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Abstract 

Volunteered geographic information (VGI) has been applied in many fields such as 

participatory planning, humanitarian relief and crisis management because of its cost-

effectiveness. However, coverage and accuracy of VGI cannot be guaranteed. 

OpenStreetMap (OSM) is a popular VGI platform that allows users to create or edit maps 

using GPS-enabled devices or aerial imageries. The issue of geospatial data quality in OSM 

has become a trending research topic because of the large size of the dataset and the multiple 

channels of data access. The objective of this study is to examine the overall reliability of the 

Canadian OSM data. An extensive review is first presented to provide details on the quality 

evaluation process of OSM. A case study of London, Ontario is followed as an experimental 

analysis of completeness, positional accuracy and attribute accuracy of the OSM street 

networks. Next, a national study of the Canadian OSM data assesses the overall semantic 

accuracy and lineage in addition to the quality measures mentioned above. Results of the 

quality evaluation are compared with associated OSM provenance metadata to examine 

potential correlations. The Canadian OSM road networks were found to have comparable 

accuracy with the tested commercial database (DMTI). Although statistical analysis suggests 

that there are no significant relations between OSM accuracy and its editing history, the 

study presents the complex processes behind OSM contributions possibly influenced by data 

import and remote mapping. The findings of this thesis can potentially guide cartographic 

product selection for interested parties and offer a better understanding of future quality 

improvement in OSM. 
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Chapter 1 

1 Introduction  

Advancing technologies, such as the Global Positioning System (GPS), the gigabit 

internet, and Web 2.0, have proliferated the amount of user-generated content (UGC) 

online. More and more quantitative geographers have since used data mining and other 

nontraditional GIS techniques to solve spatial problems. Because of this situation, some 

geographers have argued that we are now in the world of neogeography (J. Jackson, 

2006; Turner, 2006). Nongeographers have contributed so-called “big data” with 

geotagged information, and only computing-intensive methods may decipher the complex 

geographic forms and processes behind observed spatial patterns (Jiang, 2013). To 

describe the amalgamation of citizen participation and GIScience, multiple similar 

concepts have been proposed (See et al., 2016), and volunteered geographic information 

(VGI) is one of the widely-accepted terminologies (Goodchild, 2007).  

1.1 Volunteered geographic information (VGI)  

The term VGI is used to describe user-generated geospatial content. In contrast to 

contributed geographic information (CGI) with an opt-out agreement (e.g., Google Flu 

Trends data), VGI is under an opt-in provision (Harvey, 2013). The economic value of 

VGI is simply a price tag that is accepted by consumers, while the social value of VGI 

can be reflected in its vital effects in crisis mapping and humanitarian relief (Feick & 

Roche, 2013). The theory of collective intelligence also applies to VGI, which suggests 

that a group contribution is better than the best individual outcome (Spielman, 2014). 

According to Bordogna, Carrara, Criscuolo, Pepe, & Rampini (2016) and Connors, Lei, 

& Kelly (2012), Table 1 (adapted from Bordogna et al., 2016) lists the categories of 

VGI/CGI projects. Although some listed projects, such as distributed computing, fall into 

the crowdsourcing paradigm, geospatial content may still be contributed in those projects.  

The popular VGI platform OpenStreetMap (OSM) was founded in August 2004 

by Steve Coast with its original focus on mapping the U.K. (OpenStreetMap, 2017d). The 

project is in the field of geography and cartography, requires object identification, 
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observation measurement, and transcription, implements mixed strategies of information 

creation, has a high need for VGI, and contains all types of volunteers except for those 

who are unaware of their contributions. In the initial years of the project, mapping data 

were mainly contributed using GPS-enabled devices. However, the availability of 

satellite images on OSM since 2007 has led to the prevalence of “armchair mapping”. 

Remote mappers without local knowledge have contributed a large amount of data 

without identify themselves as nonlocal contributors. Therefore, a project like OSM has 

unpredictable quality because of its mixed methods of VGI creation.  
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Table 1. Categories of VGI/CGI projects  

Categories Examples 

Scientific field  

Computer science  Scientific computing  

Natural science  Weather forecast  

Medicine/Biology  Genetics  

Social science  Cultural heritage  

Volunteer’s 

task  

Massive computer 

time  

Berkeley Open Infrastructure for Network 

Computing (BOINC) software for 

distributed computing  

Specific human 

abilities  

Galaxy Zoo project1 for classifying the 

shapes of galaxies in deep field images  

Objects identification  eBird project2 for observing species of birds  

Observation 

measurement  

‘Did You Feel It?’ web service3 for 

gathering citizens’ experience of 

earthquakes  

Transcription  
Old Weather project4 for loading historical 

weather data into geodatabase  

User indication  

SuScit – Citizen Science for sustainability 

project5 for collecting local communities’ 

voices in urban sustainability research  

Complementary 

information  

1001 Stories of Denmark project6 for 

linking heritages to personal stories  

Way of VGI 

creation  

Automatic and 

implicit  
Distributed computing  

Manual and implicit  
Google Flu Trends7 uses aggregated Google 

search data  

Manual and explicit  
Galaxy Zoo project asks scores of 

confidence  

Automatic and explicit  

CoCoRaHS project8 provides training for 

volunteers who collect precipitation 

measurements  

Mixed strategy  OpenStreetMap  

Need for VGI  

Low  
Geoinformation has additional but not 

essential values in the projects  

Medium  eBird project  

High  OpenStreetMap  

Characteristics 

of volunteer  

Neophyte Volunteers with no official background  

Interested amateur  Volunteers with some experience  

Expert amateur  
Volunteers with professional skills and 

expertise  

Expert authority  Volunteers with extensive experience  

Unaware volunteers  
Volunteers who are unaware of their 

contributions  
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1.2 Quality measures and quality indicators 

The history of research in geoinformation quality started in the 1980s (Goodchild & 

Gopal, 1989), with attention to the quality standards of spatial data (Guptill & Morrison, 

2013) and error measurement in cartography (Maling, 2016). In VGI, quality measures 

and quality indicators are the extrinsic and intrinsic quality evaluation methods (Antoniou 

& Skopeliti, 2015). While quality measures are derived from the associated ISO 

standards (see Table 2), quality indicators are the implicit proxies of VGI quality 

measurement (see Table 3) (Senaratne, Mobasheri, Ali, Capineri, & Haklay, 2016; Van 

Oort, 2006). Among all criteria, it is very important to study the provenance of VGI 

because provenance documents the process of error propagation, substitutes missing 

attributes of map features using previous information, and identifies sources of 

contributors for perceptual quality assessment (Frew, 2007).  

                                                 

1
 http://www.galaxyzoo.org/  

2
 http://ebird.org/  

3
 https://earthquake.usgs.gov/data/dyfi/  

4
 https://www.oldweather.org/  

5
 http://www.urbansustainabilityexchange.org.uk/ISSUESOutputSuScit.html  

6
 http://www.kulturarv.dk/1001fortaellinger/en_GB  

7
 https://www.google.org/flutrends/about/  

8
 http://www.cocorahs.org/  

http://www.galaxyzoo.org/
http://ebird.org/
https://earthquake.usgs.gov/data/dyfi/
https://www.oldweather.org/
http://www.urbansustainabilityexchange.org.uk/ISSUESOutputSuScit.html
http://www.kulturarv.dk/1001fortaellinger/en_GB
https://www.google.org/flutrends/about/
http://www.cocorahs.org/
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Table 2. Quality measures for VGI  

Categories Specifications Descriptions 

Comprehensiveness  Completeness  
Measures errors of omission (missing 

data) and commission (extra information)  

Accuracy  

Positional accuracy  
Measures relative and absolute accuracy 

of coordinate values  

Attribute accuracy  

Measures classification and attribute 

correctness associated with geometrical 

shapes, also known as thematic accuracy 

(ISO, 2002) 

Consistency  

Logical consistency  

Measures internal consistency such as 

topological correctness and relations of 

objects  

Semantic accuracy  
Measures whether data objects and their 

meanings are interpreted correctly   

Evolution  Temporal quality  
Measures validity of changes and rate of 

updates  

Table 3. Quality indicators for VGI  

Categories Specifications Descriptions 

Concrete 

indicators  

Purpose  Predetermined usage of a dataset  

Usage  Application(s) of a dataset  

Lineage  History of a dataset (also known as provenance)  

Abstract 

indicators  

Trustworthiness  
A subjective judgement based on reliability, trust, 

reviews and ratings (Flanagin & Metzger, 2008) 

Credibility  

A combination of subjective trustworthiness 

(perception) and objective expertise (accuracy) 

(Flanagin & Metzger, 2008); a critical example is 

source credentials in the metadata of VGI. (Frew, 

2007; Hovland, Janis, & Kelley, 1953) 

Text content 

quality  

e.g., text length, readability, topical similarity, and the 

use of technical terminology  

Vagueness  

Data ambiguity (e.g., caused by low image 

resolutions) (De Longueville, Ostländer, & Keskitalo, 

2010) 

Local knowledge  
Contributors’ familiarity of their contributed 

geographic regions  

Experience  
e.g., length of registration and number of features 

created and edited (Van Exel, Dias, & Fruijtier, 2010) 

Recognition  
e.g., acknowledgement (in gamified VGI platform) 

and peer-review (Van Exel et al., 2010) 

Reputation  
e.g., historical mapping accuracy and interaction 

between collaborators (Van Exel et al., 2010) 
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1.3 Research objectives  

There are four objectives of this research:  

1. to examine the reliability of the Canadian OSM data in two different scales; 

2. to compare the quality of the Canadian OSM road networks with the quality in 

other locations;    

3. to validate new approaches of intrinsic quality evaluation in VGI;  

4. to establish implications of quality control for future VGI project development.  

The listed objectives are closely related to each other, with the first objective as the 

foundation.  

1.4 Thesis structure  

The thesis is organized into four chapters including this introduction. Chapter 2 provides 

an extensive review of the quality evaluation process of OSM, followed by a case study 

of London, Ontario on the assessment of completeness, positional accuracy and attribute 

accuracy of street networks. Chapter 3 extends the work of the case study to all of 

Canada to check the possibility of finding generalizations from London compared to a 

national level. Semantic accuracy and lineage were evaluated in addition to the quality 

measures listed above, followed by a statistical analysis between OSM accuracy and 

associated provenance information. Chapter 4 offers a summary of the results, as well as 

a discussion of the limitations and contributions from the previous two chapters. The final 

remarks give an outlook on the future research directions, such as methods of VGI 

quality improvement.  
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Chapter 2 

2 Quality Evaluation of Volunteered Geographic 
Information: The Case of OpenStreetMap  

2.1 Introduction  

Although a large amount of geospatial data and wide range of applications have made 

GIS very popular, the users are often unaware of the data quality. New elements were 

added to the discussion of geospatial data quality in the 21st century. The interactivity of 

the new web technology helped create a large amount of user-generated content (UGC). 

UGC with location information is referred to as user-generated geospatial content 

(Coleman, Georgiadou, & Labonte, 2009), crowd-sourced geodata (Barron, Neis, & Zipf, 

2014) or volunteered geographic information (VGI) (Goodchild, 2007). More 

specifically, using location-based services (LBS), GPS-enabled devices and/or aerial 

photos, VGI users actively upload and share data, and the information can be direct or 

indirect depending on whether users have local knowledge (Haklay, 2013). The activities 

of contributing VGI have been termed in different ways as well, including collaborative 

mapping (Jokar Arsanjani & Vaz, 2015), participatory GIS (Elwood, 2006) and public 

participation GIS (PPGIS) (W. Lin, 2013).  

Researchers are interested in VGI because of its values. The conventional 

apprehension about commercial or governmental cartographical products is authoritative, 

comprehensive and accurate. However, Coleman (2013) and Dobson (2013) concluded 

that these databases are often out-of-date, incomplete, of inconsistent quality, and costly 

to maintain. Therefore, VGI is studied as a crowd-sourced alternative to “authoritative” 

datasets. OpenStreetMap (OSM) is one of the VGI applications that allow users to create 

and edit maps using GPS-enabled devices and/or satellite images. As of July 2016, more 

than 3.4 billion nodes (data points) have been created by over 2.8 million registered users 

                                                 


 A version of this chapter appears in Volunteered Geographic Information and the Future of Geospatial 

Data edited by C. Campelo, M. Bertolotto, & P. Corcoran. Copyright 2017, IGI Global, www.igi-

global.com. Included by permission of the publisher.  

http://www.igi-global.com/
http://www.igi-global.com/
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(Neis, 2017). This chapter extensively summarizes the quality evaluation process of OSM 

through literature review and a case study of London, Ontario, with focus on the 

comparison of different assessment methods and findings.  

2.2 Background  

The term volunteered geographic information (VGI) was suggested by Goodchild (2007) 

to represent geospatial data contributed by individuals voluntarily. Since VGI is often the 

most cost-effective solution, crowd-sourced geodata have been applied in many fields, 

such as participatory planning and spatial decision making. Moreover, VGI is the only 

source of geodata in some regions because of security or financial concerns. The area of 

humanitarian relief and crisis management is the most prominent application of VGI. 

Ushahidi and the Humanitarian OpenStreetMap Team (HOT) are two platforms that have 

had a strong presence in disaster management since 2008 and 2009 respectively. Table 4 

compares some VGI applications with OSM. Although OSM is not the project with the 

longest history, it is the oldest mapping project in which the geo-information can be 

applied in more than one field. The number of “registered members” of OSM is relatively 

small compared to other specialized applications, but the number of “users” could be a 

bloated figure and does not represent “active contributors”. Like Wikimapia and Waze, 

OSM has worldwide coverage. The difference is that OSM allows users to freely alter 

and redistribute its data, which is accessible through multiple servers in different formats. 

In contrast, Wikimapia only offers its data through one web application programming 

interface (API) (Neis & Zielstra, 2014), and Waze does not release data from its platform. 

Therefore, OSM was chosen to be the data source for this chapter. The following 

subsections start with a discussion of quality concerns in VGI, introduce OSM in detail 

and end with a list of the spatial data quality metrics.  
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Table 4. Comparison of volunteered geographic information (VGI) applications 

Attributes 
OpenStreet 

Map 
Wikimapia Waze Moovit GasBuddy 

Founding year 2004 2006 2008 2012 2000 

Specialization  Mapping  Mapping  Navigation  
Public 

transit 
Fuel prices  

Number of 

users or 

registered 

members (in 

million)  

2.8 (in 

2016)  

1.9 (in 

2013) 
50 (in 2013)  20 (in 2014)  35 (n.d.)  

Coverage in 

2016 
World World  World 600+ cities 

United 

States and 

Canada 

License ODbL CC BY-SA Proprietary Proprietary  Proprietary 

Data 

downloadable 
Yes Yes No No No  

Note. ODbL, Open Database License; CC BY-SA, Creative Commons license Attribution-ShareAlike; data 

for OpenStreetMap from Neis (2017), for Wikimapia from Neis & Zielstra (2014), for Waze from CBC 

News (2013), for Moovit from “Moovit Company Overview” (2014), and for GasBuddy from “Advertise 

with us - Gasbuddy Gas Prices” (n.d.).  

2.2.1 Quality issues of volunteered geographic information   

Community-based systems, like the review systems on Amazon or Airbnb, could be 

useful in evaluating the relative and latent values of VGI (Feick & Roche, 2013). Data 

quality assessment is a more explicit way of determining the value of VGI. Quality issues 

of VGI are typically centered around inconsistency in terms of coverage and accuracy. 

For instance, remote areas are usually under-mapped (Coleman, 2013). If volunteers are 

unfamiliar with the remote areas they map, accuracy might be sacrificed because of 

volunteers’ deficiency in local knowledge (Dobson, 2013). In addition to geometrical 

objects, VGI’s metadata is also incomprehensive and inaccurate (Hashemi & Ali 

Abbaspour, 2015), which creates difficulties for researchers when verifying the semantic 

accuracy of VGI. Although the International Organization for Standardization (ISO) has 

published quality principles for geographic information (ISO, 2002), a new quality 

assurance schema specifically tailored for VGI is needed because of the limitations 

mentioned above (Van Exel et al., 2010).  
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The simplified expression of Linus’ Law – “Given enough eyeballs, all bugs are 

shallow” (Raymond 2001, p. 13) – is often quoted as an underlying theory for discussing 

the issues of data quality (e.g., Haklay et al. 2010; Miller and Goodchild 2015; Goodchild 

and Li 2012; Goodchild 2013). It is hypothesized that more contributors usually create 

more reliable information (Flanagin & Metzger, 2008). However, Linus’ Law may not 

work well in a spatial context (Elwood, Goodchild, & Sui, 2013), and this quotation often 

misleads readers to conclude that most quality issues will be solved if there are enough 

testers. The full expression of Linus’ Law is that “Given a large enough betatester and 

codeveloper base, almost every problem will be characterized quickly and the fix (will 

be) obvious to someone” (Raymond 2001, p. 13). This expression specifies that the 

“eyeballs” must include those from co-developers, who are professionally trained to 

debug the Linux operating system in the context of the Raymond article. However, some 

VGI projects may be contributed mainly by citizen scientists but not professional 

cartographers. Moreover, the software “bugs” can be identified during the process of 

using the software. However, errors on maps cannot be recognized or avoided if the map 

scale is too small, contributors do not have local knowledge, or accuracy is sufficient for 

certain map applications (i.e., navigation requires less accuracy than road constructions). 

Furthermore, the contribution pattern of VGI users signifies the necessity of spatial 

redundancy (Dobson, 2013). For example, 38% of registered OSM members edited at 

least once, and only 5% of all actively contributed to the project (Neis & Zipf, 2012). 

Spatial heterogeneity also prevents the existence of consistent global spatial errors that 

may be corrected all at once. Thus, Linus’ Law may not apply to VGI, which means a 

large number of volunteers may not be enough to ensure the quality of VGI.  

2.2.2 Spatial data quality  

Spatial data quality can be evaluated internally or externally (Jokar Arsanjani, Mooney, 

Zipf, & Schauss, 2015). While internal quality assesses the fitness of data for a particular 

purpose, external quality describes how well data meet specifications. Examples of the 

extrinsic quality measures include completeness (C), positional accuracy (PA), attribute 

accuracy (AA), logistical consistency (LC), semantic accuracy (SA), temporal quality 

(TQ) and lineage (L) (see Table 2 in Section 1.2).  
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The intrinsic quality indicators contain standards such as data usage (see Table 3 

in Section 1.2), and can be derived completely from source data without the help of 

reference data (Foody et al., 2015). According to Ali, Schmid, Al-Salman, & Kauppinen 

(2014), Goodchild & Li (2012) and Senaratne et al. (2016), intrinsic methods can be 

categorized into four groups: crowd-sourcing revision (data validation by contributors), 

social approaches (reputation and trustworthiness of individual contributors), geographic 

consistency (logical and contextual inferences using geographic laws) and data mining 

(independent database examination without using theories from the previous three 

groups). The focus of this chapter is the external quality of VGI data. However, it has 

been recognized that the above criteria only assess absolute data quality, while the actual 

quality is relative to its fitness-of-use (Feick & Roche, 2013; Van Oort, 2006). 

2.2.3 OpenStreetMap  

OSM is a crowdsourced online mapping platform, which aims to provide free and 

editable digital mapping products under a new copyright license (Haklay & Weber, 

2008). The project implements the resource description framework (RDF), which uses a 

triple (resource, property, value) to model information (Manola, Miller, & McBride, 

2004). Some drawbacks of the RDF structure contain difficulties of translating RDF 

triples to object-oriented data, ambiguous numbers of classes, and issues in real-world 

object identification (Girres & Touya, 2010). Since its initiation in August 2004, OSM 

has been applied in routing and navigation, cartography improvement, Location Based 

Services (LBS), and 3D city models (Jokar Arsanjani, Zipf, Mooney, & Helbich, 2015). 

In 2014, high densities of OSM nodes were found in Europe, North America, Russia, 

Australia and Brazil, while Africa and Greenland were least mapped (Jokar Arsanjani, 

Zipf, Mooney, et al., 2015). Overall topological errors and missing information in OSM 

decreased in Germany during the period of 2007 to 2011, and its data quality is becoming 

as good as authoritative datasets at least in highly-contributing countries (Neis, Zielstra, 

& Zipf, 2011). However, the project still has a large number of inactive users and small 

or lightly edited elements (Ma, Sandberg, & Jiang, 2015). Those contributors outside of 

major urban centers have made very limited contributions as well (Quinn, 2015). 

According to Haklay, (2010), Jokar Arsanjani, Zipf, et al. (2015), Mooney & Corcoran 
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(2014), Neis & Zielstra (2014), Neis, Zielstra, & Zipf (2013), Stein, Kremer, & Schlieder 

(2015) and Vandecasteele & Devillers (2015), OSM can be described by the following 

key features:  

• Near real-time updates: Unlike Google Map Maker, which has a review system 

for submitted edits, OSM publishes modifications just “a few minutes” after 

contributors save their changes;  

• Data import from multiple sources: OSM supports data generated GPS,  

smartphones, and other mapping hardware. In the early years of the project, GPS-

enabled devices were the most popular data generators. This situation was 

changed because Yahoo! (from 2007 to 2011) and Microsoft Bing (since 2010) 

agreed to provide their aerial imageries for OSM enthusiasts to trace data. Some 

countries, such as the United States and Canada, also had volunteers to import 

authoritative datasets into OSM;  

• Data export in multiple formats: OSM data can be downloaded at different 

scales (e.g., continental, regional or metro) in different formats (e.g., OSM 

Extensible Markup Language (XML), Protocol Buffer Binary Format (PBF) or 

shape file) from several servers (e.g., Planet OSM, Geofabrik or Mapzen);  

• Different flavours of editors: The web-based iD editor has a simple user 

interface for beginners to immerse into geodata contributions. Moreover, Potlatch 

or JOSM (Java OpenStreetMap Editor) are favoured by advanced mappers. Other 

editors are available across operating systems and platforms as well;  

• Full edit history: OSM keeps all historical edits in its full history dump site, but 

only the latest versions of objects are available in other forms of extracts. Each 

“changeset” stores all edits of one contributor in one session;  

• Three object types: The resource in RDF represents the geometric features. A 

“node” represents a point, while a “way” consists of lines or polygons (closed line 

features). A “relation” connects related nodes, ways and relations with each other;  

• Tags as metadata: Attributes of objects are expressed as “key:value” pairs, 

which match the property and value elements in RDF;  
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• Undistinguishable contribution types: it is not required to attach the information 

of contribution types in OSM (e.g., from GPS, aerial photo tracing, or data 

import);  

• Spatial temporal heterogeneity: Patterns and quality of contributions differ from 

one place to another, and contributions are neither linear nor predictable because 

of mapping parties and data import. Although geometric shapes may not change 

very frequently, tag information may change very quickly;  

• Manifold collaboration channels: The official OSM wiki provides the 

knowledge base of the project. Other communication methods include Internet 

relay chats (IRCs) (OpenStreetMap, 2015b) and mailing lists (OpenStreetMap, 

2016a). Community events such as “mapping parties” are organized both online 

and offline, with the yearly “State of the Map” conference attracting most 

attendees.  

Previous studies have surveyed the patterns of contributors’ activities. For 

instance, most contributions in OSM are isolated without planned collaboration (Mooney 

& Corcoran, 2012b, 2012c), and the majority of the members have most of their mapping 

activities within the first three months of their registration (Neis & Zipf, 2012). Roads 

usually attract a lot of interest first. Other features, like buildings, are added later 

(Gröchenig, Brunauer, & Rehrl, 2014b; Neis & Zielstra, 2014). Contribution inequality 

was observed in terms of digital divide, demographic difference, area distribution, and 

quantity of mapping activities. Developing countries have usually received fewer 

contributions due to their lack of the latest technology infrastructure (Jokar Arsanjani, 

Zipf, Mooney, et al., 2015; Sui, Goodchild, & Elwood, 2013). Haklay (2013) also 

worried about the participation inequality if contributors are mainly well-educated males 

with high incomes. In fact, over 60% of surveyed OSM contributors were 20 to 40 years 

old, and a similar ratio applied to those who had a higher education degree (Budhathoki 

& Haythornthwaite, 2013; Stephens, 2013). Contradicting the widely-accepted 

speculation, nearly half of the surveyed OSM contributors had educations or work 

experience in geography, geomatics, urban planning or computer science (Budhathoki, 

2010). The earliest contributions were concentrated near university campuses, while 
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farmland and water bodies were mapped last (Jokar Arsanjani, Helbich, Bakillah, & 

Loos, 2015). There are differences between users, registered members and contributors as 

well. Over 90% of feature creations and modifications were completed by the top 10% of 

contributors (Mooney & Corcoran, 2014), and a lot of them map in two or more countries 

(Neis & Zipf, 2012). Among those serious contributors, “tagging” represents the major 

action of the group followed by “geometry only” and “creation only” (Mooney & 

Corcoran, 2014). In recent years, most contributors (72%) were still in Europe with 

Germany at the top (Neis & Zielstra, 2014; Neis & Zipf, 2012), which explains why 

OSM is well-developed in most European countries. An activity area for each member 

can range from one soccer field to more than 50 km2 (Neis & Zipf, 2012). An analysis of 

regional mapping history before any plan for using OSM data, because of its known 

impacts on mapping methods and progress on OSM quality, is recommended (Gröchenig, 

Brunauer, & Rehrl, 2014a).  

2.3 A review of OpenStreetMap quality assessment 

An extensive survey of literature (as of July 2016) found 60 articles relevant to quality 

evaluation of OSM (see Appendix A). Four databases were used in this process including 

Web of Science, Scopus, Engineering Village (Geobase) and Proquest (dissertations & 

theses). 334 articles were found initially using keywords “OpenStreetMap AND (quality 

OR accuracy)” with the option of anywhere except full text, and the number of relevant 

articles went down to 202 after removing duplicates. A full-text review of the 202 articles 

identified 39 articles listed in the Appendix. In addition, 21 relevant articles were found 

based on an examination of the 39 articles’ reference sections. Only studies written in 

English were retained. It is worth to mention that some excluded articles are not totally 

irrelevant, but they focus more on method assessment instead of quality of specific areas 

(Basiri et al., 2016; Brovelli, Minghini, Molinari, & Mooney, 2016; Fan, Yang, Zipf, & 

Rousell, 2015; Graser, Straub, & Dragaschnig, 2014; Gröchenig et al., 2014b; Jokar 

Arsanjani, Mooney, Helbich, & Zipf, 2015; X. Zhang & Ai, 2015). In Appendix A, time 

represents the actual time the OSM data was downloaded, which is more accurate than 

the year of publication. Only years were recorded because of various time precision. Data 

were retrieved from 2007 to 2014, indicating the discussion of OSM quality assessment 
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started around 2007 and continued as a trending topic until recent times. A limited 

number of studies were implemented using national data, signifying current exploration 

stage of OSM quality analysis. Most studies had European regions as their study areas, 

which was not surprising considering the massive number of European OSM users. 

Furthermore, most studies used a reference dataset to evaluate the extrinsic quality of 

OSM data, which include a mix of governmental and commercial databases. For articles 

that do not have a reference dataset, some constructed frameworks, some analyzed user 

behavior or data trust, and the rest studied intrinsic quality using data history.  

The frequency of examined data quality criteria is shown in Figure 1. Data 

completeness dominates the quality analysis of OSM, with positional accuracy and 

attribute accuracy the second and the third most popular criterion. The common 

evaluation methods of all criteria are explained in the following paragraphs.  

 

Figure 1. Summary statistics of examined data quality criteria in Appendix A 

 Generally, there are two types of methods to measure data completeness: unit-

based and object-based (Table 5). The concept behind unit-based methods is to compare 

total length, area, or number of objects in OSM with those in a reference dataset. Many 

studies have used this method because of its easiness of implementation. Hochmair et al. 
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(2015) specially considered street network density and visually compared bike lanes with 

Google street view to avoid potential mistakes. On the other hand, (automated) feature 

matching is involved in object-based methods using attributes or geometric properties. 

For example, street segments have orientation and length, and building footprints can be 

matched by their centroids or overlap ratio between OSM data and a reference. It is worth 

mentioning that the completeness of land use may be calculated without a reference, 

since a 100% result means everywhere is covered by a land use feature (Jokar Arsanjani, 

Mooney, Zipf, et al., 2015).  

Table 5. Methods of measuring completeness 

Types Criteria Examples 

Unit-based 

Number of 

objects  

(e.g., attributes, 

POIs or 

buildings) 

Barron, Neis, & Zipf (2014),  

Fan, Zipf, Fu, & Neis (2014),  

Girres & Touya (2010),  

Haklay (2010),  

Hecht, Kunze, & Hahmann (2013),  

Hochmair, Zielstra, & Neis (2015),  

Jackson et al., (2013),  

Jokar Arsanjani, Barron, Bakillah, & Helbich 

(2013),  

Jokar Arsanjani, Mooney, Zipf, & Schauss (2015),  

Jokar Arsanjani & Vaz (2015),  

Mashhadi, Quattrone, & Capra (2015),  

Neis, Zielstra, & Zipf (2011),  

Zielstra & Zipf (2010) 

Total length or 

area 

Density 

Hochmair et al. (2015) Visual 

comparison  

Object-

based 

Centroids 
Hecht et al. (2013) 

Overlap ratio 

Attribute match  

(e.g., name) Jackson et al. (2013),  

Kalantari & La (2015),  

Koukoletsos, Haklay, & Ellul (2012),  

Ludwig, Voss, & Krause-traudes (2011) 

Geometric match  

(e.g., distance, 

orientation, 

length)  
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The methods of measuring positional accuracy are categorized by data types 

(Table 6). A common method for points of interest is Euclidean distance, while buffer 

analysis is popular for line segments. A buffer of width “x” is created around a road 

segment from an authoritative dataset, and the percentage of the corresponding OSM 

road segment that falls within the buffer is calculated (Goodchild & Hunter, 1997). The 

buffer size differs from one study to another, indicating that there is no theory behind this 

method. The positional accuracy of the reference datasets is the key of buffer size 

determination. In terms of polygon features, centroids, corner points and surface are 

considered for distance measurement.  

Table 6. Methods of measuring positional accuracy 

Data Types Methods Examples  

Point Euclidean distance  

Girres & Touya (2010) 

Amelunxen (2010) 

Jackson et al. (2013) 

Line 

Compare actual road conjunction with 

previous locations 
Barron, Neis, & Zipf (2014) 

Hausdorff distance 
Girres & Touya (2010) 

Average distance (McMaster, 1986) 

Buffer analysis  

(Goodchild & Hunter, 1997; Hunter, 

1999) 

Haklay (2010), Jokar 

Arsanjani, Barron, Bakillah, & 

Helbich (2013), Ludwig, Voss, 

& Krause-traudes (2011) 

Bidimentional regression  

(Friedman & Kohler, 2003; Tobler, 

1994) 

Helbich, Amelunxen, & Neis 

(2012) 

G*-statistics (Getis & Ord, 1992) 

Polygon 

Surface distance (Vauglin, 1997) Girres & Touya (2010) 

Average distance of corresponding 

(corner) points  
Fan, Zipf, Fu, & Neis (2014) 

Distance between centroids Kalantari & La (2015) 

 The methods of measuring attribute accuracy have four types of usages (Table 7). 

First, presence of OSM tags (e.g., oneway flags of street segments) can be looked up 

through examining each geometric object. Second, similarities of strings can be 

calculated by different algorithms. For example, the Levenshtein distance is the number 
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of deletions, insertions, or reversals required to transform one string to another. The 

algorithm was originally developed to tackle the issue of binary information transmission 

(Levenshtein, 1966). The larger the Levenshtein distance, the greater the differences 

between strings. Third, numbers can be subtracted, and the absolute values of the results 

can reflect the differences between them. Finally, thematic accuracy (e.g., for land use 

accuracy assessment) can be measured by confusion matrix and kappa index.  

Table 7. Methods of measuring attribute accuracy 

Usages Criteria Examples 

Measures attribute 

completeness 
Tag presence 

Girres & Touya, (2010),  

Ludwig et al. (2011) 

Compares strings 

(text) 

Levenshtein distance 

(Levenshtein, 1966) 
Girres & Touya (2010) 

Similarity ratio  

(calculated by difflib in 

Python) 

Kalantari & La (2015) 

Compares 

numbers 
Difference in speed limits Ludwig et al. (2011) 

Measures thematic 

accuracy 

Classification accuracy by 

confusion matrix 

Estima & Painho (2013), Jokar 

Arsanjani, Helbich, Bakillah, 

Hagenauer, & Zipf (2013), Jokar 

Arsanjani, Mooney, et al. (2015), 

Jokar Arsanjani & Vaz (2015) 
Kappa index 

A framework was constructed exclusively for logical consistency (Hashemi & Ali 

Abbaspour, 2015). Spatial scenes – sets of spatial objects with spatial relations – are 

compared in this framework. Topology, distance and direction are some examples of 

useful spatial relations (Hashemi & Ali Abbaspour, 2015). Here, topology is “the study of 

qualitative properties that are invariant under distortion of geometric space” (e.g., the 

London underground map) (Jiang, 2013, p. 128). For instance, two articles from 

Appendix A studied logical consistency of street networks considering topological errors 

(e.g., connectivity of roads and structure of network), turn restrictions and inter-theme 

consistency (Girres & Touya, 2010; Neis et al., 2011). Another two articles examined 

logical consistency of polygons, both using shape similarity ratio in additional to other 

methods such as turning function distance, number of vertices, mean vertex spacing 
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distance, and feature areas (Fan et al., 2014; Kalantari & La, 2015). Although OSM has a 

dedicated webpage to record known data errors (OpenStreetMap, 2016c), Girres & Touya 

(2010) mentioned that integrity constraints are not enforced to ensure logical consistency 

in OSM. 

 Methods of other data quality criteria are summarized below. Only four out of the 

60 articles analyzed semantic accuracy, and two of them compared attributes for the 

assessment (Girres & Touya, 2010; Jokar Arsanjani, Barron, et al., 2013). Fan et al. 

(2014) did something special to identify the n:m relations of building footprints between 

OSM data and a reference dataset. Temporal quality was generally evaluated as a spatial-

temporal analysis with the rate of changes over time. Level of details (LOD) assessment 

can be divided into five schemas including conceptual schema, geometric resolution, 

semantic resolution, geometric precision and granularity (the size of the minimal 

features) (Touya & Reimer, 2015). Finally, a number of collected studies analyzed 

relations between user behaviors or data trust to user information and/or edit history.  

Mixed results were found across different locations, times, data types and criteria. 

Some urban areas with high population density had similar or even better quality than 

some reference datasets. However, rural areas received less attentions and had scarce 

coverage. Overall, the findings of collected articles follow the two classical geographic 

theories: Tobler's (1970) first law of geography – near things are more related than others 

– and the second law of geography – geographic phenomena vary across the globe 

(spatial heterogeneity) (Goodchild, 2009).  

2.4 Case study  

According to Appendix A, only a small number of articles evaluated the quality of the 

Canadian OSM data (e.g., Meier, 2015; Tenney, 2014). Although Tenney (2014) 

performed a national study, the results were still preliminary. Thus, there is a need to 

further evaluate the Canadian OSM quality. The study area here is the Census 

Metropolitan Area (CMA) of London, Ontario, Canada (see Figure 2). London is the 

eleventh largest CMA in Canada with more than 474,000 inhabitants, including two cities 

(London and St. Thomas), two municipalities (Thames Centre and Central Elgin) and 
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four townships (Strathroy-Caradoc, Middlesex Centre, Southwold and Adelaide-

Metcalfe) (Statistics Canada, 2012). The rate of economic growth in the region was 

moderate in recent years because of an improved manufacturing sector and a stronger 

housing market. Two datasets, the source and the reference data, are required for this 

evaluation. The source data are the 2016 OSM metro extracts of London, Ontario from 

Mapzen9 in the imposm shapefile format10. The reference data are the 2015 DMTI road 

networks from Scholars Geoportal11, which has a positional accuracy ranging from 0.6 

(urban) to 30 m (rural) (DMTI Spatial Inc., 2015).  It is therefore hypothesized that urban 

roads have higher positional accuracy in OSM as well. The governmental datasets, such 

as the 2015 National Road Network (NRN) data from Natural Resources Canada and the 

London street centrelines collected by the City of London, were not chosen as the 

reference dataset because a commercial dataset is preferred when available (Haklay, 

2010). Positional accuracy is not specified in both datasets as well (e.g., only indicated 

“in meters” from NRN) (Natural Resources Canada, 2015). In terms of the municipal 

dataset which only covers the City of London but not the CMA, a divided road is 

presented by one centreline, which differs from the representation in OSM.  

                                                 

9
 https://mapzen.com/data/metro-extracts/  

10
 https://mapzen.com/documentation/metro-extracts/overview/#choose-a-file-format  

11
 http://geo2.scholarsportal.info/ 

https://mapzen.com/data/metro-extracts/
https://mapzen.com/documentation/metro-extracts/overview/#choose-a-file-format
http://geo2.scholarsportal.info/
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Figure 2. Study area of the case study 

2.4.1 Methods 

The OSM quality, specifically completeness, positional accuracy and attribute accuracy, 

was assessed using the following techniques and ArcGIS tools (see Figure 3 and 4). The 

attributes were first processed and matched based on Table 8. Evaluation results were 

classified according to the new road ranks in Table 9. Geometric feature matching was 

performed before evaluating the positional and attribute accuracy. The unmatched road 

segments were identified using the “Detect feature changes” tool in ArcGIS with a search 

distance of 30 m (the maximum positional offset of the DMTI data) and removed 

afterwards. The lengths and densities of roads were calculated to analyze the data 

completeness. This unit-based method was chosen because it is easy to implement and 

has been used in many previous studies (see Table 5). Next, the buffer analysis was used 

to assess the positional accuracy. This method was validated in the first OSM quality 

assessment (Haklay, 2010) and other studies (see Table 6). Using a self-developed python 
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script and the arcpy library, buffers with widths of 1 to 10 m were created around the 

DMTI street networks, and the matched OSM road segments that fell within the buffers 

were clipped for calculating their proportions to the total OSM road length (see Figure 5, 

adapted from Goodchild & Hunter, 1997). Finally, the attribute accuracy was evaluated 

by tag presence, number difference and Levenshtein distance. Tag presence measured 

whether an OSM road attribute was present if a DMTI road attribute was provided. The 

absolute difference between two numeric fields were calculated as follows: 𝑑 = |𝑥 − 𝑦|. 

Levenshtein distance (see Section 2.3) of two text fields was computed using a dynamic 

programming python script (Levenshtein, 1966).   

 

Figure 3. Methods of the case study  
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Figure 4. ArcGIS tools used in the case study 

 

Figure 5. Example of the buffer analysis  
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Table 8. Matches of attributes 

Field 

Name 
Field Type Field Description 

name Text  Full street name 

length Number  Length of the road segment  

rank Number  New road classifications  

UID Number  Unique ID  

preDir Text  Prefix direction  

preType Text  Prefix street type  

stName Text  Street name component  

sufType Text  Suffix street type  

sufDir Text  Suffix direction  

tunnel Number  1 = tunnel; 0 = not tunnel 

bridge Number  1 = bridge; 0 = not bridge 

oneway Number  1 = oneway; 0 = two ways;  

-1 = incorrect input  

Table 9. Matches of road classifications 

New 

Rank 
DMTI Road Types OSM Road Types 

0 N.A. Unclassified 

1 Expressways Motorway Motorway_Link 

2 Primary Highways Trunk Trunk_Link 

3 Secondary Highways Primary Primary_Link 

4 Major Roads Secondary Secondary_Link 

5 Local Roads 
Tertiary Tertiary_Link 

Residential  Service 

6 

Trails Footway Steps 

Proposed Roads 
Path Track 

Raceway Cycleway 
 

2.4.2 Results and discussion  

2.4.2.1 Completeness 

Figure 6 shows the road lengths by ranks. Many of the ranks have close lengths except 

rank 0, 5 and 6. Visual examination confirmed that most unclassified (rank 0) road 

segments of OSM are local roads (rank 5) in suburban areas. Thus, the length difference 

of rank 5 is actually minimal if the length of rank 0 is added. The difference of rank 6 is 

large enough to influence the total road length because of the large number of footways 
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in the OSM data. This is also the case of the United States (as of 2012) (Zielstra, 

Hochmair, & Neis, 2013) and Germany (as of 2011) (Neis et al., 2011). If rank 6 is 

excluded, the difference is significantly reduced. However, OSM has a longer total length 

than DMTI with or without rank 6, which is different from previous studies in which the 

total length of OSM motorways was still shorter than reference datasets (Neis et al., 

2011; Zielstra et al., 2013). The better data completeness potentially benefits from data 

import and the increased number of contributors over the years.  

The road densities of the two datasets is displayed in Figure 7. In general, urban 

areas especially the City of London and the City of St. Thomas have higher road density, 

which potentially helps to generate shorter and better routes in navigation applications 

(Mondzech & Sester, 2011). The location of dense areas verifies that areas with denser 

population tend to have higher contributions (Jokar Arsanjani & Bakillah, 2015). The 

maximum density of DMTI is about one-third of that in OSM. The difference is reflected 

in urban areas, and the significant disparity of footways (rank 6) should have great 

influence on the road density as well.  

 

Figure 6. Classified road lengths in London, Ontario  



26 

 

 

Figure 7. Road density (m/km2) in London, Ontario  

2.4.2.2 Positional accuracy 

To improve the results of the geometric feature matching, rank 6 is excluded from the 

following analysis. Figure 8 shows the proportions of OSM road segments that fall within 

the buffers of DMTI road segments with a range from 1 to 10 m. Approximately all ranks 

of roads have a logarithmic increase of their positional accuracy. The average positional 

offset is 2.3 m, which is significantly better than the results in London, UK and England 

in 2007 (5.8 m) (Haklay, 2010) and 2009 (7.9 m) (Antoniou, 2011). At buffer size of 1 m, 

the positional accuracy ranges from 14.9 to 59.6%. The accuracy increases at a relatively 

fast rate until 6 m. After that, the accuracy starts to only increase gently. Over 86% of 

road segments have positional errors within 5 m, which is also better than 73% of road 

segments in Germany in 2009 (Ludwig et al., 2011). At buffer size of 10 m, most ranks 

have over 91% of positional accuracy except rank 2 and 3. However, the lengths of roads 

in these two ranks are relatively short (See Figure 6), which means their results may not 

be representative. The most accurate rank at the 10-m buffer is rank 0 (local roads in 

suburban areas).  



27 

 

 

Figure 8. Trends of the OSM positional accuracy in London, Ontario  

2.4.2.3 Attribute accuracy  

The percentages of attribute accuracy are calculated by road lengths as well. Table 10 

lists the proportions of presented OSM tags against the available DMTI attributes. The 

numeric fields are not included since all OSM road segments have a rank (rank 0 = 

unclassified) and the remainders have limited number of entries. The presence rates are 

mostly very high except for sufDir (e.g., N, S, W, E), which probably indicates that the 

suffix directions are not the primary concerns to the OSM users or not well-known to the 

OSM contributors. The presence rate of rank 1 under sufType is extremely low as well, 

and the reason is that a large number of highway segments miss the suffix type “RAMP”. 

The overall presence rate of sufType is not affected because of the relatively short length 

of highway. The attribute completeness of London, Ontario are actually superior 

comparing to French streets (85% for types and 43% for names) (Girres & Touya, 2010) 

and German streets (82.5% to 94.4% for names) (Ludwig et al., 2011) in 2009.  
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Table 10. Tag presence in London, Ontario  

OSM 

Rank 
Percent 

OSM 

Rank 
Percent 

preDir sufType 

4 100.0% 0 99.5% 

5 91.6% 1 27.9% 

Overall 93.2% 2 92.8% 

preType 3 79.0% 

1 99.7% 4 98.5% 

3 94.1% 5 97.2% 

Overall 99.5% Overall 96.8% 

stName sufDir 

0 99.6% 0 0.0% 

1 97.7% 1 42.0% 

2 100.0% 4 69.3% 

3 100.0% 5 46.8% 

4 99.5% - - 

5 97.4% - - 

Overall 98.4% Overall 62.1% 

Table 11 presents the absolute difference of the numeric attributes between the 

OSM and DMTI data. Only 70.6% of the OSM road segments have matched road 

classifications, which is largely due to the unclassified local roads in suburban area (the 

21.1% with a difference of 5). The rest of the fields have almost perfect accuracy; 

however, the results need to be interpreted with caution because of the short total length 

of tunnels, bridges and oneway roads. Still, the nearly 98% of oneway flag accuracy in 

London, Canada is better than the 16% completeness in France in 2009 (Girres & Touya, 

2010).  

Table 11. Number differences in London, Ontario  

Difference Percent Difference Percent 

rank bridge 

0 70.6% 0 99.5% 

1 7.1% 1 0.5% 

2 0.9% oneway 

3 0.0% 0 97.9% 

4 0.2% 1 2.1% 

5 21.1% 2 0.0% 

tunnel - - 

0 100.0% - - 

1 0.0% - - 
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 Table 12 lists the Levenshtein distance of the text fields. Overall, the longer the 

field content, the larger the Levenshtein distance. Therefore, preDir and sufDir have 

excellent accuracy since the length of these fields is one letter. Another reason of the 

nearly perfect accuracy of preDir is due to its small number of entries, and so does 

preType. The accuracy results of stName and sufType are lower than the others, but still 

above 85%. A Levenshtein distance of 1 to 3 usually represents spelling mistakes (Girres 

& Touya, 2010). However, a small portion of stName and sufType have large 

Levenshtein distance that is greater than 3. The large Levenshtein distances do not affect 

the overall accuracy as the average Levenshtein distance of stName is only 0.8, which is 

significantly smaller than the same variable (4.96) of lake names in France in 2009 

(Girres & Touya, 2010).  

Table 12. Levenshtein distances (LD) in London, Ontario  

LD Percent LD Percent 

preDir sufDir 

0 99.7% 0 97.3% 

1 0.3% 1 2.7% 

preType sufType 

0 99.4% 0 89.2% 

3 0.6% 1 0.0% 

stName 2 4.6% 

0 86.1% 3 2.2% 

1 to 3 3.1% 4 3.8% 

> 3 10.9% 5 0.2% 

2.5 Conclusions  

Although OSM has better data completeness and overall good positional and attribute 

accuracy comparing to DMTI, it still has some quality issues. For example, the majority 

of local roads in rural areas remain unclassified. Misspelling of street names and suffix 

types still exists, and a large number of suffix directions are missing as well. Still, the 

general OSM quality of London, Canada in 2016 has greatly improved comparing to 

previous studies of the United States and European regions. An interesting finding is that 

the local roads in rural areas (rank 0) actually have the highest level of positional 

accuracy, which contradicts the assumption brought up at the beginning of Section 2.4. 

This high accuracy of local roads in rural areas is perhaps due to the data import from an 
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old version of NRN starting in 2008 (OpenStreetMap, 2015a) and the limited user-editing 

afterwards. Hence, it is worth to explore the OSM quality in a larger area. For instance, 

there are no reference roads classified as secondary highways (rank 3) in the London 

CMA, which will not be a problem once the study area is expanded to the national level. 

In addition, an exploration is still needed for evaluating the trail data (rank 6) if a 

reference dataset is available. Other future research questions pertaining to OSM and 

VGI are as follows:  

• Which data source, the commercial organization, the governmental data bureau or 

VGI, should be used under which circumstances? 

• Are there better and more efficient methods to evaluate the extrinsic (when a 

reference dataset is available) and intrinsic (e.g., data history analysis) OSM 

quality?  

• How can one accurately automate the quality assessment process?  

• How can one improve OSM quality in general?  
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Chapter 3 

3 Accuracy and Provenance Evaluation of the Canadian 
OpenStreetMap Data  

3.1 Introduction  

The advancement and availability of technology such as Web 2.0, the Global Positioning 

System (GPS) and high-speed internet has resulted in the proliferation of geospatial data 

in the 21st century. Users are no longer limited to browsing but also creating contents 

online, and geographers are particularly interested in user-generated geospatial content 

(Coleman et al., 2009). Different concepts have been defined to describe this worldwide 

phenomenon, namely volunteered geographic information (VGI) (Goodchild, 2007), 

crowd-sourced geodata (Barron et al., 2014), public participation GIS (Sieber, 2006), 

collaborative GIS (Balram & Dragicevic, 2008), participatory GIS (Elwood, 2006), and 

community integrated GIS (Elmes et al., 2005). Compared to other concepts, VGI targets 

end-users, who are usually laypeople with their own needs and motivations (Flanagin & 

Metzger, 2008). The nature of VGI has led to the widely-discussed concern of its data 

quality. Especially with the availability of satellite images, more and more contributors 

have become “armchair mappers” who only trace objects from aerial photos without local 

knowledge or without making measurements with GPS devices (Neis et al., 2013). 

Although more detailed studies are needed, “armchair mapping” (or remote mapping) 

may cause various quality issues because of language barriers, limited image resolutions, 

lack of cartographic skills and loosely enforced specifications.  

OpenStreetMap (OSM) is one of the initial and long-lasting VGI mapping 

projects that aims to develop a free and accessible world map. Established in 2004, OSM 

has grown quickly in recent years, with the total number of registered users passing 3.5 

million in March 2017 (Neis, 2017). The project utilizes the Open Database License 
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(ODbL) from Open Data Commons (OpenStreetMap, 2016b), which allows data to be 

freely accessed from multiple servers (e.g., Planet OSM, Geofabrik or Mapzen) in 

different formats (e.g., OSM Extensible Markup Language (XML), Protocol Buffer 

Binary Format (PBF) or shapefile). Tags are stored as “key:value” pairs, which are 

displayed as attributes associated with map features. Nodes, ways and relations construct 

the OSM project together, where ways are made of multiple nodes (points), and relations 

consist of at least one tag with an ordered list of nodes, ways and/or relations (Keßler, 

Trame, & Kauppinen, 2011). Applications based on OSM are very diverse, and include 

but are not limited to navigation (e.g., for driving, biking or walking12), cartography for 

specific purposes (e.g., for wheelchair users13, humanitarian relief14 and land use/land 

cover mapping (e.g., Jokar Arsanjani et al. 2015)) and 3D city models (e.g., Over et al. 

2010) (OpenStreetMap, 2017b).  

Both extrinsic and intrinsic metrics can evaluate spatial data quality. While 

extrinsic assessment compares OSM data to an authoritative reference dataset using 

quality measures derived from the ISO standards, intrinsic assessment measures OSM 

quality through proxies that are known as quality indicators (Antoniou & Skopeliti, 

2015). Examples of quality measures include completeness, positional accuracy, attribute 

accuracy and semantic accuracy (Van Oort, 2006). Provenance (also known as lineage, 

which can be a quality measure in some cases), that is metadata about an object’s source 

and historical evolution (Bose & Frew, 2005), and trustworthiness, that is a user’s 

subjective judgement (based on ratings or reviews, for example) (Flanagin & Metzger, 

2008), are two related quality indicators. Gil and Artz (2007) found that provenance is a 

major factor that affects users’ perceptions of trust in web content, and it is hypothesized 

that provenance information is associated with trustworthiness of OSM data, which 

reflects human perceptions of OSM quality (Keßler, Theodore, & Groot, 2013).  

                                                 

12 
http://www.openrouteservice.org/ 

13
 https://wheelmap.org/ 

14
 https://www.hotosm.org/  

http://www.openrouteservice.org/
https://wheelmap.org/
https://www.hotosm.org/
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 H. Zhang and Malczewski (2017) performed an extensive review of quality 

evaluation on OSM and found 60 relevant articles as of July 2016. OSM data used in 

those articles were accessed starting from 2007, which matches the founding year of the 

notion of VGI (Goodchild, 2007). Most reviewed articles used quality measures to 

compare OSM data with governmental or commercial datasets in selected European 

regions (H. Zhang & Malczewski, 2017). Haklay (2010) first examined the completeness 

and positional accuracy of OSM streets in London and other parts of England in 2007. 

Compared to the Meridian 2 data from Ordnance Survey, the average positional accuracy 

was approximately 6 m, and the coverage was about 29% of the area of England (Haklay, 

2010). Girres and Touya (2010) extended Haklay’s work by comparing the 2009 French 

OSM data with BD TOPO. Not only did they examine points and polygons in addition to 

polylines (street networks), Girres and Touya (2010) systematically examined all 

extrinsic quality measures, including completeness, positional accuracy, attribute 

accuracy, logical consistency, semantic accuracy, temporal quality and lineage. While the 

study areas and data types vary from one measure to another, the results of the French 

study provide confidence for future research on OSM quality. The number of contributors 

were linearly correlated with the number of tags, the mean version and the mean capture 

date (Girres & Touya, 2010). The more contributors, the better the attribute accuracy, 

temporal quality and completeness of the objects. However, in terms of semantic 

accuracy, OSM specifications were found to be very detailed but did not match with 

commonly accepted road classification (Girres & Touya, 2010).  

Only seven of the 60 studies were implemented nationally, indicating potential 

difficulties of small scale OSM quality analysis (H. Zhang & Malczewski, 2017). Among 

those, Zielstra and Zipf (2010) probably performed the first national OSM quality study 

of streets in Germany. Using the OSM data from 2009, they found that although the total 

road length of OSM did not catch up with the data from TeleAtlas and Multinet, the 

number of roads increased very quickly (Zielstra & Zipf, 2010). City centers received 

more contributions than rural areas, and spatial heterogeneity was observed in terms of 

completeness (Zielstra & Zipf, 2010). Ludwig, Voss, and Krause-traudes (2011) further 

examined the positional accuracy and attribute accuracy of streets in Germany using 

Navteq data. Similar to what Zielstra and Zipf discovered in 2010, populated regions had 
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better attribute accuracy and completess than uninhabited regions (Ludwig et al., 2011). 

Overall, 73% of the OSM streets in Germany were within a 5 m buffer of Navteq streets 

in 2009, with 21% in a 5 to 10 m buffer and 6% from 10 to 30 m away (Ludwig et al., 

2011). Neis, Zielstra, and Zipf (2011) examined logical consistency and temporal quality 

of OSM streets in Germany in addition to completeness. Both Ludwig, Voss, and Krause-

traudes (2011) and Neis, Zielstra, and Zipf (2011) found that walkways were much more 

comprehensive than motorways. In rural Germany, OSM could produce better routes of 

pedestrian navigation than TomTom, while TomTom generally outperformed OSM in car 

navigation because of reasons such as the lack of turn restrictions in OSM (Neis et al., 

2011). One positive finding was that the topological and completeness errors decreased 

over the years from 2007 to 2011 (Neis et al., 2011). Pourabdollah et al. (2013) studied 

the attribute accuracy of OSM streets in the United Kingdom using VectorMap District 

(VMD) data from Ordnance Survey as a reference, and found the difference in urban and 

rural quality in the U.K. was more complex than previously identified in Germany. Dense 

areas had the best attribute accuracy, and the middle to large sized cities had the worst 

quality, leaving less populated areas in the middle (Pourabdollah et al., 2013).  

Few studies have focused on North America, primarily because of the less 

comprehensive data compared to European countries in the first number of years of the 

OSM project. Contributors tried to improve the regional maps through importing data 

from available authoritative data sources. Zielstra, Hochmair, and Neis (2013) compared 

the OSM streets in the United States between 2006 and 2012 to TIGER/Line data from 

the U.S. Census Bureau, which was fully imported to OSM in 2007 and 2008. Although 

the import action dramatically increased the completeness of street networks in OSM, 

especially in sparsely populated areas, the import often resulted in systematic errors in the 

project and a decreased number of activities in the local mapping community (Gröchenig 

et al., 2014a; OpenStreetMap, 2017a; Zielstra et al., 2013). For example, as pointed out 

by Girres and Touya (2010), OSM does not share the same road classification system 

with other databases such as TIGER/Line, which led to either incorrectly classified or 

unclassified roads in the U.S. Previously linked walkways and motorways may have been 

disconnected due to the import as well (Zielstra et al., 2013). Therefore, OSM quality is 

generally difficult to evaluate and predict because of data import (Zielstra et al., 2013). In 
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Canada, Tenney (2014) performed an OSM street quality analysis without providing 

detailed results. Similar to the U.S., attention should be paid in Canada to the impacts of 

data import (OpenStreetMap, 2015a) and associated systematic error propagation 

(Tenney, 2014).  

Intrinsic quality assessment was explored in the following studies. Haklay et al. 

(2010) examined the validity of Linus’ Law (see Section 2.2.1) on the positional accuracy 

of OSM streets in London, England in 2007. Although the relationship was not linear, 

Haklay et al. (2010) found some evidence to support the hypothesis that more 

contributors led to higher positional accuracy. Keßler, Theodore, and Groot (2013) used a 

field survey of attribute accuracy, logical consistency and completeness in Münster, 

Germany in 2011 to evaluate trust as proxies for OSM quality. Five trust-related 

parameters, containing versions, (number of) users, confirmations (revisions made in the 

neighbourhood of a feature after the last modification of a feature), tag corrections, and 

rollbacks (of tags), were derived from the OSM full history dump15 (Keßler et al., 2013). 

A moderate positive correlation was found between trust-related parameters and data 

quality (Keßler et al., 2013). Barron, Neis, and Zipf (2014) proposed a comprehensive 

framework of fitness for purpose for OSM quality assessment. Six subareas of OSM 

applications were identified, including general information on the study area, routing and 

navigation, geocoding, points of interest search, map applications, and user information 

and behaviour (Barron et al., 2014). Jokar Arsanjani and Bakillah (2015) applied a 

logistic regression model to explore the potential impacts of socio-economic variables on 

OSM contributions in Baden-Württemberg state, Germany in 2013. Variables such as 

high population density and high income were identified to be related to higher OSM 

contributions (Jokar Arsanjani & Bakillah, 2015). However, using both spatial and non-

spatial techniques, Mullen et al. (2015) failed to verify the assumption that certain 

demographic properties are associated with positional accuracy and completeness of 

OSM schools in Denver, U.S. in 2011.   

                                                 

15
 https://planet.openstreetmap.org/planet/full-history/  

https://planet.openstreetmap.org/planet/full-history/
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The main objective of this study is to assess the extrinsic quality of OSM street 

networks in Canada and evaluate the feasibility of intrinsic quality assessment using 

OSM metadata. Completeness, positional accuracy, attribute accuracy and semantic 

accuracy were chosen as the quality measures. It is presumed that there is a relationship 

between selected quality measures and quality indicators, namely version, source and last 

modified date. Statistical analysis was implemented to check the existence of any 

associated relations and/or patterns.  

3.2 Data and methods  

This research focuses on the quality of OSM in Canada. To the best of the authors’ 

knowledge, previous studies have not covered the Canadian OSM quality in detail. Two 

databases were compared to evaluate the extrinsic OSM quality. The reference data were 

the DMTI road networks published on Sept. 1, 2015, of which the positional accuracy is 

less than or equal to 30 m (DMTI Spatial Inc., 2015). The OSM data were extracted from 

the full history dump and then processed using open-sourced packages on a Linux server 

(see Figure 9). Using the Osmium Tool, time filter was first applied to retrieve the global 

OSM data on the last modified date of the reference data. The Canadian data were then 

clipped using the OSM History Splitter. Finally, street networks in Canada were loaded 

from PBF to the PostgreSQL database combining exports from Imposm 3 and Osmosis.  
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Figure 9. OSM data extraction 

Quality measures were analyzed by the following methods (see Figure 10). 

Attribute and geometric feature matching was implemented first based on Section 2.4.1. 

Completeness was evaluated by total road length and road density. This unit-based 

approach was widely used in previous studies (e.g., Haklay 2010; Girres and Touya 2010; 

Zielstra and Zipf 2010). Buffer analysis was employed to measure the positional accuracy 

(Goodchild & Hunter, 1997). Buffers of widths from 5 to 30 m, with a 5-m interval, were 

generated around the reference street networks, and the percentages of OSM roads that 

fell within the buffers were computed. In terms of attribute accuracy, tag presence 

reflects the completeness of road attributes through summarizing the number of non-

empty OSM tags, and Levenshtein distance (Levenshtein, 1966) represents the steps 

required to transform one string to another. All OSM street name components (prefix and 

suffix directions and street types) except core street names were cleaned, capitalized, and 

transformed to abbreviated forms (e.g., BLVD for Boulevard) to match the format in 

DMTI. The absolute differences of numeric attributes, such as road classification, were 

calculated to check semantic accuracy (Girres & Touya, 2010). Provenance attributes, 

including version and last modified date, were collected for the statistical analysis as the 

next step. Source information was filtered individually to figure out the impacts of data 

import on Canadian OSM quality.  
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Both spatial and non-spatial techniques were applied to explore the potential 

relationship between OSM accuracy and provenance. With regards to the non-spatial 

approaches, scatter plots were first created for exploratory analysis. An ordinary least 

squares (OLS) linear regression model (Burt, Barber, & Rigby, 2009) was later applied to 

search the possible global correlation between quality measures and indicators. In terms 

of the spatial techniques, Moran’s I (Moran, 1950) and Local Indicators of Spatial 

Associations (LISA) (Anselin, 1995) were applied to examine statistical significance of 

spatial patterns. Geographically weighted regression (GWR) (Fotheringham, Brunsdon, 

& Charlton, 2003) was lastly utilized as a local regression model to extend the results of 

the conventional OLS-based approach.  

 

Figure 10. Methods of the national study  

3.3 Results and discussion  

3.3.1 Canadian OSM quality   

3.3.1.1 Completeness  

Figure 11 illustrates the total road length differences between the source and reference 

datasets. A positive number means DMTI has a longer road length, and a negative 

number represents OSM has better completeness. Results are aggregated based on 

DMTI’s road classification (Table 9). Only motorways are included because the number 

of trails in OSM is much more than that in DMTI. This situation was also identified in the 

U.S. (Zielstra & Hochmair, 2012) and Germany (Neis et al., 2011). A significantly higher 
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number of total road lengths in DMTI can be observed, which is consistent with previous 

findings in Germany (Neis et al., 2011; Zielstra & Zipf, 2010) and the U.S. (Zielstra et 

al., 2013). However, H. Zhang and Malczewski (2017) found that in London, Ontario, 

OSM had a longer total road length, which indicates the spatial heterogeneity of OSM 

quality in Canada. In the same study, the unclassified OSM roads were discovered to be 

mainly local roads through manual examination (H. Zhang & Malczewski, 2017), which 

may be the case nationally as well.  

 

Figure 11. Classified national road length differences 

Using a cell size of 250 m, Figure 12 shows the spatial distribution of the 

differences in road density. The top and bottom 0.5% of the data have been removed to 

reduce the effects of outliers. Here, green pixels represent a higher road density of DMTI; 

pink pixels represent a higher road density of OSM; and yellow pixels represent no 

difference. The maximum absolute value of green pixels (4.12) is significantly larger than 

that of pink pixels (0.52), indicating that the overall road density of DMTI is higher than 

that of OSM. In many cases, urban regions such as the Great Toronto Area (GTA), 

Ottawa and Quebec City have higher road densities in OSM, while remote regions such 

as the northern territories have higher road densities in DMTI. This pattern is similar to 
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the OSM street networks of Germany in 2009, where completeness ranged from 97% in 

densely populated zones to 18% in uninhabited areas (Ludwig et al., 2011). 

Saskatchewan has an “anomalous” spatial pattern where OSM generally outperforms 

DMTI in road density. One potential explanation is the more up-to-date roads in 

Saskatchewan – in fact, 81% of streets in the province have been created between 2012 

and 2013, whereas in Alberta, 85% of streets have been added to the database by 2009 

(Gröchenig et al., 2014a).  

 

Figure 12. National differences of road density 

3.3.1.2 Positional accuracy  

Figure 13 shows the results of the buffer analysis. Approximately 60% of roads of DMTI 

have a 25-m or better positional accuracy, while the rest have a guarantee of 25 to 30-m 

accuracy. Overall, 91.5% of roads of OSM fall within the 30-m buffer, in which 77.5% 

are within 5 m, 8.3% between 5 and 10 m, and 5.7% between 10 and 30 m away from the 
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reference dataset. Compared to Germany in 2009, the Canadian OSM streets have a 4.5% 

increase in positional accuracy within the 5-m buffer, but a 8.5% decrease in total – all 

German OSM streets were within the 30-m buffer of Navteq data (Ludwig et al., 2011). 

In terms of road classification, primary and secondary highways have relatively low 

positional accuracy, whereas local roads are the most accurate ones. This phenomenon 

can probably be explained by Linus’ Law, which was found to generally apply to 

positional accuracy in London, England (Haklay et al., 2010).  

 

Figure 13. National results of the buffer analysis 

3.3.1.3 Attribute accuracy  

Figure 14 shows the tag presence rates of Canadian OSM street names, which have been 

divided into five components to match the attributes in DMTI. For the most part, French 

road names have prefix street types, and English road names have suffix street types. In 

comparison to London, Ontario (H. Zhang & Malczewski, 2017), the national tag 

presence rates dropped from mostly 90% and above to a minimum of 52%, which once 

again indicates the spatial heterogeneity of the Canadian OSM quality. Suffix directions 

have close tag presence rates both locally and nationally. This may suggest OSM 

contributors either do not know or do not care about most of the suffix directions of 
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Canadian streets. Core street names and suffix street types have the highest presence 

rates, which is understandable since a common street name consists of the two 

components. Like the results in Section 3.1.2 and the French study by Girres and Touya 

(2010), Linus’ Law plays a role in attribute accuracy as well. Primary and secondary 

highways usually have lower tag presence rates, while major and local roads have higher 

percentages of presence, except for core street names which are potentially influenced by 

the data import from GeoBase. Neis, Zielstra, and Zipf (2011) discovered that 

unclassified roads had the highest ratio (61%) of missing names or route numbers in 

Germany in 2011, which is not the case in Canada. Overall, the tag presence rates of 

Canadian OSM street names are comparable with those in Germany (82.5% to 94.4%) in 

2009 (Ludwig et al., 2011).  

Figure 15 shows the Levenshtein distance of the Canadian OSM street names. 

Prefix and suffix directions, with a maximum text length of 1, have almost perfect 

spelling accuracy. The percentages of completely matched prefix and suffix street types 

and core street names are about 87%, 71% and 57% respectively. A Levenshtein distance 

from 1 to 3 usually represents a typo (Girres & Touya, 2010). Some extreme Levenshtein 

distance with a maximum value of 79 were identified in core street names; however, this 

component also has the largest maximum text length. The average Levenshtein distance 

of core street names is 3.09, which is higher than that of core street names (0.80) in 

London, Ontario (H. Zhang & Malczewski, 2017).  
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Figure 14. National tag presence rates of street names 

 

Figure 15. National levenshtein distances of street names 

3.3.1.4 Semantic accuracy  

Table 13 shows the absolute number differences of numeric attributes between OSM and 

DMTI street segments. A difference of 5 in rank is due to the unclassified roads in OSM; 
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other than this, the major difference is 1, which is understandable because of the 

incompatible classification schema (Girres & Touya, 2010) and classification ambiguity 

and conceptual plausibility (Ali et al., 2014). Another possibility behind the 

misclassification is the import from GeoBase, which was the case with the TIGER/Line 

import in the U.S. (Zielstra et al., 2013). The completeness of number of lanes in OSM is 

significantly higher than that in DMTI, which resulted in the low 40% matched rate. 

Because of the same reason, the semantic accuracy of presented number of lanes in OSM 

cannot be fully evaluated; the results only indicate that two is the most common number 

of lanes. In contrast, tunnel, bridge and oneway flags have nearly perfect accuracy. It is 

worth noting that the total number of positive flags (value equals to 1) in both datasets is 

very small, which leads to this high accuracy.  

Table 13. Number differences in Canada  

Differences Percentages Differences Percentages 

Rank Tunnel  

0 59.1% 0 100.0% 

1 12.3% 1 0.0% 

2 1.5% Bridge  

3 0.4% 0 99.2% 

4 0.1% 1 0.8% 

5 26.6% - - 

Number of Lanes Oneway 

0 39.5% 0 99.2% 

1 3.0% 1 0.8% 

2 56.9% 2 0.0% 

3 to 9 0.7% - - 

3.3.1.5 Lineage  

Figure 16 presents the percentage differences of selected quality metrics between 

GeoBase-sourced road segments (approximately 77% of the total) and the entire OSM 

dataset, which shows the impacts of data import on attribute and semantic accuracy. 

Completeness and positional accuracy were not included because of their aggregated 

results. Most quality measures have slightly improved accuracy percentage-wise, which 

is probably due to the removal of outliers from vandalism. Four quality measures have 

decreased accuracy, and require further exploration for logical explanations.  
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Figure 16. Percentage differences between GeoBase-sourced road segments and the 

entire dataset 

3.3.2 Statistical analysis   

3.3.2.1 Non-spatial analysis  

After removing the outliers using box plots, scatter plots were created as the first step of 

the non-spatial analysis (see Figure 17). Results of quality measures and indicators were 

weighted by road length and aggregated at dissemination areas, which are the smallest 

standard geographic unit in Canada (Statistics Canada, 2015). In terms of the dependent 

variables, version represents the average number of times the road segments have been 

edited, and days represent the average number of days between the last edited date and 

Sep. 1, 2015. The explanatory variables include one result from each of the four quality 

measures: completeness, positional accuracy, attribute accuracy and semantic accuracy. 

The smaller the explanatory variables, the better the OSM quality. Thus, it is 

hypothesized that the OSM accuracy is negatively correlated with version and positively 

correlated with days. However, neither clear nor consistent relations were identified as 

most scatters are randomly distributed.  
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Figure 17. Scatter plot matrix 

 Multiple linear regression was applied to examine if two explanatory variables 

can explain the OSM extrinsic quality better than one. Table 14 shows the largest 

multiple R-squared value is 0.099, which means only approximately 10% of variability in 

semantic accuracy was explained by version and days. All but attribute accuracy have 

statistically significant p-values, but a very large number of observations with a p-value 

of 0.000 may not have any practical significance (M. Lin, Lucas Jr, & Shmueli, 2013). 

Therefore, multiple linear regression also has inconclusive results.  

Table 14. Linear regression statistics 

Quality 

Measures 

Completeness  Positional 

accuracy  

Attribute 

accuracy  

Semantic 

accuracy  

Sample Size  36707 39449 45611 47352 

Multiple R-

Squared 

0.027 0.002 0.000 0.099 

Prob (F-statistic)  0.000 0.000 0.344 0.000 
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3.3.2.2 Spatial analysis  

Tables 15, 16 and 17 summarize the results of Moran’s I, LISA and GWR respectively. 

Although all global spatial autocorrelation statistics are statistically significant, the R-

squared values are extremely low, meaning that only a very small amount of extrinsic 

OSM quality (5.3% maximum) can be explained by the model. Like the multiple linear 

regression models, cautions are needed to interpret statistically significant p-values of 

large sample size. The Moran’s I values indicate weak positive or negative spatial 

autocorrelation, which is inconsistent with the hypothesis in Section 3.3.2.1. LISA 

statistics are not representative as well – the majority of the tested dissemination areas 

have statistically insignificant results. No consistent regional patterns were identified. 

The same applies to GWR, where the majority of the local R-squared values are clustered 

below 0.5. High R-squared values were spotted in the models of attribute accuracy and 

semantic accuracy, but the results spatially contradict each other.  

In summary, both analyses did not prove the assumption that there is a 

relationship between quality measures and indicators, and the spatial analysis did not 

identify any consistent local impacts on the global results. This finding differs from the 

work of Keßler, Theodore, and Groot (2013). However, Mullen et al. (2015) could not 

find statistically significant relationships between OSM quality and demographic 

variables as well, and one of their explanations is that contributions from remote mappers 

without local knowledge substantially increased the complexity of OSM quality. In the 

case of Canada, data import can potentially be a more essential factor since bots are able 

to create various types of systematic errors, which can be difficult when tracking and 

understanding from the perspective of human behaviors.  

Table 15. Moran’s I statistics 

Indicators Version Days 

Measures C PA AA SA C PA AA SA 

Sample Size  39298 42180 48073 49637 41507 44482 49934 51074 

R-Squared 0.053 0.012 0.010 0.021 0.001 0.002 0.000 0.008 

Moran’s I  -0.129 -0.051 -0.052 0.113 0.014 -0.018 -0.010 0.070 

Prob (b) 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 
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Table 16. LISA statistics 

Indicators Version Days 

Measures C PA AA SA C PA AA SA 

Insignificant  81.5% 86.6% 64.9% 55.1% 81.0% 86.9% 64.3% 56.0% 

High-High 1.8% 1.9% 3.5% 9.5% 4.3% 3.3% 5.7% 9.5% 

Low-Low 4.3% 3.3% 13.5% 17.5% 5.8% 2.9% 12.4% 14.8% 

Low-High 6.8% 5.5% 8.8% 9.4% 4.3% 3.9% 6.9% 9.0% 

High-Low 5.6% 2.7% 9.3% 8.4% 4.6% 3.0% 10.7% 10.8% 

Table 17. Local R-Squared statistics of GWR 

Measures C PA AA SA 

Minimum 0.000 0.000 0.000 0.000 

Maximum 0.549 0.182 0.920 0.985 

Mean 0.041 0.012 0.148 0.289 

Standard Deviation  0.045 0.014 0.141 0.200 

3.4 Summary and outlook  

This study evaluated the extrinsic quality of the Canadian OSM street networks in terms 

of completeness, positional accuracy, attribute accuracy and semantic accuracy. The 

overall OSM quality in Canada is comparable with DMTI, although spatial heterogeneity 

is a common theme across all quality measures. Urban areas received more contributions 

than rural areas, and footways were favored over motorways by contributors in general. 

The extrinsic quality results were then analyzed with intrinsic quality indicators to 

explore the possibility of using trust as proxies for OSM quality assessment at a small 

scale, but failed to identify any statistically significant relationships between tested 

variables. As an exception, GeoBase-sourced road segments have lightly and commonly 

improved quality. For future work, other features, such as buildings and points of interest, 

can be evaluated. Measures such as temporal quality and logical consistency can be 

examined in addition. Lastly, non-linear models can be tested in non-spatial and spatial 

analyses.  

While this study does not support users in determining the OSM quality in 

Canada using its editing history, the validity of intrinsic quality indicators should 

continue being explored. Results of this study also have some implications on OSM 

quality improvement in the future. For instance, do the activities of remote mappers 

decrease the overall quality of the project? Is local knowledge necessary to create 
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accurate maps? How can the uniformity of OSM quality be increased? Are strict 

specifications better or worse for the project, and should contributors have their current 

degree of freedom? While data import boosts up the number of map features dramatically 

in a short period, does this action impair the motivations of OSM contributors and the 

sustainability of the project in the long term? These questions are worth discussing and 

can potentially contribute to quality improvements in VGI. 



50 

 

Chapter 4 

4 Conclusions 

4.1 Revisiting study objectives  

There were four objectives of this research: (1) to examine the reliability of the Canadian 

OSM data in two different scales, (2) to compare the quality of the Canadian OSM road 

networks with the quality in other locations, (3) to validate new approaches of intrinsic 

quality evaluation in VGI, and (4) to establish implications of quality control for future 

VGI project development. The objectives were reflected in this thesis. Chapters 2 and 3 

provided analyses on the quality of the Canadian OSM data in different scales, and the 

national and metropolitan results were compared in Chapter 3. Both Chapter 2 and 3 

offered discussions of the differences and similarities between the OSM quality in 

Canada and other regions. Intrinsic quality indicators, such as provenance metadata, were 

examined with extrinsic quality measures in Chapter 3. The concluding chapter provided 

implications for VGI quality improvement.  

4.2 Summary of findings  

This thesis uses a municipal and a national study to examine the quality of OSM road 

networks. Generally, the OSM quality is closely ranked with DMTI road lines, and the 

reliability of OSM editing history as a source of data trust cannot be statistically verified. 

Comparing the two studies, the national OSM quality is not as good as that in London, 

Ontario, and spatial heterogeneity is commonly applicable in terms of analyzed quality 

measures. The main reason behind this conclusion is the participation inequality. 

Although densely populated areas sometimes have an equal or better quality than DMTI, 

remote areas can have much worse data quality than the reference dataset. Additionally, 

issues may be caused by data import and “armchair mapping”. Hence, it is very difficult 

to generalize the OSM quality, and a fitness-of-use quality assessment is essential if OSM 

is to be considered for application to a project with higher than usual demands for map 

accuracy.  
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4.3 Limitations  

There are some limitations to this study. The main issue is that the assessment results 

may not be applicable in all cartographic product selection processes. In terms of map 

features, motorways were the focus of this study due to the lack of reference dataset for 

footways. Other features in the form of nodes (e.g., schools), ways (e.g., buildings) and 

relations (e.g., bus routes) were not evaluated as well. With regard to quality measures, 

some criteria, such as logical consistency and temporal quality, were not tested, and some 

criteria can be further assessed. For example, semantic accuracy is actually very complex 

because of the classification ambiguity and conceptual plausibility, so number difference 

is only a starting point. Individuals have various “senses of place” and may have quite 

different definitions of road classification or boundaries of urban centers. Regarding the 

methodology, the details of feature matching were not covered since the study 

implemented the black-box algorithms in ArcGIS. Matching errors were unavoidable 

because of the impossibility of manual matching accuracy validation at the national level. 

Other extrinsic methods in Tables 5, 6 and 7 can be tested and compared, and the 

reliability of intrinsic quality indicators can be further explored in non-linear models. The 

intrinsic indicators are especially important in places where a reference is unavailable, 

and even with an accessible reference, it is not 100% accurate (e.g., the 30-m positional 

accuracy in DMTI).  

4.4 Contributions  

This study is the first attempt to examine both extrinsic and intrinsic quality evaluation of 

OSM at the Canadian national level. Feasible methods are identified and implemented for 

future VGI quality assessment as well as geocomputation using big data. Results of this 

research can be compared with studies in previous years and/or various locations to 

understand the development of OSM quality over time and the heterogeneity across 

space. Contributors can learn from the Canadian example and improve OSM quality in 

the future. Governments, enterprises and other organizations can also use the presented 

results for decision-making in cartographic product selection. Broadly speaking, this 

thesis provides deeper insights into the accuracy and uncertainty of VGI and GIS.   
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4.5 Future research directions  

Table 18 summarizes the ex ante and ex post approaches of VGI quality improvement 

(adapted from Bordogna et al., 2016). The ex ante strategies are designed before VGI 

contributions to reduce errors. For example, Kort is a gamified mobile web application 

for fixing erroneous OSM data. Players can collect points (also known as Koins) after 

completing tasks such as finding a speed limit of a road segment and filling in the 

missing names of points of interest (OpenStreetMap, 2017c). Huang, Kanhere, & Hu 

(2010) proposed a reputation system for trustworthiness evaluation of VGI. Using the 

RFSN framework (Ganeriwal, Balzano, & Srivastava, 2008), a watchdog module was 

first created to detect outliers. Node ratings generated from the watchdog module were 

then imported into a reputation module to calculate node quality in a time series. In 

Wikimapia, third party validation has already been implemented, where users can vote 

for other users as positive feedback for their contributions to the project (Flanagin & 

Metzger, 2008). Vandecasteele & Devillers (2015) designed a recommender system for 

OSM with two major functions. Similar tags are suggested for contributors based on 

existing tags, and a notification is sent to map editors if the similarity between existing 

tags is too low. To solve data import issues, Zielstra et al. (2013) recommended vector 

map tracing instead of bot mapping. However, contributors may lose interest because the 

excitement of content creation is taken away in this case. For future research, systems in 

the examples should be enhanced, and new tools should be developed to prevent errors 

before volunteered information contribution. Fitness-of-use specifications are especially 

important as the demands of map accuracy vary greatly from one project to another.  
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Table 18. Strategies of VGI quality improvement 

E
x
 a

n
te

 s
tr

a
te

g
ie

s 

• Training; checklists; gamification (Neis & Zielstra, 2014)  

• External knowledge  

• Automatic error checking  

• Usage of sensors  

• Volunteer reputation and motivation (Flanagin & Metzger, 2008; Huang, 

Kanhere, & Hu, 2010) 

• Explicit specifications featuring fitness-of-use (Devillers & Jeansoulin, 

2006; Girres & Touya, 2010; Senaratne et al., 2016) 

• Third party validation (Bishr & Kuhn, 2007; Fogg & Tseng, 1999; 

Spielman, 2014) 

• Recommender system (Kalantari, Rajabifard, Olfat, & Williamson, 2014; 

Vandecasteele & Devillers, 2015) 

• Vector map tracing (Zielstra et al., 2013) 

• Collaboration events (e.g., mapping parties)   

E
x
 p

o
st

 s
tr

a
te

g
ie
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• Ranking volunteers’ contributions  

• Data mining (Basiri et al., 2016; Coleman, 2010; Neis, Goetz, & Zipf, 

2012) 

• Fusion of redundant information  

• Enrichment (geocontext; trusted sources)  

• External knowledge  

• Linked data infrastructure (Idris, Jackson, & Ishak, 2014) 

• Provenance visualization (Flanagin & Metzger, 2008) 

The ex post strategies are methods of error reduction after the collection of VGI. 

For instance, Neis, Goetz, & Zipf (2012) developed a vandalism detection system for 

OSM and found that at least one (intentional or unintentional) vandalism activity was 

identified each day within a 7-day period. Idris, Jackson, & Ishak (2014) suggested 

allowing users to make their own decisions on the correctness of VGI based on linked 

data and information on the World Wide Web. Flanagin & Metzger (2008) mentioned the 

Wiki Dashboard for Wikipedia, and a similar tool can be developed to reveal historical 

editing patterns implicating VGI credibility. For future research, data mining and 

machine learning are the forefront techniques that should be applied to error reduction in 

VGI.  

The pressing concerns about OSM are retaining long-term contributors, 

cultivating more serious mappers, and determining the necessity of local knowledge in 

volunteered mapping. It is easy to start a project, but it is hard to maintain it. Although 

the number of registered users on OSM continues to grow linearly, many contributors 
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abandon the project within a short period of time, and the number of serious mappers 

remains low (Neis & Zipf, 2012). For future research, both qualitative and quantitative 

approaches should be implemented in the demographic analysis of serious OSM mappers. 

Motivations of long-term and active contributors need to be determined, so OSM can be 

better designed to attract new members and retain existing users.  
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Appendices  

Appendix A: Summary of recent literatures on quality analysis of OSM 

Studies Time Study Areas 
Reference Data 

Sources 

Data Types Quality Criteria or Methodology  

POI Line Poly C PA AA LC SA TQ L 

Amelunxen (2010) N/A 

North Rhine-

Westfalia, 

Germany 

Geocoding service 

by Google 
x    x      

Cipełuch, Jacob, 

Mooney, & 

Winstanley (2010) 

2010 Ireland  
Google Maps and 

Bing Maps  
 x  x  x x    

Girres & Touya (2010) 2009 France BD TOPO x x x x x x x x x x 

Haklay (2010) 2007 England, UK OS Meridian 2  x  x x      

Haklay, Basiouka, 

Antoniou, & Ather 

(2010) 

2007 
London and 

England, UK 
OS Meridian 2  x  

Relationship between average positional 

error and number of contributors 

Mooney, Corcoran, & 

Winstanley (2010) 
2010 

European 

regions 
N/A   x x   x x    

Zielstra & Zipf (2010) 2009 Germany^ Tele Atlas  x  x     x  

Antoniou (2011) 2009 England, UK OS Meridian 2  x   x  x    

Ludwig, Voss, & 

Krause-traudes (2011) 
2009 Germany^ Navteq  x  x x x     

Mondzech & Sester 

(2011) 
N/A Germany ATKIS  x  

Accessibility and length of simulated 

routes 

Neis, Zielstra, & Zipf 

(2011) 

2007 to 

2011 
Germany^ TomTom  x  x   x  x  

Hayakawa, Imi, & Ito 

(2012) 
2012 

Japan and 

other regions  
N/A  x x x x       

Helbich, Amelunxen, 

& Neis (2012) 
N/A Germany Tele Atlas  x   x      
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Studies Time Study Areas 
Reference Data 

Sources 

Data Types Quality Criteria or Methodology  

POI Line Poly C PA AA LC SA TQ L 

Koukoletsos, Haklay, 

& Ellul (2012) 
N/A 

London and 

Newcastle, 

UK 

OS ITN layer of 

MasterMap 
 x  x       

Mooney & Corcoran  

(2012a) 
2011 

UK and 

Ireland 

N/A 

(User behavior) 
 x  

Correlation between numbers of 

contributors and numbers of tags 

Mooney & Corcoran 

(2012b) 
2011 

UK, Ireland, 

Germany and 

Austria 

N/A  x x   x     

Siebritz et al. (2012) 
2006 to 

2011 
South Africa  NMA x x       x  

Canavosio-Zuzelski, 

Agouris, & Doucette 

(2013) 

2011 
Purdue 

University, US 

USGS National Map 

and TIGER/Line 
 x   x      

Corcoran, Mooney, & 

Bertolotto (2013) 

2007 to 

2011 
Ireland N/A  x       x  

Estima & Painho 

(2013, 2015) 
2013 Portugal^ CLC x     x     

Hecht, Kunze, & 

Hahmann (2013) 

2011, 

2012 
Germany 

Official building 

polygon dataset and 

ATKIS 

  x x     x  

Hochmair & Zielstra  

(2013) 
2012 Florida, US 

TomTom, 

NAVTEQ, ESRI and 

TIGER/Line  

x   x     x  

Jackson et al. (2013) 2011 Denver, US ORNL x   x x      

Jokar Arsanjani, 

Barron, Bakillah, & 

Helbich (2013) 

2012 
Heidelberg, 

Germany 
BKG  x  x x   x   

Jokar Arsanjani, 

Helbich, Bakillah, 

Hagenauer, & Zipf 

(2013) 

2012 
Vienna, 

Austria 
GMESUA   x   x     
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Studies Time Study Areas 
Reference Data 

Sources 

Data Types Quality Criteria or Methodology  

POI Line Poly C PA AA LC SA TQ L 

Keßler, Theodore, & 

Groot (2013) 
2011 

Münster, 

Germany 

N/A (Data trust and 

vandalism)  
x x x 

Trustworthiness (e.g., versions, users, 

confirmations and tag corrections) 

Pourabdollah, Morley, 

Feldman, & Jackson 

(2013) 

N/A UK^ OS VMD  x    x     

Touya & Brando-

Escobar (2013) 
N/A France N/A x x x Level of Details 

Wang, Li, Hu, & Zhou 

(2013) 
N/A Wuhan, China NavInfo  x  x x x     

Zielstra, Hochmair, & 

Neis (2013) 

2006 to 

2012 
US^ TIGER/Line  x  x       

Barron, Neis, & Zipf 

(2014) 

2007 to 

2013 

US, Spain, 

Cameroon 
N/A (Framework) x x x x x x x  x  

Fan, Zipf, Fu, & Neis 

(2014) 
2013 

Munich, 

Germany 
ATKIS   x x x  x x   

Forghani & Delavar 

(2014) 
N/A Tehran, Iran  

Municipality of 

Tehran  
 x  x x  x    

Jilani et al. (2014) N/A 

London and 

East Essex, 

UK 

N/A   x    x  x   

Jokar Arsanjani & 

Bakillah (2014) 
2013 

Baden-

Württemberg, 

Germany 

N/A  

(User behavior) 
x x x 

Logistic regression relationship between 

highly contributed areas and socio-

economic variables 

Quattrone, Mashhadi, 

Quercia, Smith-

Clarke, & Capra 

(2014) 

2007 to 

2012 
London, UK N/A x        x  

Tenney (2014) N/A Canada^ NRN (2011)  x  x x x     

Zhou, Huang, & Jang 

(2014) 
N/A China National basic data  x  x x x x    
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Studies Time Study Areas 
Reference Data 

Sources 

Data Types Quality Criteria or Methodology  

POI Line Poly C PA AA LC SA TQ L 

Ballatore et al. (2015) 2015 
Germany and 

UK 
N/A (Framework)   x  

Conceptual quality: accuracy, granularity, 

completeness, consistency, compliance 

and richness  

Camboim, Meza 

Bravo, & Sluter (2015) 
2015 Brazil  IBGE  x x x  x   x  

Dorn, Törnros, & Zipf  

(2015) 
2014 

Rhine-

Neckar, 
Germany  

ATKIS   x x  x     

Eckle & De 

Albuquerque (2015) 
N/A Germany  

Map from expert 

mapper  
  x x x      

Hashemi & Ali 

Abbaspour (2015) 
2014 

Wörrstadt, 

Germany 
N/A (Framework)  x x x    x    

Hochmair, Zielstra, & 

Neis (2015) 
2013 

Portland and 

Miami, US 

Buehler & Pucher 

(2012) 
 x  x       

Jokar Arsanjani, 

Helbich, Bakillah, & 

Loos (2015) 

2007 to 

2012 

Heidelberg, 

Germany  
N/A  x x x      x  

Jokar Arsanjani, 

Mooney, Zipf, & 

Schauss (2015) 

2013 Germany GMESUA   x x  x     

Jokar Arsanjani & Vaz 

(2015) 
2013 

European 

cities 
GMESUA   x x  x     

Kalantari & La (2015) 2013 
Victoria, 

Australia  

Victorian 

governmental data 
  x x x x x    

Mashhadi, Quattrone, 

& Capra (2015) 

2007 to 

2012 
London, UK Navteq and Yelp x   x     x  

Meier (2015) N/A 
Waterloo, 

Canada 
NRN  x  x x      

Mohammadi & Malek 

(2015) 
2012 Tehran, Iran  N/A x x x  x      
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Studies Time Study Areas 
Reference Data 

Sources 

Data Types Quality Criteria or Methodology  

POI Line Poly C PA AA LC SA TQ L 

Mullen et al. (2015) 2011 Denver, US ORNL x   

Non-spatial and spatial regression 

relationships between demographic 

characteristics and C and PA of OSM 

Parr (2015) 
2006 to 

2013 
US^ 

US census and 

governmental data 
x x x The Activity-Context-Geography Model 

Sehra, Singh, & Rai 

(2015) 
N/A India 

Ground data by 

smartphone 
 x  x x x     

Vaz & Jokar Arsanjani 

(2015) 
2013 

Toronto, 

Canada  
DMTI Spatial Inc.    x   x     

El-Ashmawy (2016) N/A Saudi Arabia 
Self-collected 

surveying data  
x x x  x      

Yang, Fan, & Jing 

(2016) 

2010 to 

2014 

Germany, 

France and 

UK 

N/A (User behavior)  x x x 

Use practice, skill and motivation as 

themes to identify the contributors’ level 

of expertise  

Zhao, Zhou, Li, & 

Xing (2016) 

2006 to 

2014 

Berlin, 

Germany and 

Pakistan 

N/A (Data trust and 

vandalism) 
x x x 

Trustworthiness (e.g., contributor 

reputations)  

Note. ^: a national study  

 

74 



75 

 

Appendix References 

Amelunxen, C. (2010). On the suitability of Volunteered Geographic Information for the 

purpose of geocoding. GI_Forum, 1–8. 

Antoniou, V. (2011). User Generated Spatial Content: An Analysis of the Phenomenon 

and its Challenges for Mapping Agencies, 324. Retrieved from 

http://discovery.ucl.ac.uk/1318053/ 

Ballatore, A., & Zipf, A. (2015). A conceptual quality framework for volunteered 

geographic information. (S. Freundshuh, S. I. Fabrikant, C. Davies, S. Bell, M. 

Bertolotto, & M. Raubal, Eds.), 12th International Conference on Spatial 

Information Theory, COSIT 2015. Springer Verlag. https://doi.org/10.1007/978-3-

319-23374-1_5 

Barron, C., Neis, P., & Zipf, A. (2014). A Comprehensive Framework for Intrinsic 

OpenStreetMap Quality Analysis. Transactions in GIS, 18(6), 877–895. 

https://doi.org/10.1111/tgis.12073 

Buehler, R., & Pucher, J. (2012). Cycling to work in 90 large American cities: new 

evidence on the role of bike paths and lanes. Transportation, 39(2), 409–432. 

Camboim, S. P., Meza Bravo, J. V, & Sluter, C. R. (2015). An investigation into the 

completeness of, and the updates to, OpenStreetMap data in a heterogeneous area 

in Brazil. ISPRS International Journal of Geo-Information, 4(3), 1366–1388. 

https://doi.org/10.3390/ijgi4031366 

Canavosio-Zuzelski, R., Agouris, P., & Doucette, P. (2013). A Photogrammetric 

Approach for Assessing Positional Accuracy of OpenStreetMap© Roads. ISPRS 

International Journal of Geo-Information, 2(2), 276-301. 

Cipełuch, B., Jacob, R., Mooney, P., & Winstanley, A. C. (2010). Comparison of the 

accuracy of OpenStreetMap for Ireland with Google Maps and Bing Maps. In 

Proceedings of the Ninth International Symposium on Spatial Accuracy 

Assessment in Natural Resuorces and Enviromental Sciences 20-23rd July 2010 

(p. 337). University of Leicester. 



76 

 

Corcoran, P., Mooney, P., & Bertolotto, M. (2013). Analysing the growth of 

OpenStreetMap networks. Spatial Statistics, 3, 21–32. 

https://doi.org/10.1016/j.spasta.2013.01.002 

Dorn, H., Törnros, T., & Zipf, A. (2015). Quality evaluation of VGI using authoritative 

data-a comparison with land use data in southern Germany. ISPRS International 

Journal of Geo-Information, 4(3), 1657–1671. 

https://doi.org/10.3390/ijgi4031657 

Eckle, M., & De Albuquerque, J. P. (2015). Quality assessment of remote mapping in 

OpenStreetMap for disaster management purposes. In L. A. Palen, T. Comes, M. 

Buscher, A. L. Hughes, & L. A. Palen (Eds.), 12th International Conference on 

Information Systems for Crisis Response and Management, ISCRAM 2015. 

Information Systems for Crisis Response and Management, ISCRAM. Retrieved 

from https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84947764602&partnerID=40&md5=772a654ed328051eca2e2591b6430aa9 

El-Ashmawy, K. L. A. (2016). Testing the positional accuracy of OpenStreetMap data for 

mapping applications. Geodesy and Cartography, 42(1), 25–30. 

https://doi.org/10.3846/20296991.2016.1160493 

Estima, J., & Painho, M. (2013). Exploratory analysis of OpenStreetMap for land use 

classification. Geocrowd ’13, 39–46. https://doi.org/10.1145/2534732.2534734 

Estima, J., & Painho, M. (2015). Investigating the Potential of OpenStreetMap for Land 

Use/Land Cover Production: A Case Study for Continental Portugal. In J. Jokar 

Arsanjani, A. Zipf, P. Mooney, & M. Helbich (Eds.), OpenStreetMap in 

GIScience SE  - 14 (pp. 273–293). Springer International Publishing. 

https://doi.org/10.1007/978-3-319-14280-7_14 

Fan, H., Zipf, A., Fu, Q., & Neis, P. (2014). Quality assessment for building footprints 

data on OpenStreetMap. International Journal of Geographical Information 

Science, 28(4), 700-719. https://doi.org/10.1080/13658816.2013.867495 

Forghani, M., & Delavar, M. (2014). A Quality Study of the OpenStreetMap Dataset for 

Tehran. ISPRS International Journal of Geo-Information, 3(2), 750–763. 

https://doi.org/10.3390/ijgi3020750 



77 

 

Girres, J. F., & Touya, G. (2010). Quality Assessment of the French OpenStreetMap 

Dataset. Transactions in GIS, 14(4), 435–459. https://doi.org/10.1111/j.1467-

9671.2010.01203.x 

Haklay, M. (2010). How good is volunteered geographical information? A comparative 

study of OpenStreetMap and ordnance survey datasets. Environment and 

Planning B: Planning and Design, 37(4), 682–703. 

https://doi.org/10.1068/b35097 

Haklay, M., Basiouka, S., Antoniou, V., & Ather, A. (2010). How Many Volunteers Does 

it Take to Map an Area Well? The Validity of Linus’ Law to Volunteered 

Geographic Information. The Cartographic Journal, 47(4), 315–322. 

https://doi.org/10.1179/000870410X12911304958827 

Hashemi, P., & Ali Abbaspour, R. (2015). Assessment of Logical Consistency in 

OpenStreetMap Based on the Spatial Similarity Concept. In J. Jokar Arsanjani, A. 

Zipf, P. Mooney, & M. Helbich (Eds.), OpenStreetMap in GIScience SE  - 2 (pp. 

19–36). Springer International Publishing. https://doi.org/10.1007/978-3-319-

14280-7_2 

Hayakawa, T., Imi, Y., & Ito, T. (2012). Analysis of quality of data in OpenStreetMap. In 

2012 IEEE 14th International Conference on Commerce and Enterprise 

Computing, CEC 2012 (pp. 131–134). Hangzhou. 

https://doi.org/10.1109/CEC.2012.29 

Hecht, R., Kunze, C., & Hahmann, S. (2013). Measuring Completeness of Building 

Footprints in OpenStreetMap over Space and Time. ISPRS International Journal 

of Geo-Information, 2(4), 1066–1091. https://doi.org/10.3390/ijgi2041066 

Helbich, M., Amelunxen, C., & Neis, P. (2012). Comparative Spatial Analysis of 

Positional Accuracy of OpenStreetMap and Proprietary Geodata. Proceedings of 

GI_Forum 2012: Geovisualization, Society and Learning, 24–33. 

https://doi.org/10.1080/13658816 

Hochmair, H. H., & Zielstra, D. (2013). Development and Completeness of Points Of 

Interest in Free and Proprietary Data Sets: A Florida Case Study. GI_Forum 

2013: Creating the Gisociety, 39–48. https://doi.org/10.1553/giscience2013s39 



78 

 

Hochmair, H. H., Zielstra, D., & Neis, P. (2015). Assessing the Completeness of Bicycle 

Trail and Designated Lane Features in OpenStreetMap for the United States and 

Europe. Transactions in GIS, 19(1), 63–81. https://doi.org/10.1111/tgis.12081 

Jackson, S., Mullen, W., Agouris, P., Crooks, A., Croitoru, A., & Stefanidis, A. (2013). 

Assessing Completeness and Spatial Error of Features in Volunteered Geographic 

Information. ISPRS International Journal of Geo-Information, 2(2), 507–530. 

https://doi.org/10.3390/ijgi2020507 

Jilani, M., Corcoran, P., & Bertolotto, M. (2014). Automated highway tag assessment of 

openstreetmap road networks. In M. Schneider, M. Gertz, Y. Huang, J. 

Sankaranarayanan, & J. Krumm (Eds.), 22nd ACM SIGSPATIAL International 

Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL 

GIS 2014 (pp. 449–452). ACM. https://doi.org/10.1145/2666310.2666476 

Jokar Arsanjani, J., & Bakillah, M. (2015). Understanding the potential relationship 

between the socio-economic variables and contributions to OpenStreetMap. 

International Journal of Digital Earth, 8(10), 1–16. 

https://doi.org/10.1080/17538947.2014.951081 

Jokar Arsanjani, J., Barron, C., Bakillah, M., & Helbich, M. (2013). Assessing the 

Quality of OpenStreetMap Contributors together with their Contributions. 16th 

AGILE Conference. 

Jokar Arsanjani, J., Helbich, M., Bakillah, M., Hagenauer, J., & Zipf, A. (2013). Toward 

mapping land-use patterns from volunteered geographic information. 

International Journal of Geographical Information Science, 27(12), 2264–2278. 

https://doi.org/10.1080/13658816.2013.800871 

Jokar Arsanjani, J., Helbich, M., Bakillah, M., & Loos, L. (2015). The emergence and 

evolution of OpenStreetMap: a cellular automata approach. International Journal 

of Digital Earth, 8(1), 74–88. https://doi.org/10.1080/17538947.2013.847125 

Jokar Arsanjani, J., Mooney, P., Zipf, A., & Schauss, A. (2015). Quality Assessment of 

the Contributed Land Use Information from OpenStreetMap Versus Authoritative 

Datasets. In J. Jokar Arsanjani, A. Zipf, P. Mooney, & M. Helbich (Eds.), 

OpenStreetMap in GIScience SE  - 3 (pp. 37–58). Springer International 

Publishing. https://doi.org/10.1007/978-3-319-14280-7_3 



79 

 

Jokar Arsanjani, J., & Vaz, E. (2015). An assessment of a collaborative mapping 

approach for exploring land use patterns for several European metropolises. 

International Journal of Applied Earth Observation and Geoinformation, 35(B), 

329–337. https://doi.org/10.1016/j.jag.2014.09.009 

Kalantari, M., & La, V. (2015). Assessing OpenStreetMap as an Open Property Map. In 

J. Jokar Arsanjani, A. Zipf, P. Mooney, & M. Helbich (Eds.), OpenStreetMap in 

GIScience SE  - 13 (pp. 255–272). Springer International Publishing. 

https://doi.org/10.1007/978-3-319-14280-7_13 

Keßler, C., Theodore, R., & Groot, A. De. (2013). Trust as a Proxy Measure for the 

Quality of Volunteered Geographic Information in the Case of OpenStreetMap. In 

Geographic Information Science at the Heart of Europe (pp. 21–37). Springer. 

https://doi.org/10.1007/978-3-319-00615-4 

Koukoletsos, T., Haklay, M., & Ellul, C. (2012). Assessing Data Completeness of VGI 

through an Automated Matching Procedure for Linear Data. Transactions in GIS, 

16(4), 477–498. https://doi.org/10.1111/j.1467-9671.2012.01304.x 

Ludwig, I., Voss, A., & Krause-traudes, M. (2011). A Comparison of the Street Networks 

of Navteq and OSM in Germany. In Advancing Geoinformation Science for a 

Changing World (Vol. 1, pp. 65–84). Berlin: Springer-Verlag. 

https://doi.org/10.1007/978-3-642-19789-5 

Marolf, D. (2004). Resource Letter NSST-1: The nature and status of string theory. 

American Journal of Physics, 72(6), 730-741. Retrieved from 

http://agile2010.dsi.uminho.pt/pen/shortpapers_pdf/142_doc.pdf 

Mashhadi, A., Quattrone, G., & Capra, L. (2015). The Impact of Society on Volunteered 

Geographic Information: The Case of OpenStreetMap. In J. Jokar Arsanjani, A. 

Zipf, P. Mooney, & M. Helbich (Eds.), OpenStreetMap in GIScience SE  - 7 (pp. 

125–141). Springer International Publishing. https://doi.org/10.1007/978-3-319-

14280-7_7 

Meier, J. C. H. (2015). An Analysis of Quality for Volunteered Geographic Information. 

(Master's dissertation, Wilfrid Laurier University).  



80 

 

Mohammadi, N., & Malek, M. (2015). Artificial intelligence-based solution to estimate 

the spatial accuracy of volunteered geographic data. Journal of Spatial Science, 

60(1), 119–135. https://doi.org/10.1080/14498596.2014.927337 

Mondzech, J., & Sester, M. (2011). Quality analysis of OpenStreetMap data based on 

application needs. Cartographica: The International Journal for Geographic 

Information and Geovisualization, 46(2), 115–125. 

https://doi.org/10.3138/carto.46.2.115 

Mooney, P., & Corcoran, P. (2012a). Characteristics of Heavily Edited Objects in 

OpenStreetMap. Future Internet, 4(4), 285–305. 

https://doi.org/10.3390/fi4010285 

Mooney, P., & Corcoran, P. (2012b). The annotation process in OpenStreetMap. 

Transactions in GIS, 16(4), 561–579. https://doi.org/10.1111/j.1467-

9671.2012.01306.x 

Mooney, P., Corcoran, P., & Winstanley, A. C. (2010). Towards quality metrics for 

OpenStreetMap. Proceedings of the 18th SIGSPATIAL International Conference 

on Advances in Geographic Information Systems GIS 10, 514–517. 

https://doi.org/10.1145/1869790.1869875 

Mullen, W. F., Jackson, S. P., Croitoru, A., Crooks, A., Stefanidis, A., & Agouris, P. 

(2015). Assessing the impact of demographic characteristics on spatial error in 

volunteered geographic information features. GeoJournal, 80(4), 587–605. 

https://doi.org/10.1007/s10708-014-9564-8 

Neis, P., Zielstra, D., & Zipf, A. (2011). The Street Network Evolution of Crowdsourced 

Maps: OpenStreetMap in Germany 2007–2011. Future Internet, 4(4), 1–21. 

https://doi.org/10.3390/fi4010001 

Parr, D. A. (2015). The production of volunteered geographic information: A study of 

OpenStreetMap in the United States (Doctoral dissertation, Texas State 

University).   

Pourabdollah, A., Morley, J., Feldman, S., & Jackson, M. (2013). Towards an 

Authoritative OpenStreetMap: Conflating OSM and OS OpenData National 

Maps’ Road Network. ISPRS International Journal of Geo-Information, 2(3), 

704–728. https://doi.org/10.3390/ijgi2030704 



81 

 

Quattrone, G., Mashhadi, A., Quercia, D., Smith-Clarke, C., Capra, L., Acm, S. S., … 

Special Interest Group on, I. (2014). Modelling growth of urban crowd-sourced 

information. Proceedings of the 7th ACM International Conference on Web 

Search and Data Mining - WSDM ’14, 563–572. 

https://doi.org/10.1145/2556195.2556244 

Sehra, S. S., Singh, J., & Rai, H. S. (2015). Quality assessment of crowdsourced data 

against custom recorded map data. Indian Journal of Science and Technology, 

8(33). https://doi.org/10.17485/ijst/2015/v8i33/79884 

Siebritz, L., Sithole, G., & Zlatanova, S. (2012). Assessment of the homogeneity of 

volunteered geographic information in South Africa. In M. Shortis & M. Madden 

(Eds.), 22nd Congress of the International Society for Photogrammetry and 

Remote Sensing, ISPRS 2012 (Vol. 39, pp. 553–558). International Society for 

Photogrammetry and Remote Sensing. Retrieved from 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84901710768&partnerID=40&md5=e65dd4e6feb4732bcd9d94f1c39a4e19 

Tenney, M. (2014). Quality Evaluations on Canadian OpenStreetMap Data. Retrieved 

from http://rose.geog.mcgill.ca/ski/system/files/fm/2014/tenney.pdf 

Touya, G., & Brando-Escobar, C. (2013). Detecting Level-of-Detail Inconsistencies in 

Volunteered Geographic Information Data Sets. Cartographica: The International 

Journal for Geographic Information and Geovisualization, 48(2), 134–143. 

https://doi.org/10.3138/carto.48.2.1836 

Vaz, E., & Jokar Arsanjani, J. (2015). Crowdsourced mapping of land use in urban dense 

environments: An assessment of Toronto. Canadian Geographer, 59(2), 246–255. 

https://doi.org/10.1111/cag.12170 

Wang, M., Li, Q., Hu, Q., & Zhou, M. (2013). Quality analysis of open street map data. 

In E. Guilbert, B. Wu, & J. Shi (Eds.), 8th International Symposium on Spatial 

Data Quality (Vol. 40, pp. 155–158). International Society for Photogrammetry 

and Remote Sensing. Retrieved from 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.823.8256&rep=rep1&t

ype=pdf 



82 

 

Yang, A., Fan, H., & Jing, N. (2016). Amateur or professional: Assessing the expertise of 

major contributors in openstreetmap based on contributing behaviors. ISPRS 

International Journal of Geo-Information, 5(2), 21. 

https://doi.org/10.3390/ijgi5020021 

Zhao, Y. J., Zhou, X. G., Li, G. Q., & Xing, H. F. (2016). A Spatio-Temporal VGI Model 

Considering Trust-Related Information. ISPRS International Journal of Geo-

Information, 5(2), 19. https://doi.org/10.3390/ijgi5020010 

Zhou, P., Huang, W., & Jang, J. (2014). Validation analysis of OpenStreetMap data in 

some areas of China. In J. Jiang & H. Zhang (Eds.), ISPRS Technical Commission 

IV Symposium 2014 (4th ed., Vol. 40, pp. 383–391). International Society for 

Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprsarchives-XL-

4-383-2014 

Zielstra, D., Hochmair, H. H., & Neis, P. (2013). Assessing the effect of data imports on 

the completeness of openstreetmap - A United States case study. Transactions in 

GIS, 17(3), 315–334. https://doi.org/10.1111/tgis.12037 

 

 



83 

 

Curriculum Vitae 

Name    Hongyu Zhang 

 

Post-secondary  Western University   

Education and  London, Ontario, Canada 

Degrees   2015-2017 M.Sc.  

 

University of Waterloo  

Waterloo, Ontario, Canada 

2012-2015 B.E.S.  

 

Honours and   Student Travel Award      2017 

Awards   Spatial Analysis and Modeling Specialty Group,  

The Association of American Geographers  

 

   Faculty of Social Science Graduate Research Awards Fund  2017 

   Western University  

 

Best Master’s Paper       2016 

The Canadian Association of Geographers – Ontario Division  

 

Dean’s Honours List       2015 

University of Waterloo  

 

Undergraduate Writing Award     2013 

University of Waterloo 

 

President’s Scholarship & 

International Student Entrance Scholarship   2012 

University of Waterloo 

 

Related Work  Teaching Assistant 

Experience   Western University  

2015-2017  

 

Teaching Assistant  

University of Waterloo  

2015 

 

Publications  

Zhang, H., & Malczewski, J. (2017). Quality Evaluation of Volunteered Geographic 

Information: The Case of OpenStreetMap. In C. Campelo, M. Bertolotto, & P. Corcoran 

(Eds.), Volunteered Geographic Information and the Future of Geospatial Data (pp. 19-

46). Hershey, PA: IGI Global. doi: 10.4018/978-1-5225-2446-5.ch002  

 


	Quality Assessment of the Canadian OpenStreetMap Road Networks
	Recommended Citation

	tmp.1496341015.pdf.G2yJE

