4,921 research outputs found

    A chaotic spread spectrum system for underwater acoustic communication

    Get PDF
    The work is supported in part by NSFC (Grant no. 61172070), IRT of Shaanxi Province (2013KCT-04), EPSRC (Grant no.Ep/1032606/1).Peer reviewedPostprin

    The development and testing of a parametric SONAR system for use in sediment classification and the detection of buried objects

    Get PDF
    This thesis describes the work carried out in the development and testing of parametric sonar systems for application in the fields of seabed sediment characterisation and classification, and the detection of seabed embedded objects. Parametric sonar systems offer a number of advantages over conventional sonar systems. This is especially true of the conflicting requirements of both seabed delineation and penetration required for a practical sub-seabed profiling system. Echoes from sub-bottom layers vary in strength dependent on both the boundary acoustic reflectivity and the absorption characteristics of the layer above. Absorption effects are usually frequency dependent, allowing better penetration to lower frequency signals. [Continues.

    Employing VLC technology for transmitting data in biological tissue

    Get PDF
    Abstract. With the development in wireless communication methods, visible light communication (VLC), a subset of Optical Wireless Communication (OWC) has garnered much attention to employ the technology for a secure short-range wireless communication. We present a feasibility study to determine the performance of VLC in short range wireless transmission of data through biological tissue. VLC is a cost efficient and secure means of transmitting high volume of data wirelessly which can considerably reduce the interference issues caused by electromagnetic pulses and external electric fields. We present a simple measurement approach based on Monte Carlo simulation of photon propagation in tissue to estimate the strength of wireless communication with body implant devices. Using light for communication brings inherent security against unauthorized access of digital data which could be acquired from the low energy body implant devices used for medical diagnosis and other studies. This thesis discusses the typical components required to establish VLC such as, transmitter, receiver and the channel mediums. Furthermore, two cases of Monte Carlo simulation of photon-tissue interaction are studied to determine a possibility if VLC is a suitable substitute to radio frequency (RF) for a more wireless communication with the body implants. The process of theoretical measurement begins with conversion of light intensity into an electrical signal and an estimation of achievable data rate through a complex heterogeneous biological tissue model. The theoretically achieved data rates of the communication were found to be in the order of megabits per second (Mbps), ensuring a possibility to utilize this technology for short range reliable wireless communication with a wider range and application of implant medical devices. Biophotonics.fi presents a computational simulation of light propagation in different types of computational tissue models comprehensively validated by comparison with the team’s practical implementation of the same setup. This simulation is also used in this thesis (5.2.2) to approximate more accurate data rates of communication in case of a practical implementation
    corecore