8 research outputs found

    Detection of REM Sleep Behaviour Disorder by Automated Polysomnography Analysis

    Full text link
    Evidence suggests Rapid-Eye-Movement (REM) Sleep Behaviour Disorder (RBD) is an early predictor of Parkinson's disease. This study proposes a fully-automated framework for RBD detection consisting of automated sleep staging followed by RBD identification. Analysis was assessed using a limited polysomnography montage from 53 participants with RBD and 53 age-matched healthy controls. Sleep stage classification was achieved using a Random Forest (RF) classifier and 156 features extracted from electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) channels. For RBD detection, a RF classifier was trained combining established techniques to quantify muscle atonia with additional features that incorporate sleep architecture and the EMG fractal exponent. Automated multi-state sleep staging achieved a 0.62 Cohen's Kappa score. RBD detection accuracy improved by 10% to 96% (compared to individual established metrics) when using manually annotated sleep staging. Accuracy remained high (92%) when using automated sleep staging. This study outperforms established metrics and demonstrates that incorporating sleep architecture and sleep stage transitions can benefit RBD detection. This study also achieved automated sleep staging with a level of accuracy comparable to manual annotation. This study validates a tractable, fully-automated, and sensitive pipeline for RBD identification that could be translated to wearable take-home technology.Comment: 20 pages, 3 figure

    Novel Muscle Monitoring by Radiomyography(RMG) and Application to Hand Gesture Recognition

    Full text link
    Conventional electromyography (EMG) measures the continuous neural activity during muscle contraction, but lacks explicit quantification of the actual contraction. Mechanomyography (MMG) and accelerometers only measure body surface motion, while ultrasound, CT-scan and MRI are restricted to in-clinic snapshots. Here we propose a novel radiomyography (RMG) for continuous muscle actuation sensing that can be wearable and touchless, capturing both superficial and deep muscle groups. We verified RMG experimentally by a forearm wearable sensor for detailed hand gesture recognition. We first converted the radio sensing outputs to the time-frequency spectrogram, and then employed the vision transformer (ViT) deep learning network as the classification model, which can recognize 23 gestures with an average accuracy up to 99% on 8 subjects. By transfer learning, high adaptivity to user difference and sensor variation were achieved at an average accuracy up to 97%. We further demonstrated RMG to monitor eye and leg muscles and achieved high accuracy for eye movement and body postures tracking. RMG can be used with synchronous EMG to derive stimulation-actuation waveforms for many future applications in kinesiology, physiotherapy, rehabilitation, and human-machine interface

    Biomarkers of conversion to alpha-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder

    Get PDF
    Patients with isolated rapid-eye-movement sleep behaviour disorder (RBD) are commonly regarded as being in the early stages of a progressive neurodegenerative disease involving \u3b1-synuclein pathology, such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. Abnormal \u3b1-synuclein deposition occurs early in the neurodegenerative process across the central and peripheral nervous systems and might precede the appearance of motor symptoms and cognitive decline by several decades. These findings provide the rationale to develop reliable biomarkers that can better predict conversion to clinically manifest \u3b1-synucleinopathies. In addition, biomarkers of disease progression will be essential to monitor treatment response once disease-modifying therapies become available, and biomarkers of disease subtype will be essential to enable prediction of which subtype of \u3b1-synucleinopathy patients with isolated RBD might develop

    A review of automated sleep disorder detection

    Get PDF
    Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand

    Detection of REM sleep behaviour disorder by automated polysomnography analysis

    No full text
    Objective Evidence suggests Rapid-Eye-Movement (REM) Sleep Behaviour Disorder (RBD) is an early predictor of Parkinson’s disease. This study proposes a fully-automated framework for RBD detection consisting of automated sleep staging followed by RBD identification. Methods Analysis was assessed using a limited polysomnography montage from 53 participants with RBD and 53 age-matched healthy controls. Sleep stage classification was achieved using a Random Forest (RF) classifier and 156 features extracted from electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) channels. For RBD detection, a RF classifier was trained combining established techniques to quantify muscle atonia with additional features that incorporate sleep architecture and the EMG fractal exponent. Results Automated multi-state sleep staging achieved a 0.62 Cohen’s Kappa score. RBD detection accuracy improved from 86% to 96% (compared to individual established metrics) when using manually annotated sleep staging. Accuracy remained high (92%) when using automated sleep staging. Conclusions This study outperforms established metrics and demonstrates that incorporating sleep architecture and sleep stage transitions can benefit RBD detection. This study also achieved automated sleep staging with a level of accuracy comparable to manual annotation. Significance This study validates a tractable, fully-automated, and sensitive pipeline for RBD identification that could be translated to wearable take-home technology.</p
    corecore