12 research outputs found

    Texture descriptors applied to digital mammography

    Get PDF
    Breast cancer is the second cause of death among women cancers. Computer Aided Detection has been demon- strated an useful tool for early diagnosis, a crucial as- pect for a high survival rate. In this context, several re- search works have incorporated texture features in mam- mographic image segmentation and description such as Gray-Level co-occurrence matrices, Local Binary Pat- terns, and many others. This paper presents an approach for breast density classi¯cation based on segmentation and texture feature extraction techniques in order to clas- sify digital mammograms according to their internal tis- sue. The aim of this work is to compare di®erent texture descriptors on the same framework (same algorithms for segmentation and classi¯cation, as well as same images). Extensive results prove the feasibility of the proposed ap- proach.Postprint (published version

    Segmentation and Feature Extraction of Tumors from Digital Mammograms

    Get PDF
    Mammography is one of the available techniques for the early detection of masses or abnormalities which is related to breast cancer. Breast Cancer is the uncontrolled of cells in the breast region, which may affect the other parts of the body. The most common abnormalities that might indicate breast cancer are masses and calcifications. Masses appear in a mammogram as fine, granular clusters and also masses will not have sharp boundaries, so often difficult to identify in a raw mammogram. Digital Mammography is one of the best available technologies currently being used for the early detection of breast cancer. Computer Aided Detection System has to be developed for the detection of masses and calcifications in Digital Mammogram, which acts as a secondary tool for the radiologists for diagnosing the breast cancer. In this paper, we have proposed a secondary tool for the radiologists that help them in the segmentation and feature extraction process. Keywords: Mammography, Breast Cancer, Masses, Calcification, Digital Mammography, Computer Aided Detection System, Segmentation, Feature Extractio

    Mammograms Classification Using Gray-level Co-occurrence Matrix and Radial Basis Function Neural Network

    Get PDF
    AbstractComputer Aided Diagnosis (CAD) is used to assist radiologist in classifying various type of breast cancers. It already proved its success not only in reducing human error in reading the mammograms but also shows better and reliable classification into benign and malignant abnormalities.This paper will report and attempt on using Radial Basis Function Neural Network (RBFNN) for mammograms classification based on Gray-level Co-occurrence Matrix (GLCM) texture based features.In this study, normal and abnormal breast image used as the standard input are taken from Mammographic Image Analysis Society (MIAS) digital mammogram database. The computational experiments show that RBFNN is better than Back-propagation Neural Network (BPNN) in performing breast cancer classification. For normal and abnormal classification, the result shows that RBFNN's accuracy is93.98%, which is 14% higher than BPNN, while the accuracy of benign and malignant classification is 94.29% which is 2% higher than BPNN

    Identification of masses in digital mammogram using gray level co-occurrence matrices

    Get PDF
    Digital mammogram has become the most effective technique for early breast cancer detection modality. Digital mammogram takes an electronic image of the breast and stores it directly in a computer. The aim of this study is to develop an automated system for assisting the analysis of digital mammograms. Computer image processing techniques will be applied to enhance images and this is followed by segmentation of the region of interest (ROI). Subsequently, the textural features will be extracted from the ROI. The texture features will be used to classify the ROIs as either masses or non-masses. In this study normal breast images and breast image with masses used as the standard input to the proposed system are taken from Mammographic Image Analysis Society (MIAS) digital mammogram database. In MIAS database, masses are grouped into either spiculated, circumscribed or ill-defined. Additional information includes location of masses centres and radius of masses. The extraction of the textural features of ROIs is done by using gray level co-occurrence matrices (GLCM) which is constructed at four different directions for each ROI. The results show that the GLCM at 0º, 45º, 90º and 135º with a block size of 8X8 give significant texture information to identify between masses and non-masses tissues. Analysis of GLCM properties i.e. contrast, energy and homogeneity resulted in receiver operating characteristics (ROC) curve area of Az = 0.84 for Otsu’s method, 0.82 for thresholding method and Az = 0.7 for K-mean clustering. ROC curve area of 0.8-0.9 is rated as good results. The authors’ proposed method contains no complicated algorithm. The detection is based on a decision tree with five criterions to be analysed. This simplicity leads to less computational time. Thus, this approach is suitable for automated real-time breast cancer diagnosis system

    Computer Aided Diagnosis - Medical Image Analysis Techniques

    Get PDF
    Breast cancer is the second leading cause of death among women worldwide. Mammography is the basic tool available for screening to find the abnormality at the earliest. It is shown to be effective in reducing mortality rates caused by breast cancer. Mammograms produced by low radiation X-ray are difficult to interpret, especially in screening context. The sensitivity of screening depends on image quality and unclear evidence available in the image. The radiologists find it difficult to interpret the digital mammography; hence, computer-aided diagnosis (CAD) technology helps to improve the performance of radiologists by increasing sensitivity rate in a cost-effective way. Current research is focused toward the designing and development of medical imaging and analysis system by using digital image processing tools and the techniques of artificial intelligence, which can detect the abnormality features, classify them, and provide visual proofs to the radiologists. The computer-based techniques are more suitable for detection of mass in mammography, feature extraction, and classification. The proposed CAD system addresses the several steps such as preprocessing, segmentation, feature extraction, and classification. Though commercial CAD systems are available, identification of subtle signs for breast cancer detection and classification remains difficult. The proposed system presents some advanced techniques in medical imaging to overcome these difficulties

    DETECÇÃO E DIAGNÓSTICO DE MASSAS EM MAMOGRAFIA: revisão bibliográfica

    Get PDF
    Resumo: O câncer de mama tem se tornado cada dia mais freqüente entre a população feminina acima dos 40 anos. Somente para o ano de 2011 são estimados, no Brasil, 49 mil novos casos. Uma das maneiras para detectar os tumores não palpáveis que causam câncer de mama é realizar uma radiografia (mamografia) das mamas. A  mamografia é atualmente a melhor técnica de detecção precoce de lesões não apalpáveis na mama com altas chances de ser um câncer curável. Sabe-se que as chances de cura do câncer de mama são, relativamente altas, se detectado nos estágios inicias. Entretanto, a sensibilidade desse exame pode variar bastante, em decorrência de fatores como qualidade do exame ou experiência do especialista. Dessa forma, a utilização de sistemas CAD e CADx tem contribuído para aumentar as chances de uma detecção e diagnósticos corretos, ou seja, uma segunda opinião, auxiliando os especialistas na tomada de decisões em um tratamento do câncer de mama. Este artigo faz uma revisão bibliográfica de trabalhos voltados para detecção e diagnóstico de massas.Palavras-chave: Massa. Mamografia. Detecção. Diagnóstico. Câncer de mama.MAMMOGRAPHY MASS DETECTION AND DIAGNOSIS: a surveyAbstract: Breast cancer has become increasingly common among the female population over 40 years old. Only for the year 2011 are estimated, in Brazil, 49 000 new cases. One way to detect non-palpable tumors that cause breast cancer is to perform an X-ray (mammogram) of the breasts. Mammography is currently the best technique for early detection of non-palpable breast lesions with high chances of being a curable cancer. It is known that the chances of a cure for breast cancer are relatively high if detected in early stages. However, the sensitivity of this exam can vary greatly due to factors such as quality of examination or experience of the specialist. Thus, the use of CAD systems and CADX has contributed to increase the chances of detection and correct diagnosis, working as a second opinion in treatment of breast cancer. This article is a literature review of studies focused on detection and diagnosis of masses.Keywords: Mass. Mammography. Detection. Diagnosis. Breast cancer.DETECCIÓN Y DIAGNÓSTICO DE MASAS EN UNA MAMOGRAFÍA: una revisión de la literatura Resumen: El cáncer de mama se ha tornado cada vez más común entre la población femenina de más de 40 años. Sólo para el año 2011 se estima que en Brasil habrán 49 000 nuevos casos. Una forma de detectar tumores no palpables que causan el cáncer de mama es realizar una radiografía (mamografía) de los senos. La mamografía es actualmente la mejor técnica para la detección precoz de lesiones mamarias no palpables, con altas posibilidades de ser un cáncer curable. Se sabe que las posibilidades de una cura para el cáncer de mama son relativamente altas si se detecta en etapas tempranas. Sin embargo, la sensibilidad de esta prueba pueden variar considerablemente debido a factores como la calidad de los exámenes o la experiencia del especialista. Por lo tanto, el uso de sistemas CAD y CADX ha contribuido a aumentar las posibilidades de  detección y el diagnóstico correcto, o una segunda opinión, ayudando a los expertos en la tomada de decisiones en el tratamiento del cáncer de mama. Este artículo es una revisión de la literatura de trabajos sobre detección y diagnóstico de masas.Palabras clave: Masa. Mamografía. Detección. Diagnóstico de cáncer de mama

    Aplicação de técnicas de data mining para suporte ao diagnóstico de cancro da mama

    Get PDF
    More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.Cada vez mais assistimos a um aumento global do número de métodos de apoio a decisão e diagnóstico assistido por computador, aplicados a diversas áreas da medicina. Na área de investigação do cancro da mama muitos são os trabalhos que têm sido desenvolvidos como segunda leitura de modo a reduzir o número de falsos positivos no diagnóstico. Neste estudo é apresentado um conjunto de técnicas de data mining que poderão ser aplicadas a um sistema de apoio à decisão na área do diagnóstico de cancro da mama. Esta abordagem tem por objetivo ajudar os clínicos na identificação de achados mamográficos como microcalcificações, massas e mesmo tecidos normais, de forma a evitar diagnósticos errados. Para isso, neste trabalho é usada uma base de dados fidedigna, de 410 imagens correspondentes a 115 pacientes, contendo análises prévias, realizadas por radiologistas, de microcalcificações, massas e tecidos considerados normais. Ao longo deste trabalho são utilizadas duas técnicas de extração de características, a matriz de coocorrência de níveis de cinza e a matriz de comprimento da linha de níveis de cinza. Para a classificação foram considerados diferentes cenários de acordo com diferentes padrões de distinção de lesões e ainda vários classificadores de forma a distinguir as melhores performances em cada caso descrito. Os vários classificadores usados foram Naïve Bayes, Support Vector Machines, k-nearest Neighbors e Decision Trees (J48 e Random Forests). Os resultados obtidos na distinção dos achados mamográficos revelaram percentagens de valor preditivo positivo e de precisão bastante boas. São ainda apresentados outros resultados relacionados com sistemas de classificação de densidade mamária e escala BI-RADS®. O melhor método de previsão encontrado, perante todos os grupos testados, foi o classificador Random Forest e o melhor desempenho foi conseguido através da distinção de microcalcificações. As conclusões feitas ao longo dos vários cenários testados foram interessantes em termos que representam uma nova perspetiva no diagnóstico do cancro da mama, utilizando técnicas de data mining

    Automatic BIRAD scoring of breast cancer mammograms

    Get PDF
    A computer aided diagnosis system (CAD) is developed to fully characterize and classify mass to benign and malignancy and to predict BIRAD (Breast Imaging Reporting and Data system) scores using mammographic image data. The CAD includes a preprocessing step to de-noise mammograms. This is followed by an active counter segmentation to deforms an initial curve, annotated by a radiologist, to separate and define the boundary of a mass from background. A feature extraction scheme wasthen used to fully characterize a mass by extraction of the most relevant features that have a large impact on the outcome of a patient biopsy. For this thirty-five medical and mathematical features based on intensity, shape and texture associated to the mass were extracted. Several feature selection schemes were then applied to select the most dominant features for use in next step, classification. Finally, a hierarchical classification schemes were applied on those subset of features to firstly classify mass to benign (mass with BIRAD score 2) and malignant mass (mass with BIRAD score over 4), and secondly to sub classify mass with BIRAD score over 4 to three classes (BIRAD with score 4a,4b,4c). Accuracy of segmentation performance were evaluated by calculating the degree of overlapping between the active counter segmentation and the manual segmentation, and the result was 98.5%. Also reproducibility of active counter 3 using different manual initialization of algorithm by three radiologists were assessed and result was 99.5%. Classification performance was evaluated using one hundred sixty masses (80 masses with BRAD score 2 and 80 mass with BIRAD score over4). The best result for classification of data to benign and malignance was found using a combination of sequential forward floating feature (SFFS) selection and a boosted tree hybrid classifier with Ada boost ensemble method, decision tree learner type and 100 learners’ regression tree classifier, achieving 100% sensitivity and specificity in hold out method, 99.4% in cross validation method and 98.62 % average accuracy in cross validation method. For further sub classification of eighty malignance data with BIRAD score of over 4 (30 mass with BIRAD score 4a,30 masses with BIRAD score 4b and 20 masses with BIRAD score 4c), the best result achieved using the boosted tree with ensemble method bag, decision tree learner type with 200 learners Classification, achieving 100% sensitivity and specificity in hold out method, 98.8% accuracy and 98.41% average accuracy for ten times run in cross validation method. Beside those 160 masses (BIRAD score 2 and over 4) 13 masses with BIRAD score 3 were gathered. Which means patient is recommended to be tested in another medical imaging technique and also is recommended to do follow-up in six months. The CAD system was trained with mass with BIRAD score 2 and over 4 also 4 it was further tested using 13 masses with a BIRAD score of 3 and the CAD results are shown to agree with the radiologist’s classification after confirming in six months follow up. The present results demonstrate high sensitivity and specificity of the proposed CAD system compared to prior research. The present research is therefore intended to make contributions to the field by proposing a novel CAD system, consists of series of well-selected image processing algorithms, to firstly classify mass to benign or malignancy, secondly sub classify BIRAD 4 to three groups and finally to interpret BIRAD 3 to BIRAD 2 without a need of follow up study

    Segmentation, Super-resolution and Fusion for Digital Mammogram Classification

    Get PDF
    Mammography is one of the most common and effective techniques used by radiologists for the early detection of breast cancer. Recently, computer-aided detection/diagnosis (CAD) has become a major research topic in medical imaging and has been widely applied in clinical situations. According to statics, early detection of cancer can reduce the mortality rates by 30% to 70%, therefore detection and diagnosis in the early stage are very important. CAD systems are designed primarily to assist radiologists in detecting and classifying abnormalities in medical scan images, but the main challenges hindering their wider deployment is the difficulty in achieving accuracy rates that help improve radiologists’ performance. The detection and diagnosis of breast cancer face two main issues: the accuracy of the CAD system, and the radiologists’ performance in reading and diagnosing mammograms. This thesis focused on the accuracy of CAD systems. In particular, we investigated two main steps of CAD systems; pre-processing (enhancement and segmentation), feature extraction and classification. Through this investigation, we make five main contributions to the field of automatic mammogram analysis. In automated mammogram analysis, image segmentation techniques are employed in breast boundary or region-of-interest (ROI) extraction. In most Medio-Lateral Oblique (MLO) views of mammograms, the pectoral muscle represents a predominant density region and it is important to detect and segment out this muscle region during pre-processing because it could be bias to the detection of breast cancer. An important reason for the breast border extraction is that it will limit the search-zone for abnormalities in the region of the breast without undue influence from the background of the mammogram. Therefore, we propose a new scheme for breast border extraction, artifact removal and removal of annotations, which are found in the background of mammograms. This was achieved using an local adaptive threshold that creates a binary mask for the images, followed by the use of morphological operations. Furthermore, an adaptive algorithm is proposed to detect and remove the pectoral muscle automatically. Feature extraction is another important step of any image-based pattern classification system. The performance of the corresponding classification depends very much on how well the extracted features represent the object of interest. We investigated a range of different texture feature sets such as Local Binary Pattern Histogram (LBPH), Histogram of Oriented Gradients (HOG) descriptor, and Gray Level Co-occurrence Matrix (GLCM). We propose the use of multi-scale features based on wavelet and local binary patterns for mammogram classification. We extract histograms of LBP codes from the original image as well as the wavelet sub-bands. Extracted features are combined into a single feature set. Experimental results show that our proposed method of combining LBPH features obtained from the original image and with LBPH features obtained from the wavelet domain increase the classification accuracy (sensitivity and specificity) when compared with LBPH extracted from the original image. The feature vector size could be large for some types of feature extraction schemes and they may contain redundant features that could have a negative effect on the performance of classification accuracy. Therefore, feature vector size reduction is needed to achieve higher accuracy as well as efficiency (processing and storage). We reduced the size of the features by applying principle component analysis (PCA) on the feature set and only chose a small number of eigen components to represent the features. Experimental results showed enhancement in the mammogram classification accuracy with a small set of features when compared with using original feature vector. Then we investigated and propose the use of the feature and decision fusion in mammogram classification. In feature-level fusion, two or more extracted feature sets of the same mammogram are concatenated into a single larger fused feature vector to represent the mammogram. Whereas in decision-level fusion, the results of individual classifiers based on distinct features extracted from the same mammogram are combined into a single decision. In this case the final decision is made by majority voting among the results of individual classifiers. Finally, we investigated the use of super resolution as a pre-processing step to enhance the mammograms prior to extracting features. From the preliminary experimental results we conclude that using enhanced mammograms have a positive effect on the performance of the system. Overall, our combination of proposals outperforms several existing schemes published in the literature
    corecore