvalitatiivsed eksperimendid näitavad, et välja pakutud meetodid on tajumatud ning vastupidavad signaali töötlemise rünnakutele.With growth of digital media distributed over the Internet, concerns about security and piracy have emerged. The amount of digital media reproduction and tampering has brought a need for content watermarking. In this work, multiple robust watermarking algorithms are introduced. They embed watermark image into singular values of host image’s blocks with low entropy values. In proposed algorithms, host image is divided into blocks, and the entropy of each block is calculated. The average of all entropies indicates the chosen threshold value for selecting the blocks in which watermark image should be embedded. All blocks with entropy lower than the calculated threshold are decomposed into frequency subbands using discrete wavelet transform (DWT). Subsequently chirp z-transform (CZT) is applied to the low-frequency subband followed by an appropriate matrix decomposition such as lower and upper decomposition (LUD) or orthogonal-triangular decomposition (QR decomposition). By applying singular value decomposition (SVD) to diagonal matrices obtained by the aforementioned matrix decompositions, the singular values of each block are calculated. Watermark image is embedded by adding singular values of the watermark image to singular values of the low entropy blocks. Proposed algorithms are tested on many host and watermark images, and they are compared with conventional and other state-of-the-art watermarking techniques. The quantitative and qualitative experimental results are indicating that the proposed algorithms are imperceptible and robust against many signal processing attacks
    corecore