694 research outputs found

    Lognormals, power laws and double power laws in the distribution of frequencies of harmonic codewords from classical music

    Get PDF
    Zipf's law is a paradigm describing the importance of different elements in communication systems, especially in linguistics. Despite the complexity of the hierarchical structure of language, music has in some sense an even more complex structure, due to its multidimensional character (melody, harmony, rhythm, timbre, etc.). Thus, the relevance of Zipf's law in music is still an open question. Using discrete codewords representing harmonic content obtained from a large-scale analysis of classical composers, we show that a nearly universal Zipf-like law holds at a qualitative level. However, in an in-depth quantitative analysis, where we introduce the double power-law distribution as a new player in the classical debate between the superiority of Zipf's (power) law and that of the lognormal distribution, we conclude not only that universality does not hold, but also that there is not a unique probability distribution that best describes the usage of the different codewords by each composer

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management

    Delineating urban functional zones using mobile phone data: A case study of cross-boundary integration in Shenzhen-Dongguan-Huizhou area

    Get PDF
    As cities continuously expand and with the emergence of mega-city regions, the urban functional zones (UFZs) have spread beyond their original administrative boundaries. An accurate and updated delineation of the UFZs is crucial for assessing the functional integration between cities within a mega-city region. Mobility data provides a chance to depict the UFZs from actual human activities at a finer spatial scale. Existing studies mostly adopted network-based approaches relying on the topological relationship but ignoring spatial factors, causing the lack of sensitivity in detecting the cross-cities integration of the functional region. This research proposed a novel regionalisation algorithm that redraws non-overlap boundaries of urban functional zones based on the commuting origin-destination matrix, representing the spatial interactions within cities and cross-cities. In particular, functional zones are drawn by searching for the best partition with the best goodness of fitting in the hierarchical spatial interaction model. The algorithm was applied to a case study of a mega-city region, Shenzhen-Dongguan-Huizhou (SDH) area in China using mobile phone signalling data. By adopting two different settings, this model evaluated the current status and predict the future trend of urban integration respectively. The results show the current boundary of UFZs in the SDH area almost coincides with administrative boundaries. Meanwhile, the results of long-term predictions might be utilised by policymakers to give more attention to the areas near the Dongguan-Huizhou boundary to promote industry cooperation and avoid mismatches between the functional and administrative regions

    European Handbook of Crowdsourced Geographic Information

    Get PDF
    "This book focuses on the study of the remarkable new source of geographic information that has become available in the form of user-generated content accessible over the Internet through mobile and Web applications. The exploitation, integration and application of these sources, termed volunteered geographic information (VGI) or crowdsourced geographic information (CGI), offer scientists an unprecedented opportunity to conduct research on a variety of topics at multiple scales and for diversified objectives. The Handbook is organized in five parts, addressing the fundamental questions: What motivates citizens to provide such information in the public domain, and what factors govern/predict its validity?What methods might be used to validate such information? Can VGI be framed within the larger domain of sensor networks, in which inert and static sensors are replaced or combined by intelligent and mobile humans equipped with sensing devices? What limitations are imposed on VGI by differential access to broadband Internet, mobile phones, and other communication technologies, and by concerns over privacy? How do VGI and crowdsourcing enable innovation applications to benefit human society? Chapters examine how crowdsourcing techniques and methods, and the VGI phenomenon, have motivated a multidisciplinary research community to identify both fields of applications and quality criteria depending on the use of VGI. Besides harvesting tools and storage of these data, research has paid remarkable attention to these information resources, in an age when information and participation is one of the most important drivers of development. The collection opens questions and points to new research directions in addition to the findings that each of the authors demonstrates. Despite rapid progress in VGI research, this Handbook also shows that there are technical, social, political and methodological challenges that require further studies and research.

    A grounding-based ontology of data quality measures

    Get PDF
    Data quality and fitness for purpose can be assessed by data quality measures. Existing ontologies of data quality dimensions reflect, among others, which aspects of data quality are assessed and the mechanisms that lead to poor data quality. An understanding of which source of information is used to judge about data quality and fitness for purpose is, however, lacking. This article introduces an ontology of data quality measures by their grounding, that is, the source of information to which the data is compared to in order to assess their quality. The ontology is exemplified with several examples of volunteered geographic information (VGI), while also applying to other geographical data and data in general. An evaluation of the ontology in the context of data quality measures for OpenStreetMap (OSM) data, a well-known example of VGI, provides insights about which types of quality measures for OSM data have and which have not yet been considered in literature

    Quality Assessment of the Canadian OpenStreetMap Road Networks

    Get PDF
    Volunteered geographic information (VGI) has been applied in many fields such as participatory planning, humanitarian relief and crisis management because of its cost-effectiveness. However, coverage and accuracy of VGI cannot be guaranteed. OpenStreetMap (OSM) is a popular VGI platform that allows users to create or edit maps using GPS-enabled devices or aerial imageries. The issue of geospatial data quality in OSM has become a trending research topic because of the large size of the dataset and the multiple channels of data access. The objective of this study is to examine the overall reliability of the Canadian OSM data. A systematic review is first presented to provide details on the quality evaluation process of OSM. A case study of London, Ontario is followed as an experimental analysis of completeness, positional accuracy and attribute accuracy of the OSM street networks. Next, a national study of the Canadian OSM data assesses the overall semantic accuracy and lineage in addition to the quality measures mentioned above. Results of the quality evaluation are compared with associated OSM provenance metadata to examine potential correlations. The Canadian OSM road networks were found to have comparable accuracy with the tested commercial database (DMTI). Although statistical analysis suggests that there are no significant relations between OSM accuracy and its editing history, the study presents the complex processes behind OSM contributions possibly influenced by data import and remote mapping. The findings of this thesis can potentially guide cartographic product selection for interested parties and offer a better understanding of future quality improvement in OSM

    Enhancing Data Classification Quality of Volunteered Geographic Information

    Get PDF
    Geographic data is one of the fundamental components of any Geographic Information System (GIS). Nowadays, the utility of GIS becomes part of everyday life activities, such as searching for a destination, planning a trip, looking for weather information, etc. Without a reliable data source, systems will not provide guaranteed services. In the past, geographic data was collected and processed exclusively by experts and professionals. However, the ubiquity of advanced technology results in the evolution of Volunteered Geographic Information (VGI), when the geographic data is collected and produced by the general public. These changes influence the availability of geographic data, when common people can work together to collect geographic data and produce maps. This particular trend is known as collaborative mapping. In collaborative mapping, the general public shares an online platform to collect, manipulate, and update information about geographic features. OpenStreetMap (OSM) is a prominent example of a collaborative mapping project, which aims to produce a free world map editable and accessible by anyone. During the last decade, VGI has expanded based on the power of crowdsourcing. The involvement of the public in data collection raises great concern about the resulting data quality. There exist various perspectives of geographic data quality this dissertation focuses particularly on the quality of data classification (i.e., thematic accuracy). In professional data collection, data is classified based on quantitative and/or qualitative ob- servations. According to a pre-defined classification model, which is usually constructed by experts, data is assigned to appropriate classes. In contrast, in most collaborative mapping projects data classification is mainly based on individualsa cognition. Through online platforms, contributors collect information about geographic features and trans- form their perceptions into classified entities. In VGI projects, the contributors mostly have limited experience in geography and cartography. Therefore, the acquired data may have a questionable classification quality. This dissertation investigates the challenges of data classification in VGI-based mapping projects (i.e., collaborative mapping projects). In particular, it lists the challenges relevant to the evolution of VGI as well as to the characteristics of geographic data. Furthermore, this work proposes a guiding approach to enhance the data classification quality in such projects. The proposed approach is based on the following premises (i) the availability of large amounts of data, which fosters applying machine learning techniques to extract useful knowledge, (ii) utilization of the extracted knowledge to guide contributors to appropriate data classification, (iii) the humanitarian spirit of contributors to provide precise data, when they are supported by a guidance system, and (iv) the power of crowdsourcing in data collection as well as in ensuring the data quality. This cumulative dissertation consists of five peer-reviewed publications in international conference proceedings and international journals. The publications divide the disser- tation into three parts the first part presents a comprehensive literature review about the relevant previous work of VGI quality assurance procedures (Chapter 2), the second part studies the foundations of the approach (Chapters 3-4), and the third part discusses the proposed approach and provides a validation example for implementing the approach (Chapters 5-6). Furthermore, Chapter 1 presents an overview about the research ques- tions and the adapted research methodology, while Chapter 7 concludes the findings and summarizes the contributions. The proposed approach is validated through empirical studies and an implemented web application. The findings reveal the feasibility of the proposed approach. The output shows that applying the proposed approach results in enhanced data classification quality. Furthermore, the research highlights the demands for intuitive data collection and data interpretation approaches adequate to VGI-based mapping projects. An interaction data collection approach is required to guide the contributors toward enhanced data quality, while an intuitive data interpretation approach is needed to derive more precise information from rich VGI resources
    • 

    corecore