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ABSTRACT 

With the development in wireless communication methods, visible light 

communication (VLC), a subset of Optical Wireless Communication (OWC) has 

garnered much attention to employ the technology for a secure short-range 

wireless communication. We present a feasibility study to determine the 

performance of VLC in short range wireless transmission of data through 

biological tissue. VLC is a cost efficient and secure means of transmitting high 

volume of data wirelessly which can considerably reduce the interference issues 

caused by electromagnetic pulses and external electric fields.  

We present a simple measurement approach based on Monte Carlo simulation 

of photon propagation in tissue to estimate the strength of wireless 

communication with body implant devices. Using light for communication brings 

inherent security against unauthorized access of digital data which could be 

acquired from the low energy body implant devices used for medical diagnosis 

and other studies. 

This thesis discusses the typical components required to establish VLC such 

as, transmitter, receiver and the channel mediums. Furthermore, two cases of 

Monte Carlo simulation of photon-tissue interaction are studied to determine a 

possibility if VLC is a suitable substitute to radio frequency (RF) for a more 

wireless communication with the body implants. The process of theoretical 

measurement begins with conversion of light intensity into an electrical signal 

and an estimation of achievable data rate through a complex heterogeneous 

biological tissue model. 

The theoretically achieved data rates of the communication were found to be 

in the order of megabits per second (Mbps), ensuring a possibility to utilize this 

technology for short range reliable wireless communication with a wider range 

and application of implant medical devices. Biophotonics.fi presents a 

computational simulation of light propagation in different types of computational 

tissue models comprehensively validated by comparison with the team’s practical 

implementation of the same setup. This simulation is also used in this thesis (5.2.2) 

to approximate more accurate data rates of communication in case of a practical 

implementation.  

 

Key words: VLC, Monte Carlo Simulation, Data Rates, Computation bio-tissue 

model  
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1. INTRODUCTION 

The annual run rate for global internet protocol (IP) traffic in 2017 reached 1.5 

zettabytes (ZB) and is expected to increase three folds by 2022 i.e. 4.7 ZB. Fixed 

internet consumption which comes from residential and commercial subscribers is said 

to form greater part of the traffic than traffic from cell phone towers [1]. Typical indoor 

wireless communication technologies such as Wi-Fi and Bluetooth have an advantage 

due to their accessibility through solid non-conductive obstructions. These low power 

technologies are of great interest to the researchers for futuristic internet of things (IoT) 

applications but are susceptible to interference caused by other wireless appliances 

using same frequencies and the cyber security threats that can compromise the 

confidentiality of the data networks.  

The capacity of fifth generation (5G) networks is significantly high due to the 

heterogeneous structure of the networks comprising of several small cells. Given the 

battery, latency and accuracy issues with RF transmission in biological tissues, VLC 

looks like a more suitable option to wirelessly transmit data through tissues. VLC has 

a broad spectrum (400 THz – 800 THz) which could provide connectivity to massive 

number of devices, fast and flexible deployment structure and high speed 

communication. VLC has the capability to address the increasing demand for 

ubiquitous connectivity and high capacity, overcoming the RF security, latency and 

electromagnetic interference issues at the same time. 

VLC employs Light Emitting Diodes (LEDs) as optical source of transmission, 

which is already used as preferable source of light in several applications today. LEDs 

are fast switching sources of light which enables high speed communication with 

considerably reduced power consumption as opposed to RF components of 

communication. Unlike radio waves, VLC signals do not penetrate through the walls, 

which restricts their coverage but eradicates the security vulnerabilities associated with 

RF networks. The concept of utilizing light for wireless data transmission is adopted 

in a lot of fields such as vehicle to vehicle communication, underwater communication 

or other outdoor or Free Space Optics (FSO) based communication. VLC is more 

suitable for indoor communication for its high bandwidth and easier installation. The 

easy deployment of VLC is due to the pre-existence of light sources in indoor 

environments. Besides, VLC is of high interest in electromagnetic sensitive areas such 

as airplanes, hospitals etc. Besides, inherent security from hacking and the low-cost 

deployment of VLC setup makes it interesting for research in the exponentially rising 

market for connected health objects. Short range VLC luminaries are a promising 

combination for low rate IoT applications as well as gigabit rate wireless networking 

[68] - [69].  

Our research interest is focused around the study and development of very 

shortrange wireless communication based on VLC for medical applications. The RF 

based medical devices implanted in body, require considerable amounts of power and 

produce low efficiency in transmission through the biological tissues. When light is 

projected over skin, part of it is reflected, part is absorbed, and part is further 

transmitted. Light radiation reaching viable tissue is partly absorbed, scattered and 

reflected by the tissue. The amount of light that transverses through the tissue could 

be detected by an in-vivo medical implant device which could be used for one or 

multiple purposes. This paves way for endless opportunities in the autonomous clinical 

applications and other short-range networks applications. Over other advantages, VLC 
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can serve as a good complement to RF based short range communication for increased 

coverage and enhanced throughput [2] - [3]. 

This thesis discusses the problems relating to light transmission in biomedical 

tissues which are modelled as turbid media and computes the light fluence rate using 

Monte Carlo simulation. Monte Carlo simulation deploys a photon transport to assess 

the wavelength-dependent behaviour of light interacting with turbid tissue models in 

order to determine if a body implant device can communicate with an external device 

to establish a non-invasive wireless communication. The future work in this regard 

will be based on practical implementation of the simulation scenario presented in this 

thesis. 

 

 

1.1. Motivation 

RF based medical implants are getting complex with the passage of time, which makes 

them a vulnerable target of cybersecurity intrusions. RF based short range 

communication is more susceptible to hacking providing access to data as sensitive as 

medical information to an unauthorized person. Light signals do not penetrate through 

the walls, which gives VLC setup an inherent security. The use of light to transmit 

digital information to an implant is expected to reduce the power consumption of the 

process and produce more efficient results.  The information can be sensed by a small 

photodetector embedded in the body implant sensor to receive information at a fast 

transmission rate. Besides, the work in this thesis is motivated by current 

environmental considerations focused on mitigating the use of RF radiations and 

corresponding health risks. Virtually all the wireless communication devices such as 

mobile phones, radio/ television broadcasting, telecommunication masts, microwave 

oven, radar, WIFI etc. are common sources of RF radiation. The implantable RF 

medical devices such as pacemakers, APNEA monitors etc. are susceptible to 

radiofrequency interference (RFI) which could cause them to malfunction. We suggest 

the use of VLC especially in the indoor and medical applications for a safer and securer 

transmission of data.  

The use of VLC could reduce potential human and ecosystem health risks 

associated with RF exposure. LED is expected to overtake incandescent and 

fluorescent technologies as primary source of lighting in public and private sectors in 

future. Researchers propose various techniques for a more efficient RF communication 

with in-vivo medical low power devices. Besides, machine to machine (M2M) 

communication is on the rise, including the development of smart implant sensors 

which could communicate with other wireless devices for non-invasive medical 

diagnosis. For ubiquitous usage of wireless technology and for health care applications 

can VLC can reduce the signal attenuation problems as well as health risks associated 

with the use of RF technology. Moreover, VLC in healthcare and diagnosis systems 

can be made more precise and accurate, within safety limits. 

 

 

1.2. Goal of the Work 

The thesis presents a feasibility of using VLC technology for transmitting data in a 

biological tissue. Light propagation in a multi-layered media gets absorbed, scattered 
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and reflected. The penetration depth of light through the tissue is altered by its optical 

properties but is sufficient enough to communicate with a device with a photo-sensor 

inside the body. 

The simulations of photon transport in a complex model of a tissue using Monte 

Carlo method is based on previous works shown in [4], [62] - [63]. We have chosen 

three wavelengths 532 nm, 770 nm and 1000 nm to study their possible transmission 

distance in the tissue. The exposure time of light projected on skin is simulated to 

obtain an estimated fluence rate of the wavelengths. From the resulting fluence rate 

distributions, a measurement of achievable data rates is presented in the results section. 

The data rates are convincing enough to consider VLC as a technology to communicate 

with body implant devices. The future work will be focused on a practical 

implementation of the computational scenario presented in this thesis. 
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2. VLC TECNOLOGY 

Visible light spectrum (370 nm to 780 nm) is the section of electromagnetic spectrum 

which is visible to human eye. LEDs support high switching rates which is useful for 

VLC. The fast switching of LEDs can be used to generate a stream of information bits 

in optical form. VLC aims at utilizing existing electrical and lighting infrastructure in 

buildings to transmit optical signals over free space which could give some slack to 

RF technology. In Figure 1. a basic block diagram of a VLC setup is presented 

 

 
Figure 1. Typical VLC model. 

 

Rapid evolution of LED-based lighting and congestion of RF spectrum occupied 

by Wi-Fi and cellular radio systems are paving way for VLC in the market. The 

communication can be established transmitting digital signals using an off-the-shelf 

LED that can be received by photodiodes that convert light into electric current. The 

frequency range of visible light is between 430 THz to 790 THz as shown in Figure 2 

 

 
Figure. 2 Visible light spectrum. 

Maximum utilization of visible light spectrum could significantly enhance the 

capacity of digital communication. Colour shift keying (CSK) is an intensity 

modulation scheme outlined in IEEE 802.15.7, which allows transmission of data 



 

 

12 

utilizing the colour variation in RGB (red, green, blue) LEDs. The work in [5] reports 

VLC based commercial transceivers that operate using CSK scheme. 

 

 

2.1. Literature Review 

Graham Bell’s photo-phone in the year 1880 at Washington D.C., used sunlight as the 

optical source, a parabolic mirror as a modulation device and a selenium photodetector 

as a receiver to establish wireless communication over several hundred meters. The 

communication model can be seen in Figure 3. VLC refers to short-range OWC 

supported by IEEE 802.15.7 standard established in 2010. IEEE 802.15.7 standard 

provides flicker free high data rate optical communication with dimming adaptable 

mechanisms. The task group has developed PHY and MAC layer standards for VLC. 

The practical and computational implementation of VLC for transmission of wireless 

data is proposed in various research works [70] - [71]. 

 

 
Figure 3. Graham Bell’s photo-phone (year 1880). 

 

The first global Li-Fi congress event which took place in the year 2018, aimed to 

focus on the following applications of VLC. 

 

 VLC based indoor positioning 

 LED based communication for internet of things (IoT) 

 Optical devices and components for Li-Fi 

 Outdoor Li-Fi (smart lighting, transportation, smart city) 

 Beyond 5G with VLC /Li-Fi 

 Li-Fi for medical applications 

 High speed setups and protocols 

 Regulation and standardization 

 

Researchers are keen on development of optical broadband sources which could 

produce homogenous white light with the combination of maximum number of colours 

(wavelengths) possible. Y. Tanaka proposed utilization of white power of LEDs for 

optical wireless communication in 2003. The white light LED was composed of three 

RGB chips capable to achieve a transmission speed of up to 400 Mbps in an indoor 
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environment [6]. In 2011, Herald Haas established a consortium called Light Fidelity 

or Li-Fi, with an objective to develop wireless communication using visible light. Li-

Fi presented a VLC system in 2013, with a transmission speed of 1.6 Gbps and 2.0 

Gbps in 2015 using adaptive bit location technique [7]. Li-Fi’s (consortium) research 

interest include hybrid RF and VLC communication, spatial modulation and 

interference coordination in wireless networks. Next generation LEDs for lighting in 

conjunction with internet technology are reported in various studies [8] - [10] where 

intensity of the light is used to transmit data. 

The interference and high latency challenges in RF, make VLC a preferable choice 

for indoor communication especially after widespread deployment of LEDs for energy 

efficient illumination infrastructures. In an indoor VLC, inter symbol interference (ISI) 

due to pulse received from reflection of walls and ceilings is the second limitation after 

LED’s inherent bandwidth limitation. Many techniques have been proposed in 

different studies, to mitigate ISI and modulation bandwidth of LED. In [11], a symbol 

encoding technique is used to explore the potential of transmitters mapping in VLC. 

The proposed technique with on-off keying (OOK) modulation scheme reached data 

rates up to 2.5 Gbps with a bit error rate (BER) of 10-5. VLC may ensure high data 

rates with multi-user mobility in indoor environments 

 

 
Figure 4. Key technology trends for 5G networks. 

 

5G networks are expected to deploy large numbers of small interconnected cells to 

provide high capacity communication links. The work in [12] demonstrates gigabits 

per second (Gbps) and terabits per second (Tbps) communication links using real time 

wavelength division multiplexing (WDM) PON. The demonstration was made using 

8 different wavelengths and a successful speed of 100 Gbps per wavelength. Optical 

fibre to the home (FTTH) has demonstrated Gbps communication possible in 2000s. 

This could possibly meet the bandwidth demand for 5G networks based on PON 

technology. The growing demand of high data rate mobile applications requires 

deployment of low cost femtocells in the indoors to provide wide coverage. VLC can 
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be used to off load the congested RF networks in the indoor environments. Indoor 

communication uses causes higher data traffic compared to outdoor use. VLC could 

be used as a hybrid to RF technology or complete substitute to provide better spectral 

efficiency to the users. 

Indoor positioning and navigation serves multitudes of mobile devices, but suffers 

from high attenuation in places like subways, underground malls etc. GPS in RF is 

widely used in outdoor applications for navigation, but its performance deteriorates in 

indoor applications due to multipath propagation the attenuation is very high. Indoor 

localization in VLC is being considered as a promising substitute to GPS in indoor 

environments. Several techniques such as ultra wideband (UWB), radio frequency 

identification (RFID) and Bluetooth, used for indoor localization have a slow response 

rate and EMI is also high. VLC has a strong precision in indoor guidance for human 

eyes as well as the mobile devices using the same lighting infrastructure. LEDs have 

been explored for their potential in indoor positioning, based on received signal 

strength (RSS) [13], angle of arrival (AOA) [14] and VLC hybrid with RF. The work 

in [15] shows proposed machine learning approaches on the RSS. 

 

 
Figure 5. Underwater optical wireless communication. 

 

In addition to outdoor applications, VLC can overcome limitations of subsea 

applications (submarines, underwater sports, deep sea exploration, subsea oil drilling) 

where very low frequency VLF radio waves (3-30 KHz) reach depth of approximately 

20 meters without the use of additional equipment and lengthy transmission cables. 

Researchers are devising ways and techniques to establish long range communication 

underwater using blue wavelength which penetrates deeper in water than other 

wavelengths. In [16], a long-range underwater wireless communication was proposed. 

Authors used Monte Carlo simulation to model LED as a transmitter, pure sea water 

as the medium of optical signals propagation and single photon avalanche diode 

(SPAD) as the receiver. The proposed analytical design established 500 meters deep 

wireless communication by narrowing down half power angle of LED and using SPAD 

to improve detection sensitivity. 

VLC technology is also evaluated (experimental analysis) for therapeutic diagnosis 

and other medical applications like Biomedical Sensing Data Transmission, 
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overcoming health hazards like electromagnetic radiation or interference with 

precision medical instruments [17]. In [18], visible light is used to communicate with 

photodetector (PD) over biological tissue as channel medium. The results were found 

to be more accurate and reliable than RF heart monitoring 

 

 
Figure 6. Non-invasive VLC health monitoring model. 

 

Light propagation in any medium is attenuated by absorption and scattering 

coefficients of that medium. At receiving end, photodetectors are optimized to 

efficiently generate electrical signal from received light signals. With the combination 

of photometry and optical properties of the studied material we can introduce and 

establish accurate, better and safer non-invasive wireless health monitoring 

applications. The choice of wavelength is application specific, for example 440 nm to 

550 nm window which corresponds to the blue and green spectrum shows low 

attenuation relatively for underwater optical wireless communication (UOWC) for 

clear water and greener for coastal waters [19] or near infra-red (NIR) is the optical 

window used in medical (650 nm and 1350 nm) for deeper penetration in biological 

tissues than other wavelengths. 
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3. VLC SYSTEM DESCRIPTION 

LEDs are the optical sources in the VLC transmitter, modulated by a current limiting 

or voltage limiting driver. A photodetector responds to the incident light on its surface 

into a directly proportional electrical signal. The responsivity of the photodetector is 

the measure of the photocurrent at its output in response to the total optical power 

incident on its surface. The optical medium to be used for communication can be 

transparent, liquid or layers of biological tissues bearing unique absorption, scattering 

and reduced scattering coefficients. 

Reflection and refraction are design parameters for confined spaces with walls and 

ceilings. The modulator in Transmitter section transforms data into a series of light 

pulses (some sequence of 0 and 1) or binary form. The driver carries the modulated 

frequency of light pulses to the LED. The block diagram of a typical VLC system is 

shown in Figure 7.  

 

 
Figure 7. Block diagram of basic VLC system. 

 

Optical detecting patterns in turbid medium such as biological tissue can be 

improved by digital signal processing (DSP). DSP algorithms are defined to isolates 

the desired wavelength or wavelengths from the received electromagnetic radiation 

[20]. The significant parameters of PDs range from their quantum efficiency, 

responsivity, spectral response range, noise, response time, rise time and gain. 

 

 

3.1. Driver for Optical Transmitter (LED) 

The drivers for LED are classified into digital and analogue mode drivers as shown in 

Figure 9. 
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Figure 8. LED driver types. 

 

LEDs are current driven devices and their brightness is proportional to their forward 

current therefore it is important to design circuits that can control current either by 

applying voltage which is close to LED’s operating point to drive forward current or 

by using constant current source.  

Constant current sources ensure constant LED brightness and experience no current 

variation due to forward voltage of LED. Drivers that are used for digital data 

transmission are called Digital or Switch Mode drivers because they operate on using 

OOK scheme. The switching is done using capacitors or a combination of capacitors 

in different configurations based on application need. Analog drivers are used for more 

complex modulation formats. 

 

3.2. Digital Driver 

Digital or switch mode drivers are used for digital communication transmit data into 

binary form. MOSFETs are high input impedance, low conduction resistance active 

devices that have the capability to achieve low power dissipation. LED capacitance 

has a lower discharging time, typically enough for Mbps communication, external 

drivers for a faster capacitor discharging time suitable for high speed switching. The 

metal-oxide-semiconductor field-effect transistor (MOSFET) and bipolar junction 

transistor (BJT) are two widely considered active devices for digital driver’s design. 

BJT requires a high base current at the input to operate. MOSFETs are preferred over 

BJT for having low conduction resistance and the ability to handle high currents with 

low power dissipation. The current mode MOSFETs are used in different combination 

to reduce discharging time of LED capacitor [21]. Two common types of digital LED 

drivers that can handle multiple LEDs are shown in Figure 9 (a) and 9 (b) 
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Figure 9. (a) Single transistor inverter (b) CMOS inverter [22]. 

 

In circuit 9 (a) current increases in the transistor with the increase in Vin and the 

capacitor begins to charge. A capacitor in parallel with load (LED) helps to reduce the 

discharging time. Driver as shown in Figure 9 (b) uses a complimentary metal-oxide 

(CMOS) inverter configuration with only one transistor active at a time, the lower 

transistor is used to drain the charge from the capacitor [22] providing high-speed 

switching. 

 

 

3.3. Analogue Driver 

Analog drivers can perform complex modulations of the LED like quadrature 

amplitude modulation (QAM) and orthogonal frequency division multiplexing 

(OFDM). Like digital drivers need to be able to switch the LEDs as fast as possible, 

analogue drivers should be designed to present high linearity. To achieve homogenous 

modulation as opposed to digital drivers, we will discuss two types of drivers, voltage 

mode and current mode.  

Constant voltage drivers drive the LEDs to produce the signal in the form of 

voltages and are designed to operate on a fixed direct current (DC) output voltage. 

LEDs that drive currents less than or equal to the fixed current can be operated to 

produce signals in the form of voltage variations. The current load value is designed 

to stay below the fixed DC, for the driver to provide constant voltage output or the 

driver will overdrive the LED. Constant current drivers are preferred over voltage 

mode drivers for LEDs linear power to current relation however, the current-voltage 

non-linearity characteristic of the LED makes it useful for high peak to average power 

ratio (PAPR) applications [23]. 

 

 

3.4. LED for Optical Transmission 

A light emitting diode is a semiconductor device which emits visible light in forward 

bias condition. The device has endless practical applications and has served as one of 

the important inductions in modern day lighting landscapes. Far field patterns 

generated by LED define its maximum intensity regions. Most LEDs emit a 

Lambertian pattern where angular intensity distribution of LED is maximum near 0° 

and reduces to 50% at half-angle. The far field patterns of LED depend on the different 
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types of such as Parabolic, Hemispherical or Planar (Lambertian emission) LED. The 

far field patterns of common LEDs are shown in Figure 10.  

 

 
Figure 10. LED far field patterns. 

 

High brightness LED was used in optical fibre signal transmission for the first time 

in 1976. Gallium nitride was first used in 1986 to produce blue LEDs. The interaction 

of blue LEDs with phosphor produces white light or by combining red, green and blue 

colours as shown in Figure 11.  

 

 
Figure 11. Combination of RGB producing white colour. 

 

LEDs have been used in several devices such as BLU-RAY recording and medical 

devices since 1993 when Shuji Nakamura invented high brightness blue LED. In 1999, 

Microsoft introduced an optical input device (IntelliMouse Optical) for personal 

computers. Optical mouse was equipped with a red LED, instead of a roller ball and a 

set of sensors to track its movement on a plain surface. 

The fast switching capability and diverse colour variation of LED makes it most 

suitable device for Colour Shift Keying CSK modulation. CSK is an intensity 

modulation which utilizes the colours as channels to transmit data. The data is 

transmitted over instantaneous colours of the LED. The bits carrying information are 
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further processed as binary codes. At receiving end, a lens is used to collect the signals 

and filter out unnecessary noise. 

The use of LED as optical transmitter especially for WPAN has many advantages 

such as overcoming RF interference, RF restriction in aerospace or hospitals [24], 

enhanced security under defined coverage and spatial reuse of adjacent cells’ 

bandwidth [25]. 

 

 

3.4.1. Physical Layer Characteristics 

IEEE 802.15.7 VLC private access network (VPAN) standard applies to network 

topologies peer-to-peer, star and broadcast as shown in Figure 12. 

 

 
Figure 12. VLC MAC topologies IEEE 802.15.7. 

 

The standard provides 

 

 Access to several hundred THz of free spectrum 

 Immunity to EMI and no interference with RF 

 Visible security of the network 

 Communication augmenting and complementing existing lighting 

infrastructures. 

The physical layers of VLC are occupied by different modulation schemes tailored 

for application specific purposes. Physical layers I and II use on/ off keying (OOK) 

where transmission of zero means no carrier is present. Physical layers III use colour 

shift keying (CSK) technique for multiple input multiple output (MIMO) scenario to 

provide THz of bandwidth to each user. Therefore, frequency division multiplexing 

(FDM) remains a good choice for layers with different spectral regions (PHY I and 

PHY II), which allows them to coexist with each other. Table 1. below shows 

characteristics of PHY types used in VLC. 
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Table 1. Physical layers of VLC in standard IEEE 802.15.7 [72] 

LAYERS 
Operating 

Range (bps) 

Modulation 

Format 
Optimization 

Error 

Correction 

Optical 

Clock Rate 

PHY I 
11.67 kb/s - 

266.6 kb/s 

OOK  

VPPM 

Low rate, long 

distance, 

outdoor 

communication 

Forward 

Error 

Correction 

(FEC) 

≤ 400 KHz 

(High current, 

low switching 

time) 

PHY II 
1.25 Mb/s to 

96 Mb/s 

OOK  

VPPM 

High rate, 

indoor, P2P 

communication 

Forward 

Error 

Correction  

≤ 120 MHz 

(Fast 

switching for 

P2P) 

PHY III 
12 Mb/s to 96 

Mb/s 

CSK, MIMO 

(Multiple bits 

per CSK 

symbol) 

P2P, MIMO 

Forward 

Error 

Correction  

≤ 24 MHz  

 

All PHY types in IEEE 802.15.7 are designed to operate in presence of ambient 

light (light interference) and each layer contains mechanisms for modulating the 

optical sources. Optical clock rates in PHY types are chosen according to the 

applications [26]. 

 

3.5. Bandwidth Limitation of LED 

The LED 3 db modulation optical bandwidth is defined by the rate at which the LED 

power transfer function is reduced by 3 dB. Modulation bandwidth of an optical source 

is limited by Carrier Recombination Time (CRT). CRT is a finite value of time or the 

modulation index of a given light emitting diode with respect to a given frequency. If 

an alternating current (AC) signal is superimposed over an LED, the optical power will 

decrease with the increase in frequency due to recombination time of the material used 

in the p-n junction diode. When the current is injected into a p-n junction, 

recombination takes place and optical power starts building up with respect to a 

superimposed AC signal. Optical power will reach its maximum value and start 

decaying at the instant the current is switched down to zero. As the frequency 

increases, optical power run out of time to reach its maximum because the current is 

switched off. The modulation index of LED decreases with the increase in frequency. 

AC current variation or the optical power (POPT ∝ i(ω)) across the LED, reduces with 

the increase in frequency as seen in (1). 

 

 
𝑖(ω) =

𝑖𝑜

1 + ω2𝜏2
, 

(1) 

 
 

where 𝑖𝑜 is direct current (DC), ω is the AC variation of the optical power and τ is 

recombination time. 

Bandwidth is defined where the optical power falls to half of its value. 
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𝑆 =

𝑖(ω)

𝑖𝑜
=

1

2
. 

(2) 

 

 

The transmission rate of the optical source is dependent on the modulation 

bandwidth 𝐹3𝑑𝐵, by the following expression: 

 

 
𝐹3𝑑𝐵 =  

1

2𝜋𝜏
, 

(3) 

 
 

where τ is the effective carrier lifetime or recombination time of the source. 

RC time constant (τ) is mainly limited by its resistance and junction capacitance 

and the carriers injected in the device, given by: 

 

 
𝑓 =  

1

2𝜋𝑅𝐶
, 

 

(4) 

 

where 𝑅 and 𝐶 is the resistance and capacitance respectively. 

In [27] the enhancement of LEDs maximum transmission speed by a significant 

number by tuning the carrier lifetime of the LEDs is explained in detail. LEDs with 

800 MHz of electrical to optical modulation bandwidths can achieve a transmission 

rate of Gbps over free-space, using different modulation techniques. In [28], 

enhancement of 35 GHz of intrinsic modulation bandwidth of a free running semi-

conductor laser is demonstrated, using injection-locking technique [59]. 

 

 

3.5.1. Quantum Efficiency 

The important performance parameters of LED as an optical source are described 

briefly in this section. Although the selection of optical source and its properties are 

highly dependent on the link configuration, channel or medium used for transmission 

and other factors.  

Radiative recombination of electrons and holes is a reverse process of 

photoionization which triggers production of photons when some voltage is applied 

across p-n junction. When the electron falls from conduction band to the valence band, 

photons are emitted. The band gap of the semiconductor and the type of material used 

in its manufacturing determines the spectral power distribution which is the 

representation of radiant power emitted by the LED as a function of wavelength. The 

ratio of photons emitted from the optical source to the electrons required to drive the 

diode is called External Quantum Efficiency (EQE) whereas, Internal Quantum 

Efficiency (IQE) of the LED is determined by the ratio of radiation recombination rate 

to the total recombination rate due to all processes [29]. 

 

 

3.5.2. Biasing and Signal Combining 

Lighting and communication using fast switching LEDs is achieved by combining 

communication (AC) signal and power using, a bias tee. The communication (AC) 
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signal is superimposed over DC bias current used to operate LEDs as communication 

devices. A bias tee comes with different configurations of capacitor and inductor 

(Figure. 13) where signal components are fed by the capacitor and the biasing is 

performed by the inductor 

 

 
Figure 13. Biasing and signal combining. 

 

In direct modulation technique, the digital ‘On’ is represented as 1 and the ‘Off’ as 

0s over a high frequency which is not visible to human eye [30]. In VLC, biasing is of 

the transistor is utilized to combine DC current of the LED with the data for 

transmission [31]. 

 

 

3.6. Modulation Techniques 

LEDs are incoherent light sources therefore Intensity Modulation Direct Detection 

(IMDD) is the only suitable transmission scheme. The phase of the optical carrier 

cannot be modulated, therefore typical RF modulating schemes are not applicable in 

VLC. The three modulation schemes standardized by IEEE [12, 24, 79, 80] are OOK, 

IMDD and CSK. Non-return zero with OOK (NRZ OOK) is the simplest modulation 

implementation in VLC. NRZ OOK is a binary code where ‘1’ is represented by a light 

pulse while ‘zero’ means no pulses. 

LEDs are current driven devices hence their peak emission wavelength is 

proportional to variation in forward current. Forward current controls the intensity of 

light, the reduction of intensity in this process is termed as ‘dimming’ in VLC. 

Amplitude mode ‘dimming’ method may not be applicable for every VLC application 

however, pulse width modulation (PWM) technique provides linear dimming scheme. 

PWM generates a series of current pulses with varying duty cycles in achieving better 

chromaticity and illumination control. The combination of PWM and variable pulse 

position modulation (VPPM) is reported to be more effective application for 

concurrent brightness control and high rate data communication. Variable Pulse 

Position Modulation VPPM symbols are determined by their position and dimming 

provided by PWM, assigns duty cycle of each symbol accordingly [22], as shown in 

Figure (14). 
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Figure 14. VPPM and PWM mechanism. 

 

Orthogonal frequency division multiplexing (OFDM) is used in multiple sub-

carrier modulation (MSM) techniques. MSM techniques are applicable for scenarios 

where single transmitter provides homogenous transmission of data to several 

receivers. In MSM, OFDM symbols are modulated onto individual sub-carriers which 

combine to modulate onto instantaneous power of the transmitter due to orthogonality 

of sub-carriers. For a high order spectral efficient modulation, VLC employs CSK. 

CSK is designed to operate with RGB LEDs while maintaining average chromaticity 

levels. The data is modulated over instantaneous combined RGB radiation such that 

the source luminous flux remains constant while the chromaticity varies. CSK is 

preferred over modulation schemes like OOK for their strong isolation with powerline 

and constant luminous flux [32]. OOK, PPM, OFDM and CSK are compared in the 

table below, based on different characteristics. 

 

Table 2. Parameters of OOK/ PPM/ OFDM and CSK for VLC 

Parameters OOK PPM OFDM CSK 

Bit Rate (RB) 1 x 106 1 x 106 - 20 Mbps 

Power Efficiency Low High Moderate Low 

No. of bits/ bits resolution 1 x 103 M = 3 

256 

(Number of 

Symbols) 

- 

Spectral Efficiency  High Low High Moderate 

Samples per symbol 10 250 
128 (Number of 

Symbols) 
upto 25 no. of symbols 

Bit Duration TB 1 x 10-6 1 x 10-6 - - 

System Complexity Low Moderate High High 

Eb/ No 1:10 -10:5 [0:1:15] - 

Sampling Time (TS) 10 0.375 x 10-6 - 
Oversampling rate 25 

samples per symbol 
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Modulation techniques in VLC are designed to provide high spectral efficiency. In 

VLC, data is modulated over subtle changes in the intensity of light where non-linear 

distortion needs to be mitigated to improve communication performance. Popular 

modulation techniques associated with VLC are presented in Figure 15 [33] 

 

 
Figure 15. VLC modulation techniques. 

 

ACO-OFDM asymmetrically clipped optical OFDM 

ADO-OFDM asymmetrically clipped DC biased optical OFDM 

ASCO-OFDM asymmetrically and symmetrically clipped optical OFDM 

CAP  carrier less amplitude modulation 

CIM  colour intensity modulation 

CSK  colour shift keying 

DCO-OFDM DC biased OFDM 

DFT+OFDM DC biased OFDM 

DHT  discrete Hartley transform 

eACO-OFDM enhanced ACO-OFDM 

ePAM-DMT enhanced PAM-DMT 

eU-OFDM  enhanced unipolar OFDM 

HACO-OFDM hybrid asymmetrically clipped optical OFDM 
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HCM  Hadamard coded modulation 

LACO-OFDM layered ACO-OFDM 

Li-Fi  Light fidelity  

MCM  multicarrier modulation 

MM   metameric modulation 

M-PAM  M-ary pulse amplitude modulation 

M-PPM  M-ary pulse position modulation 

OFDM  Orthogonal frequency modulation 

OOK  on-off keying 

PAM-DMT  pulse amplitude modulation discrete multitone  

PM-OFDM  position modulation OFDM 

PWM  pulse width modulation 

RPO-OFDM reverse polarity optical OFDM 

SCM  single carrier modulation 

SEE-OFDM spectrally and energy efficient OFDM 

SFO-OFDM spectrally factorized OFDM 

WPDM  wavelet packet division multiplexing 

 

3.7. Photodetector (Receiver) 

A photodetector works on the principle of detecting photons to produce electrons, 

above a certain threshold which determines its quantum efficiency. A photodetector 

can be a vacuum tube e.g. photomultipliers or a semiconductor e.g. photodiodes. The 

responsivity of the photodetector depends on its capability to produce photocurrent 

against the amount of optical power incident on its surface. 

Typical indoor VLC receiver front-end consist of a PD, pre-amplifier and an electric 

filter. Choice of optical concentrator, which collects and concentrate distant light 

source efficiently can be chosen on the factors discussed in detail in [34]. Optical filters 

enlarge the field of view (FOV), the active receiving area to receive more optical power 

in NLOS channels. In LOS configuration, the effective receiving area must be kept 

narrow to avoid ambient light interference, which degrades received SNR. In LOS 

schemes photodiodes are widely adopted PD for their low cost and high reception 

bandwidth. For MIMO optical networks image sensors are preferred over photodiodes 

for their high receiver spatial diversity, which enables them to distinguish between 

different LED arrays, automatically reducing inter-channel interference (ICI) [35] 

[36]. Most rooms use multiple illumination sources, which could be employed for 

MIMO VLC schemes. 

 

3.7.1.1. Performance Parameters 

PDs are sensitive to a spectral range of optical wavelengths depending upon their 

capability to generate photocurrent per unit optical power incident on their surface. 

The dynamic range or the maximum and minimum detector-optical-power can be 

limited to avoid damage to the circuitry (e.g. laser induced damage) or their non-linear 

response in case of a change of bias voltage. The magnitude of dynamic range is 



 

 

27 

expressed in decibels, which is often an important parameter for a particular 

application. The ability of a PD to convert light into electrical signal is given by: 

 

𝜂 =
number of electrons produced

number of incident photons
 

 

The responsivity 𝑅𝜆 of a PD is dependent on wavelength, defined as the ratio 

between the photocurrent 𝐼𝑝ℎ produced by the detector and radiant energy P incident 

on PD, as shown in (5). 

 

 
𝑅𝜆 =

𝐼𝑝ℎ

P
 

(5) 

 
 

For a full-duplex communication between an optical source and a body implant 

detector when working with strongly divergent beams. To achieve efficient detection 

of optical signals scattered by the tissues, the photodetector surface area must be large, 

although with large surface areas, the response of detectors (e.g. photodiodes) gets 

slow [59]. 
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4. OPTICAL CHANNELS 

In optical wireless communication Intensity Modulation (IM) Direct Detection (DD) 

is a cost effective and most practical modulation technique. The two types of detection 

in this scheme are either coherent or non-coherent. The former related to detection of 

phase and amplitude and the latter detects the signal intensity. However, direct 

detection is preferred over heterodyne detection for its practical simplicity and low 

cost [32] - [37].  

The optical channel properties and equations are briefly explained in [22]. In IMDD 

the desired signal is modulated onto instantaneous power of carrier wave and detected 

at the detector side using down conversion technique [38]. Indoor VLC are generally 

quasi-static because the signals reflected from walls or other reflective objects reach 

the PD area in a dispersive manner leading to ISI. Pre and post equalization technique 

shown in [39] to mitigate ISI also increase the LED bandwidth for a NLOS diffuse 

configuration. Multipath distortion can be modelled as baseband linear impulse 

response ℎ(𝑡) for time (𝑡). Multipath distortion is high in dispersive or non-LOS 

channels. Such channels are termed Rayleigh fading channel or its special case Rician 

fading channel, where the signals arrive at the detector from random paths. The optical 

signal which reaches the detector’s surface is given by: 

 

 𝑦(𝑡) = 𝑅𝑥𝑥(𝑡) ∗ ℎ(𝑡) + 𝑛(𝑡), 
 

(6) 

 
where 𝑅 (A/W) is the PD responsivity, 𝑥(𝑡) and ℎ(𝑡) are the instantaneous power and 

𝑛(𝑡) is the Gaussian or ambient and preamplifier noise and ∗ denotes the convolution 

operation.  

To analyse the multipath distortion in the channel we use impulse response ℎ(𝑡) in 

(7). 

 

 

ℎ(𝑡) = {

2𝑡0

𝑡3𝑠𝑖𝑛2(𝐹𝑂𝑉)
,   𝑡0 ≤ 𝑡 ≤

𝑡0

cos(𝐹𝑂𝑉)
,

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒,

 

 

 

(7) 

 

where 𝑡0 is the minimum time delay, field of view (FOV) is the active area of the 

photodetector. 

With the increase in transmitter and receiver distance the received power decreases 

resulting in the decrease in channel DC gain. The signal to noise ratio SNR in OOK is 

given by: 

  

𝑆𝑁𝑅 =
𝑅𝑟

2𝐻2(0). 𝑃𝑡

𝑅𝑏𝑁0
, 

 
(8) 

 

where 𝑁0 is the noise spectral density, 𝑅𝑏 is the bit rate, 𝐻 is the channel DC gain, 𝑃𝑡 is 

the average optical power transmission, the channel DC gain 𝐻(0) is given by: 

 

 
𝐻(0) = ∫ ℎ(𝑡)𝑑𝑡.

∞

−∞

 
 
(9) 
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The received optical power 𝑃𝑟 for a LOS link can be summarized as seen in (10). 

 

 𝑃𝑟 = 𝐻(0)𝑃𝑡. (10) 

 
VLC channel modelling depends on the degree of transmitted optical signals 

directivity and the distance between transmitter and receiver, such that the LEDs for 

illumination purpose also serve as high-speed access points [22]. 

 

 

4.1. Indoor Communication Link (Transparent Medium) 

An indoor wireless communication link is another possible application of this 

technology. Light can travel into different mediums with a fixed attenuation and 

extinction rate, a typical indoor VLC model can be seen in Figure 16 

 

 
Figure 16. Indoor VLC wireless communication model. 

 

The wavelength-weighted optical power emitted by the LED known as luminous 

intensity is a cosine function of the viewing angle given by: 

 

 I(θ) = Io 𝑐𝑜𝑠𝑚(𝜃), (11) 

 

where Io is the luminous intensity is the directionality of the energy radiated by the 

optical source, 𝑐𝑜𝑠𝑚(𝜃) is the spatial distribution function known as Lambertian 

distribution in the angle of irradiance 𝜃.  
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Figure 17.  Lambertian order of emission. 

 

The Lambert index m of an LED is calculated with reference the LED’s designed 

half power beam angle (𝜃1

2

). The relation between 𝜃1

2

 and modulation index m is as 

shown in (12). 

 
m =

−1

𝑙𝑛(𝑐𝑜𝑠 𝜃1
2

) 
. 

(12) 

 

 

Light distribution from an optical source is strongest along the center axis and 

reduces at each sides. The angle at which the intensity reduces to half of the maximum, 

is known as the beam angle.  

White light in LED is produced either by using a combination of RGB LEDs or by 

using phosphor coating over blue LED. An efficient LED source is preferred for its 

low power consumption, high luminance, longer life and high switching capabilities. 

The optical power spectrum produced by LED over a given range of wavelengths is 

given as follows: 

 

 
𝑃𝑜𝑝𝑡 = ∫ 𝑃𝑡(𝜆)𝑑𝜆,

𝜆𝑈

𝜆𝐿

 
(13) 

 

where 𝑃𝑡 is spectrum distribution integrated over 𝜆𝐿 and 𝜆𝑈, the lower and upper 

bound wavelengths. 

Light emission from LED is diffusive i.e. light spreads over all directions 

simultaneously or a directional beam depending on its aperture design. Average optical 

power transmission 𝑃𝑡 is given by: 

 

 
𝑃𝑡 = lim

𝑇→∞

1

2𝑇
∫ 𝑋(𝑡)𝑑𝑡,

𝑇

−𝑇

 
(14) 

 

where 𝑋(𝑡) is the amplitude of the signal. 

The radiation intensity R(φ) of an LED as Lambert source of emission can be 

expressed as: 
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𝑅(𝜑) =

𝑚 + 1

2𝜋
𝑃𝑡𝑐𝑜𝑠𝑚(𝜑), 

(15) 

 

where 𝑚 is the modulation or Lambertian index of LED and 𝜑 is the angle between 

direction of beam with respect to 0. 

The brightness of LED, illuminance or flux per unit area 𝐸 is another important 

parameter to maintain an equilibrium between brightness and data communication 

requirement for a room with known dimensions, illuminance 𝐸 of LED is given by: 

 

 
𝐸 =

𝑑𝛷

𝑑𝑆
=

𝐼(𝜃)

𝑟2
, 

(16) 

 

where  𝑟 is the distance between transmitter and receiver present in the spatial angle 

[40]. 

 

 

4.2. Underwater Communication Link 

Underwater visible light communication (UVLC), is a great field of interest for the 

military, underwater sports, deep oil drilling and the scientific community. The main 

factor that distinguishes UVLC communication from RF communication is its 

penetration depth in water, since radio waves are strongly absorbed in water. UVLC 

can be useful underwater in terms of illumination and communication to reach the 

depths RF cannot reach and to establish communication between multiple transmitters 

and receivers. In addition, the location of receptors (users) within the range of optical 

intensity can be accurately identified, tracked and communicated with each other [41] 

[42]. Underwater OWC channel can be modelled using Beer’s Law for a finite distance 

to predict attenuation loss ℎ(𝐿) as follows: 

 

 ℎ(𝐿) =  ℎ𝑐 𝑒𝐶(𝜆)𝐿 , (17) 

 
where ℎ𝑐   is constant, 𝐶(𝜆) cumulative attenuation or photon extinction coefficient. 

𝑐(λ) =  a(λ) +  b(λ), where a(λ) and b(λ) are the absorption and scattering 

coefficients respectively, 𝐿 is the communication link distance (meters). 

Monte Carlo method uses a weighted function of two term exponential 

approximation to assess multiple scattering events over a finite communication 

distance. 

 

 ℎ(𝐿) =  𝑎1 𝑒−𝑐1𝐿 + 𝑎2 𝑒−𝑐2𝐿 . (18) 

 

The variation of turbidity in oceans or pools is a complex design parameter for a 

reliable UWOC. Underwater channel turbidity in water is due to microorganisms, 

bubbles and currents in ocean. The factors that may affect the ability to detect signals 

accurately underwater are wavelength for transmission, transmitter receiver alignment 

and variable distance. Light penetration in water results in faster attenuation of longer 

wavelengths than shorter wavelengths. Longer wavelengths have lower frequencies, 
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like red light attenuates faster and blue-green wavelength which is 532 nm penetrates 

deeper in water, the reason why objects appear blue under waters where ambient light 

is not present. The work in [43] presents a theoretical study for a long distance 

underwater visible light communication link. The absorption and scattering properties 

of pure sea water were replicated and a SPAD modelled for improved detectivity of 

VLC signals. The Monte Carlo simulation results showed communication link 

distance was extended to 500 meters using wavelength close to 532 nm. The skin depth 

of water for microwaves is barely few meters due to the electric permittivity and 

dielectric constant of water [44]. 

 

 

4.3. Turbid Medium (Biological Tissue) 

The absorption of light waves in water is dependent on wavelength [45], compared to 

air where absorption loss is negligible over a distance compared to water or other 

turbid mediums like human tissue [46] - [47]. Near infrared window of wavelengths 

penetrates deeper in human body in contrast with the green and blue wavelength 

windows [48] - [49]. 

Optical properties of biological tissues determine the light penetration and the 

relative energy deposition. Light signals in tissues are governed by absorption 𝜇𝑎 

(cm−1), scattering (Rayleigh and Mie) 𝜇𝑠 (cm−1) and refractive indices. Biological 

tissues are highly anisotropic i.e. light transmission in a tissue scatters in the forward 

direction for visible wavelengths [50]. The average value of cosine of the scattering 

angle 𝛳 for tissues is 𝑔 ~0.9, where 𝑔 =  𝐶𝑜𝑠 𝛳 is the coefficient of anisotropy or the 

cosine of angle of deflection of the scattered photon. The value of 𝑔 ranges between -

1 and 1. 

 

{

−1, 𝑡𝑜𝑡𝑎𝑙𝑙𝑦 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 
0, 𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

1, 𝑡𝑜𝑡𝑎𝑙𝑙𝑦 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔
 

 

The sum of absorption 𝜇𝑎  and scattering coefficient 𝜇𝑠 is the total attenuation in a 

turbid medium, given by: 

 𝜇𝑇 = 𝜇𝑎 + 𝜇𝑠.  
 

(19) 

Light suffers from high scattering and absorption in tissues [51] due to its structure 

comprising of absorbing chromophores or primary light absorbing compounds such as 

blood, water, melanin, fat, yellow pigments etc. The direction of photon after 

scattering is dependent on the wavelength of the light used and refractive indices of 

different tissue layers (Elwell & Phil, 1995 [49]. 
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5. TISSUE OPTICS 

This section discusses the light tissue interaction presented in (61) as shown in Figure 

18. Optical properties of the tissue vary with the path length where part of the light is 

absorbed, scattered, transmitted and reflected. The mass density fluctuation of various 

tissue structures (inhomogeneous distribution of blood, bones, cell membranes and 

other constituents) cause Rayleigh and Mie scattering of light in the tissue. Mie 

scattering which occurs when the particle is either the same size or larger than the used 

wavelength, predominates Rayleigh scattering which occurs from particles smaller 

than the wavelength 

 

 
Figure 18. Typical biological tissue structure. 

 

The Rayleigh scattering efficiency ‘kλ’ is inversely proportional to the fourth power 

of the wavelength used in incident light kλ → 1/λ4 [52].  When light travels through 

biological tissues, it scatters in different directions as shown in Figure 19 

 

 
Figure 19. Light beam interaction with bio tissue. 

 

The absorption coefficient as a function of wavelength is given as follows: 
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 𝜇𝑎(λ) = Ʃ𝑖 . 𝑐𝑖 . 𝜇𝑎𝑖
(λ), (20) 

where, 𝑐𝑖 and 𝜇𝑎𝑖
(λ) are the concentration level and the specific extinction coefficient 

of the 𝑖𝑡ℎ absorption of the 𝑖𝑡ℎ constitutent or chromophores of the tissue respectively.  

Scattering process is diffusive in tissues due to the liquid-based content like water, 

lipid and its sub cellular structures like membranes and mitochondria gives rise to 

diffusive scattering. Light transport in turbid media gets absorbed due to multiple 

phenomenon which are governed by dimensionless anisotropy factor 𝑔. 

 

 𝜇′ 𝑎 =  𝜇𝑠 . (1 − 𝑔) [𝑐𝑚−1], (21) 

where 𝜇′ 𝑎 is the scattering event which occurs when the incident photon advances 

through incremental length (in meters) and 𝜇𝑠  is the reduced scattering coefficient.  

The double power reduced scattering function can be written in the form of 

Rayleigh and Mie scattering as follows. 

 

 
𝜇′

 𝑆
(𝜆) =  𝑎𝑅𝑎𝑦 (

𝜆

𝜆𝑅𝑒𝑓
)

−4

+  𝑎𝑀𝑖𝑒  (
𝜆

𝜆𝑅𝑒𝑓
)

−𝑏

, 
 
(22) 

 

where 𝑏 is the dimensionless scatter power, 𝜆𝑅𝑒𝑓 is the reference wavelength, 𝑎𝑅𝑎𝑦 

and 𝑎𝑀𝑖𝑒  are Rayleigh and Mie scattering coefficients. 

The double power reduced scattering expression as seen in (22) was first used by 

Mourant et al. (1998) followed by Amelink et al. (2005), Wang et al. (2005), Mirkovic 

et al. (2009) to model 𝜇′ 𝑆 in terms of scattering probability factors aRay and aMie and 

the exponents defining the size of scattering media (Mourant et al. 1997) [53]. 

 

 

5.1. Monte Carlo Method of Photon Simulation 

Monte Carlo is widely used flexible method to simulate light propagation in tissue. 

The simulation is based on random walks of photon with the tissue layers causing 

angular deflection of the photons due to scattering. The simulation predicts steady-

state light distribution through the multi-layered media which is a close approximation 

to the real scenario. The scattering of photons in tissue is governed by anisotropy, 

Rayleigh and Mie scattering. Simple equations for absorption and scattering 

measurement for a complex tissue are presented from a computer simulation [54] of 

light transport in a heterogeneous medium. The medium is modelled with varying 

absorption and scattering properties from Scott Prahl’s work in [55]. The absorption 

property is modelled as: 

 

 𝜇 𝑎 = 𝐵. 𝑆 𝜇 𝑎.(𝑂𝑥𝑦𝑔𝑒𝑛𝑎𝑡𝑒𝑑) + 𝐵(1 − 𝑆)𝜇 𝑎.(𝐷𝑒𝑜𝑥𝑦𝑔𝑒𝑛𝑎𝑡𝑒𝑑)

+ 𝑊. 𝜇 𝑎.(𝑊𝑎𝑡𝑒𝑟) + 𝐹𝜇 𝑎.(𝐹𝑎𝑡) + 𝑀𝜇 𝑎.(𝑀𝑒𝑙𝑎𝑛𝑜𝑠𝑜𝑚𝑒). 

(23) 

 

The absorption coefficients of the following constituents of tissue model 

characterize its optical properties. 
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 B (average blood volume fraction) 

 S (haemoglobin Blood, oxygenated and deoxygenated) 

 W (water content) 

 F (fat content) 

 M (melanosome content) 

Absorption decreases with the increase in wavelength in the 500 nm – 600 nm range 

corresponding to melanin and haemoglobin absorption coefficients and further 

decreasing exponentially from 600 nm to 800 nm. Absorption spectrum, due to 

melanin concentration in skin varies from darker skin to lighter skin, assuming other 

chromophores concentrations constant. Melanin volume fraction in epidermis of 

tissues, as reported by Jacques et al. is 1 – 3% for light skinned, 11 to 16% for 

Mediterranean skin and 18 to 43% for dark skin [56]. This near infra-red window or 

therapeutic window 650 nm – 1350 nm has the maximum transmittance through tissues 

used extensively in medical field such as medical imaging, traumatic brain injuries 

diagnosis [57], skin and muscle diagnosis in vivo vascular imaging using infra-red II 

fluorescence [58] allowing quantification of blood velocity in arteries. 

The Monte Carlo method for simulation of finite number of photons shows 

distribution of light in a complex tissue comprising of different layers as shown in 

Figure (20). The spatial distribution of photons in a three-dimensional complex 

medium with a finite collimated (0.6 cm) beam irradiating a tissue containing a blood 

vessel is simulated over 532 nm, 770 nm and 1000 nm. An infinite number of photons 

initially weighted ‘unity’ for computational convenience are launched to propagate 

through the layers. The photons are injected in the tissue orthogonally at the point of 

origin of the tissue. 

The step size for photon movement is modelled in (24) by sampling the probability 

distribution of photon in the layers and their angular deflection per scattering event. 

 

 
𝑠 =

− 𝑙𝑛(𝑅𝑁𝐷)

𝜇𝑡
, 

(24) 

 

where 𝑅𝑁𝐷 is a random variable distributed over [0,1] interval uniformly, 𝜇𝑡 known 

as interaction coefficient, sums up 𝜇𝑎 and 𝜇𝑠.  

The random variables between 0 and 1 correspond to step size of photon, the 

deflection and azimuthal angles. MC method is a statistical method of random 

distribution where every photon can be traced until it exits the medium or is completely 

absorbed/ extinct. These incremental steps that the large number of photons take are 

proportional to the computational time. The photon absorbed near the tissues boundary 

interfaces is decremented in ‘weight’, updated in voxels by (25) and stored in array of 

T (200, 200, 200) bins. 

 

 𝛥𝑊 =  (
𝑢𝑎

𝑢𝑡
) . 𝑊. (25) 

 

The decremented weight of photon is deflected by angle θ (0, π) after scattering and 

the anisotropy is set to 0.9 indicating forward direct scattering, a value typically used 
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for tissues for visible spectrum. The probability of distribution of photons per 

scattering event is given as follows: 

 

 
𝑝(𝑐𝑜𝑠𝜃) =  1 –

𝑔2

2
 (1 +  𝑔2 –  2𝑔𝑐𝑜𝑠𝜃)

3
2 

(26) 

 

Using (26), from Henyey-Greenstein scattering function, we can find out cos(𝜃) as 

a function of a random variable as follows: 

 

 
cos(𝜃) =

1

2𝑔
{1 + 𝑔2 − [

1 − 𝑔2

1 − 𝑔 + 2𝑔. 𝑅𝑁𝐷 
]

2

}  𝑖𝑓 𝑔 > 0. 
(27) 

 

The azimuthal angle distributed over intervals 0 and 2π can be sampled as: 

 

 ψ =   2𝜋𝑅𝑁𝐷. (28) 

 

The new direction of photon after this process is updated by the following 

equations: 

 
𝜇′𝑥 =  

sin(𝜃)

√1 − 𝜇𝑧
2

(𝜇𝑥 𝜇𝑧 cos ѱ − 𝜇𝑦 sin ѱ) +  𝜇𝑥 cos 𝜃. 

 

(29) 

 

 
𝜇′𝑦 =  

sin(𝜃)

√1 − 𝜇𝑧
2

(𝜇𝑦 𝜇𝑧 cos ѱ + 𝜇𝑥 sin ѱ) + 𝜇𝑦 cos 𝜃. 
(30) 

 

 𝜇′𝑧 =  − sin 𝜃 cos ѱ √1 − 𝜇𝑧
2 +  𝜇𝑧 cos 𝜃. (31) 

 
The propagation of photon in tissue suffers attenuation from one layer of the tissue, 

bearing different optical properties to another tissue with different optical properties 

(32). 

The photon step size decreases crossing several layers of tissues until it is small 

enough to lie in one of the layers, followed by absorption and scattering processes.  

Photon Package Termination is set to be in process when the photon weight reaches a 

value too small to be traced. A Monte Carlo method called Russian Roulette 

probabilistically decides photon survival in the medium whereas photon is terminated 

when the photon weight falls below pre-set threshold weight as W = 0.01). A photon 

can also be partially reflected or transmitted according to some variances of roulette. 

The results are summarized after enough photons interaction. 

The lights bearing wavelengths 532 nm, 770 nm and 1000 nm are separately 

delivered to the tissue surface as a circular collimated uniform beam of 0.6 cm 

diameter. The tissue is divided into 200 bins in the x, y and z coordinates. The energy 

of photons can be determined by (32). 

 

 
𝐸𝑝ℎ(𝜆) = ℎ𝑣 =

ℎ𝑐

𝜆
, 

(32) 
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where, 𝐸𝑝ℎ(𝜆) is the energy of one photon for the given wavelength, ℎ = 6.626 ∗

10−34  (Plank’s constant), 𝑐 = 2.99 ∗ 1010/1.3(𝑇𝑖𝑠𝑠𝑢𝑒 𝑅𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝐼𝑛𝑑𝑒𝑥). 

 

5.2. Photon Simulation in Biological Tissues 

The simulation of light as a point source incident direct over the tissue can be measured 

using the following equations from the source [59]. 

 

 𝐼𝑇(𝜆) = 𝑁𝑝ℎ. 𝐸𝑝ℎ. 𝑇𝑥(𝑎𝑟𝑒𝑎), (33) 

where 𝑁𝑝ℎ is the total number of launched photons and transmission diameter is set to 

be 𝑇𝑥(𝑎𝑟𝑒𝑎) = 0.6 cm.  

The received intensity 𝐼𝑅 measurement is carried out at four different depths of the 

tissue as shown in equation (11) rewritten as follows. 

 

 𝐼𝑅 =  𝐼𝑇
(−𝜇𝑇 .  𝑑)

, (34) 
 

where 𝜇𝑇 is sum total of absorption 𝜇 𝑎 and scattering coefficients 𝜇 𝑠 of the tissue 

layers.  

The simulation was carried out using 532 nm, 770 nm and 1000 nm wavelengths 

separately. The simulation uses the absorption, scattering and anisotropy values from 

Scott Prahl’s work [55]. The wavelength corresponding optical properties for the three 

wavelengths are presented in Tables 3, 4 and 5 respectively. 

 

Table 3. 𝜇𝑎, 𝜇𝑠 and anisotropy of the tissue model using wavelength 532nm 

Parameter 𝝁 𝒂  (cm-1) 𝝁 𝒔 (cm-1) 𝝁𝑻 (cm-1) 

Water 0.0004 10 10.0004 

Blood 230.542 94 324.54 

Epidermis 0.4585 356.5 356.958 

Dermis 16.572 375.9 374.472 

 

Table 4. 𝜇𝑎, 𝜇𝑠 and anisotropy of the tissue model using wavelength 770nm 

Parameter 𝝁 𝒂  (cm-1) 𝝁 𝒔 (cm-1) 𝝁𝑻 (cm-1) 

Water 0.024 10 10.024 

Blood 4.389 64.9 69.289 

Epidermis 0.0252 151.4 151.425 

Dermis 4.8561 259.7 264.556 

 

Table 5. 𝜇𝑎, 𝜇𝑠 and anisotropy of the tissue model using wavelength 1000nm 

Parameter 𝝁 𝒂  (cm-1) 𝝁 𝒔 (cm-1) 𝝁𝑻 (cm-1) 

Water 0.360 10 10.360 

Blood 4.731 50 54.731 

Epidermis 0.242 97 97.242 

Dermis 2.29 200 202.296 
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The optical properties determine the fluence rate of photons in the turbid medium 

which is further used to determine the amount of intensity present through the depths 

of the tissue model. The wavelength dependent photon fluence rate shows the total 

number of photons incident from all the directions. We will use a separate simulation 

(see appendices 1 and 2) to measure the total number of photons incident on a 

photodetector model of a specific cross-sectional area of detection which is known as 

spherical irradiance. 

 

5.2.1. Simulation Results 

The fluence rate measurements are carried out using previous work [60] on Monte 

Carlo simulation of photons in a complex tissue. The relationship between fluence rate 

and light intensity is of major importance to this study. The fluence rate data obtained 

from Monte Carlo simulation can be used to find out light intensity as shown in the 

following equation taken from [61]. 

 

 𝐹 =  𝐼𝑅 . 𝜏𝑝, (35) 

where 𝐹 is the fluence rate, 𝐼𝑅 denotes the intensity of light and 𝜏𝑝 is the pulse width 

or exposure time.  

The fluence rate as shown in (36) was used (see Appendix 1) to measure light 

intensity at different depths of the tissue as presented in Figure 20 

 

 
Figure 20. Fluence rates of 532 nm, 770 nm and 1000 nm. 

 

The complex tissue medium is comprised of five layers of tissues with unique 

optical properties. Light intensity was measured at four variable depths of the tissue. 

The pulse width or exposure time 𝜏𝑝 was set to be an incremental value between 1 

picosecond and 10 picoseconds. The intensity of light incident on the photodetector is 

assumed to be at these four different depths. The received optical power can be 

measured using (37). 

 

 𝑃˳(𝜆) = 𝐼𝑅 . 𝐴𝑟𝑒𝑎𝑅 , (36) 

where 𝑃˳(𝜆) is the received optical power for the given wavelength and 𝐴𝑟𝑒𝑎𝑅 is the 

surface area of the photodetector. 
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The photocurrent 𝐼𝑃𝐻 generated by the PD is given by: 

 

 𝐼𝑃𝐻 = 𝑅𝐴. 𝑃˳(𝜆), (37) 

where 𝑅𝐴 is the responsivity of the photodetector set to be 0.46.  

To measure signal to noise ratio (SNR) at depths of the tissue, three different kinds 

of noise are considered in optical devices shot noise, Johnson noise and dark current 

of the photodetector. For computational convenience, only the intrinsic noise of the 

photodetector i.e. the shot noise is used in this simulation given by: 

 

 𝑖𝑛 = √2. 𝑒. (𝐼𝐷 + 𝐼𝑃𝐻). 𝐵 , (38) 

where 𝑒 is the charge (1.602 x 10-19) of one electron, 𝐼𝐷 is the dark current set to be 

0.03 x 10-9 and the bandwidth 𝐵 of the photodetector channel is 106 Hz.  

The SNR of the communication can found using (40). 

 

 
𝑆𝑁𝑅 =

𝐼𝑃𝐻
2

𝑖𝑛
2 . 

(39) 

 

We used Shannon’s capacity formula to find out the binary bits of possible 

communication between the fixed source of transmission projected on the tissue and 

the photodetector at any given depth. 

 

 𝐶 =  𝐵 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅). (40) 

To achieve maximum achievable data rates of the communication between fixed 

source and the photodetector, it is vital to use the same bandwidth that we used in 

equation (39) i.e. 106 Hz. The two-dimensional plots of the simulation are presented 

in Figures 21, 22 and 23 

 

 

Figure. 21 Achievable data rates using 532 nm wavelength. 
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Figure. 22 Achievable data rates using 770 nm wavelength. 

 
Figure. 23 Achievable data rates using 1000 nm wavelength. 

 

Figure 20 represents the fluence rates measured using 532 nm, 770 nm and 1000 

nm wavelengths projected on the tissue model. Figure 20 is a readable file, (see 

Appendix 1) uploaded in the simulation program to measure achievable data rates of 

a possible communication between the light source and photodetector. The achievable 

bit rate measurements as can be seen in Figures 21, 22 and 23 represent the intensity 

of light penetrating through the depths (y-axes) of tissue models shown in Figure 20.  

The peak observed between depths 0.01 and 0.02 is due to water layer above skin, 

which has higher permittivity for light than the skin, similarly the peak between 0.04 
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and 0.06 is due to higher permittivity of light through blood artery as shown in Figure 

20. A slight decrease in data rates is observed as the light transverses through the tissue 

models. The initial data rates of the communication using 1000 nm and 770 nm 

wavelengths are greater than 532 nm, although 532 nm wavelength seems to support 

a consistent connectivity compared to 770 nm and 1000 nm wavelengths. The 

maximum achievable data rates possible according to the simulation of photon fluence 

distribution of 1000 nm wavelength in the simulation is close to 0.9 Mbps. In the next 

section, a separate photon fluence distribution simulation is studied to compare the 

data rate measurements in obtained in this section. 

 

 

5.2.2. Case Study 

Another case based on the work of Meglinski et al. [62] - [63] is discussed in this 

section to find out the difference between the two simulation works. In this simulation 

work [64] a high dynamic range optical to near infra-red transmission measurements 

is done on various human body parts. The spectral range of 650 nm to 950 nm through 

various parts of human body are correlated with Monte Carlo simulation using 

CIELAB colour space, which expresses colours as three unique numerical values as 

‘L’, ‘A’ and ‘B’. In this scheme L is for lightness, whereas ‘A’ and ‘B’ denote the 

green-red and blue-yellow colour components. The newly developed technique will 

help acquire more accurate results for in-vivo optical diagnostics since the chromacity 

coordinates are in complete agreement with the experimentally measured spectra. 

The experimental setup comprised of spectroscopy employed high energy 

picosecond laser pulses and a large area photonic crystal fiber. The optical properties 

and the colour of tissue used in the simulation were based on the inhomogeneous 

spatial distribution of blood, water, melanin, the degree of blood oxygenation and the 

haematocrit index based on their previous work in [65], [66] - [67].  

The tissue was irradiated with a high intensity white light continuum between 650 

nm and 950 nm. The light was collected at the other side of the body using a 0.6 mm2 

multimode optical fibre cable. The other end of the receiving fibre opening was 

connected with an imaging spectrometer. The fluence rate application in the simulation 

is a sample estimator of fluence rate distribution. The optical properties absorption, 

scattering, anisotropy, index and thickness of tissue were set as shown in the Table 6 

were used for the 633 nm wavelength of light. 

 

Table 6. Simulation parameters for fluence rate estimation 
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The fluence rate application performs the simulation of light into the complex 

composite tissue structure and produces a fluence rate as shown in Figure 24 

 

 
Figure 24. Fluence rate measurement for 633 nm wavelength (www.biophotonics.fi) 

 

Figure 24 is a readable file (see Appendix 2), used to find out the numerical values 

of fluence rate distribution across the tissue medium. Light intensity was measured 

using (36) and further converted into electrical signals using (39) 

 

 
Figure 25. Achievable data rate using 633 nm wavelength (www.biophotonics.fi) 

 

http://www.biophotonics.fi/
http://www.biophotonics.fi/
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The two different case studies presented in 5.2.1 and 5.2.2 are simulated over tissues 

of different optical properties. However, the results in Figure 25 are more accurate and 

realistic based on the fact the optical properties used as reference for this simulation 

are recently updated, however the simulation in 5.2.1 was based on optical properties 

of tissues updated in 1996 [55]. The results from 5.2.1 suggest the use of near infra-

red wavelengths for a wireless communication using visible light while the results in 

5.2.2 are obtained using 633 nm wavelength. The theoretically achievable data rates 

in Figure 25 are close to 0.95 Mbps. The data rates decrease as the light transverses 

through the tissue model, but a strong connectivity seems theoretically possible. The 

future work intends to present an investigation of an implantable photodetector 

exposed to an optical transmitter to compare the results in Figure 25. The objective of 

the demonstration is to assess the possibility of VLC setup between an implant 

photodetector an optical source in comparison to the theoretical study presented in this 

thesis. 
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6. DISCUSSION AND CONCLUSION 

The results from the simulations are based on two different tissue models. A Monte 

Carlo simulation was tested to produce corresponding fluence rates for different (532 

nm, 770 nm and 1000 nm) wavelengths, which was mathematically transformed into 

detectable light intensity in the tissue model. The intensity of light observed using 

1000 nm wavelength was greater than that of 770 nm and the intensity of 770 nm was 

observed to be greater than 532 nm. Since the thickness of the tissue model was 0.1 

cms, the difference in the penetration depths was not found to be too noticeable. Light 

intensity was measured from the vertex of optical source towards the boundary of the 

tissue along y-axis. An optical detector produces electrical signal proportional to the 

received optical signal, however the intrinsic noise of the detector significantly impacts 

the SNR of the communication. The active area and bandwidth of the detector model 

was kept constant for both the simulations for a comparative output. 

The results reveal that wireless communication between a static light source and a 

photodetector is possible based on the achievable data rates shown in Figures 21, 22, 

23 and 25. The range for such a short-range wireless communication seems slightly 

different for different wavelengths (532 nm, 633 nm, 770 nm and 1000 nm) as 

perceived from the results in this thesis, however this flexibility allows us to transmit 

multiple data streams to an implantable device, using a single homogenous light source 

typically an LED. The optical properties of tissue model studied in section 5.2.2 was 

completely different from the first tissue model used in section 5.2.1 furthermore, the 

structure of both the tissue models was also different. However, the results in both the 

simulations were observed to be close to each other for the same detector model.  

The study reveals a possibility of wireless communication in the order of Mbps, 

supporting larger amounts of data transmission to the lifesaving and life sustaining 

prosthetic implantable devices as well as microchip implants used for identification, 

like radio frequency identification (RFID) implant devices. Based on studies and 

channel performance measurements in this thesis, VLC technology is strongly 

suggested for high speed high capacity wireless communication with implant device(s) 

for its low-cost implementation, safety from RF exposure, less complex circuitry 

design, immunity from RF interference and high security against hacking of sensitive 

medical and personal information. 
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Appendix 1. MCXYZ.m 

 
%% Original Script: (lookmcxyz.m) Steven L Jacques 
% Revision: Date 01:06:2018 
% Modified by: Syed Isphandyar Ali 

% This script calculates bitrate in biological tissue at 633 nm 

using the  
% optical properties of tissue model given in the following 

references. 
 

%% Reference 
% Jacques, S.L. and Li, T., 2013. Monte Carlo simulations of light  

% transport in 3D heterogenous tissues (mcxyz. c). See 

http://omlc.  

% org/software/mc/mcxyz/index. 
 

home; clear 
format compact 
commandwindow 

  
SAVEPICSON = 1; 
if SAVEPICSON 
    sz = 10; fz = 7; fz2 = 5; % to use savepic.m 
else 
    sz = 12; fz = 9; fz2 = 7; % for screen display 
end 
%%%% USER CHOICES <---------- you must specify ----- 
myname = 'skinvessel'; nm =770; 
%%%% 

  
disp(sprintf('------ mcxyz %s -------',myname)) 

  
% Load header file 
filename = sprintf('%s_H.mci',myname); 
disp(['loading ' filename]) 
fid = fopen(filename, 'r'); 
A = fscanf(fid,'%f',[1 Inf])'; 
fclose(fid); 

  
%% parameters 
time_min = A(1); 
Nx = A(2); 
Ny = A(3); 
Nz = A(4); 
dx = A(5); 
dy = A(6); 
dz = A(7); 
mcflag = A(8); 
launchflag = A(9); 
boundaryflag = A(10); 
xs = A(11); 
ys = A(12); 
zs = A(13); 
xfocus = A(14); 
yfocus = A(15); 
zfocus = A(16); 
ux0 = A(17); 
uy0 = A(18); 
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uz0 = A(19); 
radius = A(20); 
waist = A(21); 
Nt = A(22); 
j = 22; 
for i=1:Nt 
    j=j+1; 
    muav(i,1) = A(j); 
    j=j+1; 
    musv(i,1) = A(j); 
    j=j+1; 
    gv(i,1) = A(j); 
end 

  
reportHmci(myname) 

  
%% Load Fluence rate F(y,x,z)  
filename = sprintf('%s_F.bin',myname); 
disp(['loading ' filename]) 
tic 
    fid = fopen(filename, 'rb'); 
    [Data count] = fread(fid, Ny*Nx*Nz, 'float'); 
    fclose(fid); 
toc 
F = reshape(Data,Ny,Nx,Nz); % F(y,x,z) 

  
%% 
% Load tissue structure in voxels, T(y,x,z)  
filename = sprintf('%s_T.bin',myname); 
disp(['loading ' filename]) 
tic 
    fid = fopen(filename, 'rb'); 
    [Data count] = fread(fid, Ny*Nx*Nz, 'uint8'); 
    fclose(fid); 
toc 
T = reshape(Data,Ny,Nx,Nz); % T(y,x,z) 

  
clear Data 

  
%% 
x = ([1:Nx]-Nx/2-1/2)*dx; 
y = ([1:Ny]-Ny/2-1/2)*dx; 
z = ([1:Nz]-1/2)*dz; 
ux = [2:Nx-1]; 
uy = [2:Ny-1]; 
uz = [2:Nz-1]; 
zmin = min(z); 
zmax = max(z); 
zdiff = zmax-zmin; 
xmin = min(x); 
xmax = max(x); 
xdiff = xmax-xmin; 

  
%% Look at structure, Tzx 
Tzx = reshape(T(Ny/2,:,:),Nx,Nz)'; 
tissue = makeTissueList(nm); 
Nt = length(tissue); 

  
figure();clf 
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imagesc(x(ux),z(uz),Tzx(uz,ux),[1 Nt]) 
hold on 
cmap = makecmap(Nt); 
colourmap(cmap) 
colourbar 
set(gca,'fontsize',sz) 
set(colourbar,'fontsize',1) 
xlabel('x [cm]') 
ylabel('z [cm]') 
title('Tissue','fontweight','normal','fontsize',fz2) 
for i=1:Nt 
    yy = zmin + (Nt-i)/(Nt-1)*zdiff; 
    text(xmax*1.4,yy, sprintf('%d 

%s',i,tissue(i).name),'fontsize',fz2) 
end 

  
% draw launch 
N = 20; % # of beam rays drawn 
switch mcflag 
    case 0 % uniform 
        for i=0:N 
            plot((-radius + 2*radius*i/N)*[1 1],[zs max(z)],'r-') 
        end 

  
    case 1 % Gaussian 
        for i=0:N 
            plot([(-radius + 2*radius*i/N) xfocus],[zs zfocus],'r-

') 
        end 

  
    case 2 % iso-point 
        for i=1:N 
            th = (i-1)/19*2*pi; 
            xx = Nx/2*cos(th) + xs; 
            zz = Nx/2*sin(th) + zs; 
            plot([xs xx],[zs zz],'r-') 
        end 

         
    case 3 % rectangle 
        zz = max(z); 
        for i=0:N 
            xx = -radius + 2*radius*i/N; 
            plot([xx xx],[zs zz],'r-') 
        end 
end 
axis equal image 

  
if SAVEPICSON 
    name = sprintf('%s_tissue.jpg',myname); 
    savepic(1,[4 3],name) 
end 

  
%% Look at Fluence Fzx @ launch point 
Fzx = reshape(F(Ny/2,:,:),Nx,Nz)'; % in z,x plane through source 

  
figure();clf 
imagesc(x,z,log10(Fzx),[.5 2.8]) 
hold on 
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text(max(x)*1.2,min(z)-0.04*max(z),'log_{10}( \phi 

)','fontsize',fz) 
colourbar 
set(gca,'fontsize',sz) 
xlabel('x [cm]') 
ylabel('z [cm]') 
title('Fluence \phi [W/cm^2/W.delivered] 

','fontweight','normal','fontsize',fz) 
colourmap(makec2f) 
axis equal image 
%axis([min(x) max(x) min(z) max(z)]) 
text(min(x)-0.2*max(x),min(z)-0.08*max(z),sprintf('runtime = %0.1f 

min',time_min),... 
    'fontsize',fz2) 

  
if SAVEPICSON 
    name = sprintf('%s_Fzx.jpg',myname); 
    savepic(2,[4 3],name) 
end 

  
%% look Fzy 
Fzy = reshape(F(:,Nx/2,:),Ny,Nz)'; 

  
iy = round((dy*Ny/2 + 0.15)/dy); 
iz = round(zs/dz); 
zzs  = zs; 
%Fdet = mean(reshape(Fzy(iz+[-1:1],iy+[0 1]),6,1)); 

  
figure();clf 
imagesc(y,z,log10(Fzy),[.5 2.8]) 
hold on 
text(max(x)*1.2,min(z)-0.04*max(z),'log_{10}( \phi 

)','fontsize',fz) 
colourbar 
set(gca,'fontsize',sz) 
xlabel('y [cm]') 
ylabel('z [cm]') 
title('Fluence \phi [W/cm^2/W.delivered] 

','fontweight','normal','fontsize',fz) 
colourmap(makec2f) 
axis equal image 
text(min(x)-0.2*max(x),min(z)-0.08*max(z),sprintf('runtime = %0.1f 

min',time_min),... 
    'fontsize',fz2) 

  
if SAVEPICSON 
    name = sprintf('%s_Fzy.jpg',myname); 
    savepic(3,[4 3],name) 
end 

  
%% look Azx 
Fzx = reshape(F(Ny/2,:,:),Nx,Nz)'; % in z,x plane through source 
mua = muav(reshape(T(Ny/2,:,:),Nx,Nz)'); 
Azx = Fzx.*mua; 

  
figure();clf 
imagesc(x,z,log10(Azx)) 
hold on 
text(max(x)*1.2,min(z)-0.04*max(z),'log_{10}( A )','fontsize',fz) 
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colourbar 
set(gca,'fontsize',sz) 
xlabel('x [cm]') 
ylabel('z [cm]') 
title('Fluence Rate A [W/cm^3/W.delivered] 

','fontweight','normal','fontsize',fz) 
colourmap(makec2f) 
axis equal image 
%axis([min(x) max(x) min(z) max(z)]) 
text(min(x)-0.2*max(x),min(z)-0.08*max(z),sprintf('runtime = %0.1f 

min',time_min),... 
    'fontsize',fz2) 

  
if SAVEPICSON 
    name = sprintf('%s_Azx.jpg',myname); 
    savepic(2,[4 3],name) 
end 

  
drawnow 

  
disp('done') 

  
%%modification start 
Rx_Area = 0.2300;               % xxPhotodiode active area mm^2 
Ra = 0.46;                      % Responsivity 
q = 1.602e-19;                  % electron charge 
Id = 10e-9;                     % xxPhotodiode dark current 
T = 300;                        % Temperature 
K = 1.38*10^-23;                % Boltzman constant 
R = 1;                          % [Ohms] Resistance of Circuitry 
BW = 100e3;                       % Bandwidth 
%% Bit Rate Calculations 
% Incident optical Intensity W/mm^2 
image=Azx; 
Fluence_Rate = (image(:,100)); 
ps = 10^-12; 
tau_d=[]; 
for i =1:200 
tau_d = [tau_d, i*ps]; 
end 
Intensity = Fluence_Rate ./ tau_d; 
P_r = Intensity*Rx_Area;     % Received optical power 
I_ph = Ra*P_r;                  % Photocurrent 
i_shot = sqrt(2*q*I_ph*BW);     % Shot Noise 
i_johnson = (4*K*T*BW)/R;       % Johnson Noise 
i_tot_noise = sqrt((Id^2)+(i_shot.^2)+(i_johnson^2));    % Total 

Noise 
SNR = (I_ph.^2)./(i_tot_noise.^2);                % Signal to 

noise ratio 
C = (BW*(log2(1+SNR)))/10^6;      % Shannon Achievable Capacity in 

Mbps 
% Plot (Tissue depth vs bitrate [Mbps]) 

  
figure() 

  
plot(z,log10(C(:,100))) 
hold on 
text(max(x)*1.2,min(z)-0.04*max(z),'log_{10}( A )','fontsize',fz) 
set(gca,'fontsize',sz) 
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xlabel('x [cm]') 
ylabel('z [cm]') 
title('Fluence Rate A [W/cm^3/W.delivered] 

','fontweight','normal','fontsize',fz) 
colourmap(makec2f) 
axis equal image 
text(min(x)-0.2*max(x),min(z)-0.08*max(z),sprintf('runtime = %0.1f 

min',time_min),... 
    'fontsize',fz2) 
xlabel('depth [cm]') 
ylabel('Shannon Capacity - Mbps ') 
set(gca,'FontSize',14) 
grid on; 
title('Tissue depth vs bitrate [Mbps]') 
%%modification end 

 



 

 

58 

Appendix 2. BIOPHOTONICS.m 

 
%% Original Script: (biophotonics.m) Ali Asphandyar 
% Date 01:06:2018 
% This script calculates bitrate in biological tissue at 633 nm 

using the  
% optical properties of tissue model given in the following 

references. 
 

%% Reference 1 
% A.V. Doronin, I.V. Meglinski, “Peer-to-Peer Monte  
% Carlo simulation of photon migration in topical applications of  
% biomedical optics”, Journal of Biomedical Optics, Vol. 17, Issue 

9, 090504 (2012) 
 

%% Reference 2 
% A.V. Doronin, I.V. Meglinski, “Online Object-Oriented Monte 

Carlo  
% computational tool for the needs of biomedical optics”,  
% Biomedical Optics Express, Vol. 2, Issue 9, pp.2461-2469 (2011) 
 

%% Given Inputs 
Clear;   % clear work space  
close all;   % closes all the open figure windows  
clc;   % Clear command window 
tissue_dep = [0:(5/100):5-0.01]; % Tissue Depth 
Rx_Area = 0.2300;  % Photodiode active area mm^2 
Ra = 0.46;   % Responsivity 
q = 1.602e-19;  % electron charge 
Id = 10e-9;  % Photodiode dark current 
T = 300;   % Temperature 
K = 1.38*10^-23;  % Boltzmann constant 
R = 1;   % [Ohms] Resistance of Circuitry 
BW = 100e3;  % Bandwidth 
 

%% Bit Rate Calculations 
% Incident optical Intensity W/mm^2 
image=load('08022018123632_arz.flrt'); 
Fluence_Rate = image(1:100); 
ps = 10^-12; 
tau_d=[]; 
for i =1:100 
tau_d = [tau_d, i*ps]; 
end 
Intensity = Fluence_Rate ./ tau_d; 
P_r = Intensity*Rx_Area;     % Received optical power 
I_ph = Ra*P_r;                  % Photocurrent 
i_shot = sqrt(2*q*I_ph*BW);     % Shot Noise 
i_johnson = (4*K*T*BW)/R;       % Johnson Noise 
i_tot_noise = sqrt((Id^2)+(i_shot.^2)+(i_johnson^2)); % Total 

Noise 
SNR = (I_ph.^2)./(i_tot_noise.^2); % Signal to noise ratio 
C = (BW*(log2(1+SNR)))/10^6; % Shannon Achievable Capacity in 

Mbps 
%% Plot (Tissue depth vs bitrate [Mbps]) 
figure; 
plot(tissue_dep,C,'--ks','LineWidth',2,... 
                       'MarkerEdgeColour','r',... 
                       'MarkerFaceColour','g',... 
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                       'MarkerSize',10) 

                    
xlabel('depth [mm]') 
xlim([min(tissue_dep) max(tissue_dep)]) 
ylabel('Shannon Capacity - Mbps ') 
set(gca,'FontSize',14) 
grid on; 
title('Tissue depth vs bitrate [Mbps]') 
figure() 
plot(tissue_dep,log10(C)) 
xlabel('depth [mm]') 
ylabel('Shannon Capacity - Mbps ') 
set(gca,'FontSize',14) 
grid on; 
title('Tissue depth vs bitrate [Mbps]') 


