1,752 research outputs found

    Ceramic applications in turbine engines

    Get PDF
    Development testing activities on the 1900 F-configuration ceramic parts were completed, 2070 F-configuration ceramic component rig and engine testing was initiated, and the conceptual design for the 2265 F-configuration engine was identified. Fabrication of the 2070 F-configuration ceramic parts continued, along with burner rig development testing of the 2070 F-configuration metal combustor in preparation for 1132 C (2070 F) qualification test conditions. Shakedown testing of the hot engine simulator (HES) rig was also completed in preparation for testing of a spin rig-qualified ceramic-bladed rotor assembly at 1132 C (2070 F) test conditions. Concurrently, ceramics from new sources and alternate materials continued to be evaluated, and fabrication of 2070 F-configuration ceramic component from these new sources continued. Cold spin testing of the critical 2070 F-configuration blade continued in the spin test rig to qualify a set of ceramic blades at 117% engine speed for the gasifier turbine rotor. Rig testing of the ceramic-bladed gasifier turbine rotor assembly at 108% engine speed was also performed, which resulted in the failure of one blade. The new three-piece hot seal with the nickel oxide/calcium fluoride wearface composition was qualified in the regenerator rig and introduced to engine operation wiwth marginal success

    Process characterisation for electrochemical machining

    Get PDF

    Workshop on the Thermophysical Properties of Molten Materials

    Get PDF
    The role of accurate thermophysical property data in the process design and modeling of solidification processes was the subject of a workshop held on 22-23 Oct. 1992 in Cleveland, Ohio. The workshop was divided into three sequential sessions dealing with (1) industrial needs and priorities for thermophysical data, (2) experimental capabilities for measuring the necessary data, and (3) theoretical capabilities for predicting the necessary data. In addition, a 2-hour panel discussion of the salient issues was featured as well as a 2-hour caucus that assessed priorities and identified action plans

    Ceramic applications in turbine engines

    Get PDF
    The design and testing of gas turbine engines employing ceramic components is discussed. Thermal shock and vibration test results as well as spin tests of various engine components are discussed

    Advanced Power Loss Modeling and Model-Based Control of Three-Phase Induction Motor Drive Systems

    Get PDF
    Three-phase induction motor (IM) drive systems are the most important workhorses of many industries worldwide. This dissertation addresses improved modeling of three-phase IM drives and model-based control algorithms for the purpose of designing better IM drive systems. Enhancements of efficiency, availability, as well as performance of IMs, such as maximum torque-per-ampere capability, power density, and torque rating, are of major interest. An advanced power loss model of three-phase IM drives is proposed and comprehensively validated at different speed, load torque, flux and input voltage conditions. This model includes a core-loss model of three-phase IMs, a model of machine mechanical and stray losses, and a model of power electronic losses in inverters. The drive loss model shows more than 90% accuracy and is used to design system-level loss minimization control of a motor drive system, which is integrated with the conventional volts-per-hertz control and indirect field-oriented control as case studies. The designed loss minimization control leads to more than 13% loss reduction than using rated flux for the testing motor drive under certain conditions. The proposed core-loss model is also used to design an improved model-based maximum torque-per-ampere control of IMs by considering core losses. Significant increase of torque-per-ampere capability could be possible for high-speed IMs. A simple model-based time-domain fault diagnosis method of four major IM faults is provided; it is nonintrusive, fast, and has excellent fault sensitivity and robustness to noise and harmonics. A fault-tolerant control scheme for sensor failures in closed-loop IM drives is also studied, where a multi-controller drive is proposed and uses different controllers with minimum hand-off transients when switching between controllers. A finite element analysis model of medium-voltage IMs is explored, where electromagnetic and thermal analyses are co-simulated. The torque rating and power density of the simulated machine could be increased by 14% with proper change of stator winding insulation material. The outcome of this dissertation is an advanced three-phase IM drive that is enhanced using model-based loss minimization control, fault detection and diagnosis of machine faults, fault-tolerant control under sensor failures, and performance-enhancement suggestions

    MATLAB

    Get PDF
    This excellent book represents the final part of three-volumes regarding MATLAB-based applications in almost every branch of science. The book consists of 19 excellent, insightful articles and the readers will find the results very useful to their work. In particular, the book consists of three parts, the first one is devoted to mathematical methods in the applied sciences by using MATLAB, the second is devoted to MATLAB applications of general interest and the third one discusses MATLAB for educational purposes. This collection of high quality articles, refers to a large range of professional fields and can be used for science as well as for various educational purposes

    Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    Reports on the research projects performed under the NASA/ASEE Summer Faculty Fellowship Program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensin

    Hydrogen concentration measurements using a gel-filled electrochemical probe

    Get PDF
    A novel gel-filled electrochemical hydrogen probe was developed and used to measure hydrogen concentrations in carbon-manganese steels. The results were compared with those from an electrochemical permeation technique and a volumetric method. The probe was used to determine the distribution of hydrogen in 5mm steel plates cathodically charged on one side to represent the wall of a pipe or pressure vessel used in hydrogen service. The concentration measurements obtained by the three techniques were in good agreement with each other and with those predicted from diffusion equations and this permitted the precise boundary conditions on the charged metal surface to be determined. Surface reaction kinetics were investigated to model the hydrogen distribution and these were solved using solutions to Fick's diffusion equations. After long charging times the hydrogen concentration on the efflux surface of the plate approached that on the influx side, indicating that an almost uniform hydrogen distribution had been established. Rather than rapid loss of hydrogen from the free surface, as had been assumed previously, it was clear that there was a large resistance to hydrogen transport across the metal/air interface. Microstructural damage was examined both optically and using the scanning electron microscope. Separate investigations were carried out to help understand the effect that reversible and irreversible trapping had on the diffusion of hydrogen through the steel

    Selected Papers from the 9th World Congress on Industrial Process Tomography

    Get PDF
    Industrial process tomography (IPT) is becoming an important tool for Industry 4.0. It consists of multidimensional sensor technologies and methods that aim to provide unparalleled internal information on industrial processes used in many sectors. This book showcases a selection of papers at the forefront of the latest developments in such technologies

    Advanced Gas Turbine (AGT) Technology Development Project

    Get PDF
    This report is the eleventh in the series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Standard Oil Company, and AiResearch Casting Company. This report covers plans and progress for the period July 1, 1985 through June 30, 1986. Technical progress during the reported period was highlighted by the 85-hour endurance run of an all-ceramic engine operating in the 2000 to 2250 F temperature regime. Component development continued in the areas of the combustion/fuel injection system, regenerator and seals system, and ceramic turbine rotor attachment design. Component rig testing saw further refinements. Ceramic materials showed continued improvements in required properties for gas turbine applications; however, continued development is needed before performance and reliability goals can be set
    corecore