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Abstract 

More than ever, there is an increase of the number of decision support methods and 

computer aided diagnostic systems applied to various areas of medicine. In breast 

cancer research, many works have been done in order to reduce false-positives when 

used as a double reading method. 

In this study, we aimed to present a set of data mining techniques that were applied 

to approach a decision support system in the area of breast cancer diagnosis. This 

method is geared to assist clinical practice in identifying mammographic findings such 

as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis.  

In this work a reliable database was used, with 410 images from about 115 patients, 

containing previous reviews performed by radiologists as microcalcifications, masses 

and also normal tissue findings. 

Throughout this work, two feature extraction techniques were used: the gray level 

co-occurrence matrix and the gray level run length matrix. 

For classification purposes, we considered various scenarios according to different 

distinct patterns of injuries and several classifiers in order to distinguish the best 

performance in each case described. The many classifiers used were Naïve Bayes, 

Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random 

Forests). 

The results in distinguishing mammographic findings revealed great percentages of 

PPV and very good accuracy values. Furthermore, it also presented other related results 

of classification of breast density and BI-RADS
®
 scale. 

The best predictive method found for all tested groups was the Random Forest 

classifier, and the best performance has been achieved through the distinction of 

microcalcifications. 

The conclusions based on the several tested scenarios represent a new perspective in 

breast cancer diagnosis using data mining techniques. 
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Resumo 

 

Cada vez mais assistimos a um aumento global do número de métodos de apoio a 

decisão e diagnóstico assistido por computador, aplicados a diversas áreas da medicina. 

Na área de investigação do cancro da mama muitos são os trabalhos que têm sido 

desenvolvidos como segunda leitura de modo a reduzir o número de falsos positivos no 

diagnóstico. 

Neste estudo é apresentado um conjunto de técnicas de data mining que poderão ser 

aplicadas a um sistema de apoio à decisão na área do diagnóstico de cancro da mama. 

Esta abordagem tem por objetivo ajudar os clínicos na identificação de achados 

mamográficos como microcalcificações, massas e mesmo tecidos normais, de forma a 

evitar diagnósticos errados.  

Para isso, neste trabalho é usada uma base de dados fidedigna, de 410 imagens 

correspondentes a 115 pacientes, contendo análises prévias, realizadas por radiologistas, 

de microcalcificações, massas e tecidos considerados normais. 

Ao longo deste trabalho são utilizadas duas técnicas de extração de características, a 

matriz de coocorrência de níveis de cinza e a matriz de comprimento da linha de níveis 

de cinza. 

Para a classificação foram considerados diferentes cenários de acordo com diferentes 

padrões de distinção de lesões e ainda vários classificadores de forma a distinguir as 

melhores performances em cada caso descrito. Os vários classificadores usados foram 

Naïve Bayes, Support Vector Machines, k-nearest Neighbors e Decision Trees (J48 e 

Random Forests). 

Os resultados obtidos na distinção dos achados mamográficos revelaram 

percentagens de valor preditivo positivo e de precisão bastante boas. São ainda 

apresentados outros resultados relacionados com sistemas de classificação de densidade 

mamária e escala BI-RADS
®
. 



X 
 

O melhor método de previsão encontrado, perante todos os grupos testados, foi o 

classificador Random Forest e o melhor desempenho foi conseguido através da 

distinção de microcalcificações.  

As conclusões feitas ao longo dos vários cenários testados foram interessantes em 

termos que representam uma nova perspetiva no diagnóstico do cancro da mama, 

utilizando técnicas de data mining. 
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Chapter 1 

Introduction 

 

The main goal of this work is the development of an approach that could be 

implemented for a decision support system which might help oncologists to better 

classify and diagnose breast cancer with the use of data mining techniques. 

For this purpose, throughout this work we will present some of the reasons why we 

chose breast cancer diagnosis as a subject, as well as some advantages of their 

application based on decision support methods. 

The following chapters present the framework and motivation for the subject, as well 

as the specific objectives and structure of the document. 

 

1.1. Framing the issue 

Breast cancer is globally the most prevalent cancer among women over 40 years of 

age (1). Several studies have revealed that the early detection of breast cancer 

considerably reduces the mortality and morbidity caused by this disease (1-3).   

Currently, there are several programs for screening and prevention of breast cancer 

based on the analysis of mammograms. 

However this technique requires a specialized interpretation that takes considerable 

time. Also, it is an imperfect exam, with many agreeing that this test has a sensitivity of 

about 85 to 90% (4, 5). In order to improve the effectiveness of this method, systems for 

computer aided diagnosis (CAD) are arising and according to several authors this is 

leading to an incremental improvement of detection for this type of cancer by 
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coordinating the work of the radiologist with the implementation of the CAD system (1, 

4, 6). 

In the area of breast cancer research, various diagnostic support systems have been 

developed and discussed in terms of future  potential (7-11), such as those enumerated 

later in this work (Chapter III). The same happened in the case of lung and colon cancer 

(12) . 

In this context, the aim of this work was the development of a diagnostic system in 

clinical practice to identify breast cancer.   

 

1.2. Motivation 

According to data collected by the “Liga Portuguesa contra o cancro” (13), breast 

cancer is a public health problem that, despite not being the most lethal, has a high 

incidence and mortality rate, especially among women. Of these data, it is also 

estimated that in Portugal, with a female population of about 5 million people, about 

4,500 new cases of breast cancer are detected annually, the equivalent to 11 new cases 

per day, and about 1,500 women die from this disease each year, or roughly 4 cases per 

day. 

In a global way, and to the International Agency for Research on Cancer (IARC), in 

2012 there were estimated close to 1.7 million breast cancer diagnoses, around 11.9% of 

all worldwide cancers diagnosed in the same period, and about 522,000 women 

worldwide have died from the disease in the same year (14). 

In the same study, 19.3 million new cancer cases were expected by year 2025, in 

which the largest increase will be in breast cancer (1, 14). 

Consequently, the worldwide incidence of breast cancer showed a continuous growth 

in the last decade, most probably related to the unstable and uneven socio-economic 

development, and also demographic factors affecting the provision and accessibility to 

health services (15) . The increased life expectancy also could be linked to the higher 

breast cancer incidence nowadays, since a greater number of people live longer than 

before, approaching ever closer to the maximum lifetime of about 120 years, and 

therefore increasing the risk of cancer. 

In an approach to counteract this trend, there is a need for implementation of early 

diagnosis and patient monitoring systems, as well as better and more approachable 
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health care. The quicker advancement of technology and increasingly computerized 

means allows the realization of new platforms for medical care, which include 

electronic recording and decision support systems. 

 

1.3.  Specific objectives 

The main objective of this project relies on the creation of an effective toolkit to 

detect breast cancer by the application of data mining techniques. By this we intend to 

create a decision support approach that can be used either to assist professionals or to 

help students in the correct identification using learning platforms. 

The application of classifying methods was later evaluated with the aim to determine 

which features and classifiers have better performance in identifying features on 

mammograms. 

The main contributions of this work are:  

-  The extraction of image features from a mammographic database using several 

approaches; 

- A feature selection methodology based on statistical correlations between the 

values of each image processed; 

- Evaluation of the contribution of classification methods in order to detect and 

classify mammograms findings. 

 

1.4. Main structure of the document 

Throughout this document different aspects will be addressed to form a better 

understanding of breast cancer, with special emphasis on types of associated breast 

pathologies and their classification in accordance with internationally recognized 

standards. 

In the next chapter we will present some relevant facts concerning breast cancer 

disease, a brief explanation about the mammographic technique and also the criteria 

used for breast density and cancer stage classification. In chapter 3 we present some of 

the most important CAD systems developed and also some classification methods 

which were used in related works. 
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Our approach is later presented in chapter 4, where the methodology adopted is 

explained. In chapter 5 results as well as their discussion are revealed.  At the end of the 

document, in chapter 6, conclusions reached throughout the work as well as some final 

thoughts are presented.  
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Chapter 2 

Breast Cancer 

Breast cancer is a disease that reflects an uncontrolled growth of breast cells in the 

event of an error in its DNA sequence. This disarray normally occurs in women, but can 

also manifest in men, with the probability of only about 1 in 100 developing cancer in 

men  (16) . 

The proliferation of the disease occurs through the lymphatic system of the breast 

and due to the extent of this system, it is often an obstacle for cancer detection and 

analysis of their level of development. Nevertheless, when cancer cells are found in the 

lymph nodes of the breast there is a high probability that these spread to the 

bloodstream and consequently create metastases elsewhere in the body (3, 5, 16). 

In breast cancer, about 95% of these are carcinomas once they arise as breast 

epithelial elements (17). In turn, usually about 80% of carcinomas are originated in the 

mammary ducts (DCIS) and 20% lobes (LCIS), as shown in Figure 2.1 (18, 19). 

 

Figure 2.1: Internal mammary constituents (19). 
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In the clinical practice, some general methods are used for subdividing the breast 

into small areas in order to better describe the state and location of the lesions. The 

system of quadrants is the most used method, outlining four quadrants with reference to 

the position of the nipple, as shown in Figure 2.2 (a). Another system that has come into 

disuse but is still applied by some professionals is the system clock, also shown in 

Figure 2 (b). 

 

(20) 

For breast cancer diagnosis some risk factors must be evaluated, although 

individually they cannot directly quantify the probability of risk, some of them that 

must be considered as a group of risk factors. 

A risk factor is defined as any variable that alters the probability of having a 

particular disease (16). Given a set of risk factors for a cause, however, cannot indicate 

that a particular individual has the disease, but rather provides a marker and a better way 

of performing the clinical diagnosis and patient monitoring. 

The following list presents the summary of some risk factors (16, 19, 21): 

 Gender: About 99% of cases occur in women; 

 Age: Increased risk of 1/8 for women under 45 years and 2/3 for women over 

50; 

a) b) 

Figure 2.2:  Quadrants of the Breast (20). 

 

Right Left 
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 Genetic Factor: 5 to 10% of the cancers are hereditary cases, from which 80% 

are mutations in the BRCA1 gene and 45% represent mutations in the BRCA2 

gene. 

 Menstrual cycle: The risk increased in cases of menarche before age 12 and 

menopause after 55. 

 Family history: Doubles the risk in case of family in first order with the disease. 

About 20-30% of women with breast cancer have a family history of the disease. 

 DES treatment (dietilestrilbestrol): Daughters born to the mother that in her 

pregnancy has taken DES as synthetic estrogen to reduce the risk of miscarriage, 

have an increased risk of breast cancer. (DES was a commonly prescribed drug 

between 1940 and 1960) 

 Previous treatment with radiation: Significant increase in the risk of breast 

cancer varies with patient age at the radiation date. Children or young people 

who receive radiation treatment to the chest area have much higher risk. On the 

other hand in the case of chemotherapy, it can stop ovarian hormone production 

for some time which decreases the risk. 

 Hormone replacement therapy: Increased risk of breast cancer if estrogen 

therapy is performed for more than 1 year. 

 Dense breast tissue: Dense breasts have a higher risk of cancer. However dense 

breast tissue can also lead to less accurate mammography. This factor is 

considered in more detail later in the document (Chapter 2.4). 

 

2.1 Mammography 

The favorable survival rate in breast cancer is due to two factors. The first one relies 

on the detection of the disease at an early stage through mammograms. The second 

factor is due to advances in adjuvant systemic treatment such as chemotherapy and 

hormonal therapy for example. 

Mammography is a technique which uses X-rays directed to breast tissue, and 

usually has two perspectives for the same breast, the cranium-caudal (CC) and median 

lateral oblique (MLO) already mentioned above in Figures 2.3 and 2.4. In recent years 

this technique has been the most effective method of early diagnosis, being the only 

area where radiology is possible to identify a cancer in the initial state (22) .  
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Breast X-rays were performed for over more than 70 years, however the most 

modern practices, and the ones used today, have been in practice since 1969. These 

devices use low levels of radiation (about 0.1 to 0.2 rads per image), which does not 

present risk to the affected cells (16). 

The goal of mammography is to produce detailed images of high resolution and 

contrast, in order to have a probability of detecting cancer at about 85% before it is 

revealed, and about 95% of accuracy in detecting a negative case (22). 

At the same level to the advancement of technology and interest in the area, 

mammography emerges as the most effective technique for detecting a clinical picture 

of cancer. However, their interpretation is difficult and requires considerable time due to 

variability of anomalies that may be presented with test results. 

Due to the fact that mammography isn’t the optimum solution, assisted diagnosis and 

methods of second reading for an intelligent system (CAD) emerged (1). 

It’s a well-known fact that a standard mammography image equals to 12 bits or the 

equivalent of 4096 gray levels (2
12

) but it’s also a fact that the perception of the human 

eye is restricted to 16 gray levels 2
4
 (23). Therefore, using computing algorithms for 

detecting minimal lesions and extracting the maximum information possible from 

mammograms is a key to transcend human limitations of manual perception. 

Thus we intend to take the knowledge of mammography images, which is already 

quite reliable in the diagnosis and adjust it so that clinical practice and medical 

diagnosis can be faster and more efficient in the detection of breast cancer. 

 

2.2   Lexicons and Terminologies  

In order to believe and ensure quality of collection and processing of data collected 

through mammography, the development of international guidelines has become 

essential to ensure the quality of data supplied by various sources (21) . 

The American College of Radiology (ACR) (24)  is the copyright owner of a work 

entitled "Breast Imaging Reporting and Database System (BI-RADS
®
)" that contains a 

guide for the standardized mammographic opinion, including a lexicon of terminology, 

an organization of medical report as well as an evaluation framework and coding system 

(Table 2.1). The BI-RADS
®
 then suggests a standardized method for reporting breast 

imaging that does not presume to dictate individual decisions of case management. 
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Table 2.1:  Breast Imaging Reporting and Database System (BI-RADS
®
) 

Category Interpretation Recommendations and 

Follow-Up 

Risk of 

Malignancy 

BI-RADS 0 Inconclusive  

Incomplete review. 

Additional images and / or 

exams comparison with 

earlier ones to a final 

evaluation test. 

 

BI-RADS 1 

(figure 2.3) 

 

Normal  

Unchanged. 

Annual routine mammogram 

(women over 40 years). 

0.05%* 

BI-RADS 2 

(figure 2.4) 

 

Benign findings. Annual routine mammogram 

(women over 40 years). 

0.05%* 

BI-RADS 3 

(figure 2.5) 

Findings probably benign. Initial follow-up shorter 

(examination every 6 

months). 

Up to 2% 

BI-RADS 4 

(figure 2.6) 

Anomalies suspected 

consideration of biopsy. 

Subdivisions: 

4A: Findings with low 

suspicion for malignancy. 

4B: Lesion with intermediate 

malignancy 

4C: Findings for moderate 

concern, but are not common 

malignancy. 

Usually requires biopsy to 

confirm. 

> 20% 

BI-RADS 5 

(figure 2.7) 

Highly suggestive malignancy - 

Appropriate action should be 

taken. 

Requires biopsy or surgical 

treatment. 

> 75 % 

BI-RADS 6 

(figure 2.8) 

Malignancy proven by biopsy 

did not undergo surgery / 

treatment. 

Category reserved for lesions 

identified on the image with 

biopsy before starting 

definitive therapy for cancer 

removal. 

100 % 

* Probability of a woman over the age 40 to develop breast cancer  

(table adapted in accordance with American College of Radiology and American Cancer Society) (16, 24) 
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Figures 2.3 and 2.4 present some examples taken from the INbreast, database 

content, which represent mammographic images with BI-RADS
® 

1 and 2, respectively. 

Both breast images, for each figure, are ranking in the left breast with no pathological 

changes and with low breast density. The presented incidences are marked as a) MLO 

and b) CC. 

a) b) 

Figure 2.3: Example of mammographic images with BI-RADS
®
 1. Source: INbreast, 2011 (60). 

a) b) 

Figure 2.4: Example of mammographic images with BI-RADS
®
 2. Source: INbreast, 2011 (60). 



 

- 11 - 
 

 

 

 

Figures 2.5 and 2.6 are also taken from the INbreast, database content and according 

to their legend, represent mammograms with BI-RADS
® 

classifications as 3 and 4. All 

these images are showing the right breast of the patient and have low breast density. 

Once more the incidences are marked as MLO and CC as a) and b), respectively. 

In turn, the next figures (2.7 and 2.8) both represent a left breast with low breast 

density and the same incidences as referenced above. These last four examples of 

mammograms represent the last two categories of BI-RADS
®
 classification as described 

at the legend of each figure. 

a) b) 

Figure 2.5: Example of mammographic images with BI-RADS
® 

3 Source: INbreast, 2011 (60). 

Figure 2.6: Example of mammographic images with BI-RADS
® 

4. Source: INbreast, 2011 (60). 

a) b) 
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According to a study by Boyd (25)  and later confirmed by several other studies (26, 

27), it was found that breast density is the most important factor that influences the 

mammographic sensitivity. These final studies were based on the concept of exposure 

of breast tissue as a relevant measure for cancer incidence.  

Thus, and with other studies that demonstrate the importance of breast density to 

identify breast cancer (5, 25, 28) arises the need for standardization of the same. 

Various classification methods of breast density have emerged over the years (29), of 

which the most widely used worldwide is the ACR, developed in 2003, which identifies 

four types of mammographic density (Figure 2.9) (24) . 

Figure 2.7: Example of mammographic images with BI-RADS
®
 5. Source: INbreast, 2011 (60). 

a) b) 

Figure 2.8: Example of mammographic images with BI-RADS
®
 6. Source: INbreast, 2011 (60). 

a) b) 
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The model of classification and standardization presented meets the following 

criteria:  

(1) Predominantly lipomatous (<25% glandular tissue); 

(2) Density fibrogranular dispersed (25-50%);  

(3) Heterogeneously dense breast (51-75%); 

(4) Extremely dense breast (> 75% glandular tissue) (24).  

The main purpose of the creation of lexicons is to avoid confusion around 

mammogram reports which contain data and recommendations that are sometimes not 

clear for all physicians. In this sense, throughout this work we will use the terminology 

developed by ACR (BI-RADS
®
). 

 

2.3   Breast Cancer types 

Not all single breast masses are synonymous with cancer. These are distinguished 

according to frequency of appearance, as in the case of cysts and fibroids, which appear 

and disappear in a given period, or as fibro adenomas and intraductal papilloma, which 

are abnormal growths that may indicate a risk factor. The malignant masses clearly 

indicate that cancer is a carcinoma; a term used to describe a cancer that starts in the 

coating layer of organs (epithelial cells) such as the breast (16).  

Figure 2.9: Breast density Scale of ACR (25). 
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Among the identifiable mammography types that may indicate cancer and are 

assessed in examinations, are the masses, calcifications, bilateral breast asymmetry and 

architectural distortion (Figures 2.10 and 2.11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the figure 2.11 are presented some examples of a mass identification (a) and 

calcification (b), both marked on the image, respectively.  

 

Figure 2.10: Example of a cranium-caudal (CC) image. Image from 

INbreast (60) and processed by the author. 

 

a. b. 

Figure 2.11: Mammogram example in oblique lateral median (MLO) with 

bilateral asymmetry. Image from INbreast (60) and processed by the author. 
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In breast tissue, a mass is an important change seen on a mammogram and can be 

cysts (non-cancerous fluid-filled sacs) and fibro adenomas (non-cancerous solid tumors) 

but they always require biopsy to identify whether or not they are malignant (Figure 

2.10a). On the other hand, in the case of the presence of a calcification (Figure 2.10b), it 

consists of small deposits of minerals calcium, which can appear singly or in clusters 

(16). 

If there are differences in the overall appearance of the breast images compared in 

reference to one another, we are in the presence of a case of bilateral asymmetry, as 

shown in Figure 2.11 (30). An architectural distortion is defined as a focal interruption 

of the normal mammographic pattern of lines, usually presenting as a star-shaped 

distortion, with no definite mass visible (31). In this project we will not include 

architectural distortion or bilateral asymmetry as there are cases with treatment and 

removal of tissue also presented. 

 

2.4   Evaluation Metrics 

In order to analyze the results, some metrics were applied to compare values of the 

area under the ROC curve, sensitivity, specificity and positive predictive value. These 

metrics are based on the evaluation criteria that are relevant in terms of the values of 

clinical interest. 

The area under the ROC curve represents the way to select optimal models and to 

discard the suboptimal ones, independently of the cost or the class distribution context. 

Using ROC curves, researchers can trace the ideal profile and if the value of the area 

was close to one, greater efficiency is represented method. 

Sensitivity and specificity are statistical measures of the performance. The first refers 

to the test's ability to identify a condition correctly and also can be called the true 

positive rate, or the recall rate. The second metric, specificity, represents the proportion 

of negatives which are correctly identified as such, and also known as the true negative 

rate. 

The positive predicted value (PPV) was also analyzed, in order to better adapt the 

results with clinical practice. This result can tells us the probability that a patient has a 

relapse for the specific case analyzed, and represents the most interesting value for 

clinical practice recognition (32, 33). The PPV measures the precision of the test, 

revealing the quality measure in the positive instances classification. 



 

- 16 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

- 17 - 
 

 

 

 

 

 

Chapter 3 

 State of Art 

Through this chapter we will present some bibliography related to classification 

models that were being applied on the aided diagnosis for cancer. In the last sub chapter 

is also presented some related work conducted at the level of the methods and 

techniques most promising in identifying lesions in x-ray images, always focusing on 

the field of mammography. 

 

3.1 Classification Methods 

The main advantage of data mining techniques is the ability to provide a set of useful 

rules capable of discriminating between a series of supposed risks (34).  

Classification is a fundamental task in data mining techniques and relies on a process 

of differentiating two or more classes by labelling each similar set of data in a single 

class. Currently, there are several methods of classification for predicting breast cancer 

used in CAD systems such as Artificial Neural Network, K-nearest Neighbour, Support 

Vector Machine and Decision Trees.  

The classifier construction has two different phases: the training and test groups. In 

the training phase, the training set is used to determine how different classes must be 

separated and how the features should be weighted and combined. On the other hand, 

the testing phase does not have to know the classes, so the weights determined on the 

previous phase are applied in order to identify the classes that this data set should 

belong to. 
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3.2.1 Artificial neural network 

This classification model has the groundwork of a nervous system (particularly 

the brain). Artificial Neural Networks (ANN or NN) are generally presented as systems 

of interconnected "neurons" which can compute values from inputs. 

Basically, a NN is an interconnected group of nodes, similar to the network of 

neurons in a brain. Here each circular node represents an artificial neuron and an arrow 

represents a connection from the output of one neuron to the input of another (Figure 

3.1). On breast cancer detection, each node could include quality of the breast lesion, 

type lesion or even the type of breast tissue. 

However, interest in traditional neural networks appears to have declined since the 

arrival of support vector machines, perhaps because the latter generally require fewer 

parameters to be tuned to achieve the same accuracy (35).  

 

 

 

In Mazurowski’s work (12), related to creating an effective technique to reduce false 

positives in mammogram screening,  six principal components were calculated for the 

extracted features using an artificial neural network and 10-fold cross-validation, and an 

average recognition rate of 77% was achieved. Using the receiver operating 

characteristic analysis, the overall sensitivity of the technique measured by the value of 

Area Under the ROC Curve (AUC) was found to be 0.74.  

Figure 3.1 – Neural Network system (48). 
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The CALMA project developed by Amendolia et al (36) and previously described, 

shows a sensitivity of 93% and specificity of 79% by using Feed-Forward Neural 

Networks in microcalcification classification.  

  

3.2.2 K - nearest Neighbor 

By adopting the K-nearest neighbor classification method we are able to suppress the 

problem of database corruption by noisy exemples. Here some fixed and small k-

numbers of nearest neighbour are located and used together to determine the class of the 

test instance through a simple majority vote (35). For the k-NN classifier, the 

membership value of a class is proportional to the number of neighbors belonging to 

this class and it is calculated by Euclidean distance metric (37).   

Oliver et al. (37) by means of comparison of techniques for breast tissue 

classification, obtained 82% correct classifications by using this methodology (k = 

0.75). A different work and recently developed by Bueno et al. (38) , and also related to 

breast density classification, revealed 79% of agreement using hold-out and re-

substitution, to test and train the classifiers with k-NN (k=1).  

In 2012 a study made by Lesniak et al. (39) considered k-NN as the best 

classification method as far as mass detection in mammograms was concerned. 

In the work done by Fonseca for her MSc Dissertation (40), and previously described 

in 3.1 of this chapter, the best results were acquired by using k-NN classifier. 

 

3.2.3 Support Vector Machine 

Support Vector Machine (SVM) is a method to estimate the function that classifies 

data into two classes. SVM uses a linear separating hyperplane to create a classifier with 

a maximal margin to discriminate between two classes, although when the classes 

cannot be linearly separated in the original input space, the classifier transforms it into a 

higher dimensional feature space where the classes might be separated (Figure 3.2) (41).  
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Martins et al. (42) considered that among the classifiers available in the literature, in 

terms of lesion detection on mammograms, SVM comes off since it deals with sets of 

high dimensionality non-linear data with much accuracy and computational efficiency. 

Through his work, Martins (42) achieved a global accuracy for masses and micro of 

93.11% using SVM. 

By means of classifying breast tissue as dense or fatty, Bueno et al (38) acquired the 

best results by using SVM with 83% and 64% of accuracy for benign and malignant 

lesions, respectively. 

Recently, Pollán et al. (43, 44) obtained 96.21% accuracy and 0.924 AUC with 

SVM, characterizing breast lesions according to BI-RADS classes grouped as benign or 

malignant. 

On her work, Fonseca et al. (40) using the INbreast database, achieved 67.10% and 

64.82% of accuracy using GLCM features for classifying dense and fatty tissue, 

respectively. 

 

3.2.4 Decision Trees 

A Decision Tree (DT) is perhaps the easiest method to understand and also the most 

widely used method that falls into the category of supervised learning (Figure 3.3) (35).  

In DT the test of a node, which involves testing a particular attribute, compares the 

attribute value with a constant. However, some trees compare two attributes with each 

Figure 3.2 – Separating hyperplanes in SVM method (52). 
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other, or use some function of one or more attributes. A classification was given by leaf 

nodes, and is applied to all instances that reach the leaf (35).   

An unknown instance to be classified is routed down the tree according to the values 

of the attributes tested in successive nodes, and when a leaf is reached the instance is 

classified according to the class assigned to the leaf.  

 

There are some related works that employed a decision tree using C 4.5 as the 

decision algorithm (37, 38, 45).   

 

3.2.5 Random Forest 

Random Forest (RF) is a bootstrapping method applied to classify trees. This is an 

ensemble classifier consisting of many decision trees, where the final predicted class for 

a test example is obtained by combining the predictions of all individual trees, as 

described further in this work (chapter 4.6) (46).  

This method can provide measures of the similarity between pairs of examples in the 

dataset and are often applied to high-dimensional data sets (47).  

Some works have been done by using this method in the breast cancer field. Some of 

them are presented by Fonseca in 2013 (40), who revealed accuracies of 52.73% for 

dense and 51.60% for fatty tissue; and Melendez (48) who increased the mean 

sensitivity from 0.926 to 0.948 on detecting breast lesions by using RF.  

 

Figure 3.3 – A simple decision tree model (48). 
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3.2.6 Naïve Bayes 

Naïve Bayes (NB) is the simplest form of Bayesian network, in which all attributes 

are considered independent given the value of the class – the reason why it is called 

“naïve” (35). It is obvious that the conditional independence assumption is rarely true in 

most real-world applications (49).  

As Zhang explains on his work (49), many empirical comparisons between NB and 

DT such as C 4.5 showed that NB predicts equally well as C 4.5. 

Some works have used this classification method in the breast cancer area, such as 

the work developed by Bueno et al. (38) and the one made by Castella et al.(50). By one 

hand, the first author just uses the method without any conclusive value of efficacy 

reported; on the other hand, Castela (50) proved that NB performance is excellent for 

low-dimensional features spaces, where the independent assumption can still be 

considered as valid. He obtained 86% accuracy by relating mammogram density with 

breast cancer risk. 

With the bibliographical study here presented we can identify the most common 

methods used in the detection of lesions in mammography as well as the techniques for 

extracting the most promising features for diagnostic support. By this it was possible to 

identify the techniques to use as well as the potential classifier methods.  

 

3.2 Related Work 

Computer-aided diagnosis (CAD) in mammography is a topic that many research 

groups have already addressed. The first presentation of a system for computer-aided 

interpretation appeared in 1966, developed by the American Medical Association and 

represents a system of standardized terms for medical procedures used to facilitate 

documentation, called Current Procedural Terminology (CPT
®
).  Today this is the most 

widely accepted medical nomenclature used to report medical procedures and services 

under public and private health insurance programs   (51, 52). 

Considering the history of computer science, this is a remarkable fact. So far it is 

generally believed that CAD systems can provide a valuable second look and improve 

the accuracy over optical methods. 
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One of the important events in the history of CAD is that, in 1998, the R2 

Technology has succeeded in commercialization of the first CAD system for detection 

of breast lesions in mammography. This was based on licensing of CAD technologies 

from The University of Chicago, and that it obtained US Food and Drug Administration 

(FDA) approval for the clinical use of their system in 1998 (4, 11). This device was 

designed to search for signs that may be associated with breast cancer, marking masses 

and calcification clusters. The accuracy of detection was reported as 98.5% sensitivity 

for calcifications and 85.7% for masses, with 0.74 and 1.32 false-positives per case 

respectively (10). Since then, it was found that although the improvements on 

mammography are double read, there was room for improvement in cancer detection by 

implementing CAD. 

Given these considerations, many qualitative researchers considered the idea of 

computer-aided diagnosis with data analyses for breast cancer detection. Since the 21
st
 

century, several studies have been made in order to create better methods of automatic 

detection in digitized mammograms (53) . 

For research scientists there are several interesting topics in cancer detection and 

diagnosis, such as high-efficiency and high-accuracy lesion detection algorithms. On 

the other hand, for radiologists the importance of these methods relies on the 

effectiveness of clinical applications of the CAD system (51) . 

Amendolia et al. (36) proposed and presented the Computer-aided Library for 

Mammography (CALMA). This is an automated search for mammogram’s texture 

(essentially in masses and microcalcification lesions). CALMA’s main purpose was to 

collect a database of mammographic images, developing CAD tools to be used as a 

second radiologist in the classification of breast cancer diseases. GPCalma, the grid 

platform from CALMA project, has been under development since 1999 and the 

sensitivity in the detection of lesions obtained for microcalcifications and masses was 

96% and 80%, respectively (7). 

Similar projects were developed, as the Magic-5 Project proposed by Bellotti et al. 

(54). This project offered algorithms for mammographic database analysis by means of 

grid services for breast cancer detection, with a sensitivity of 80% for massive lesions 

and 96% for microcalcification clusters. 

More recently in 2011, Pollán et al. (43) created a software framework called 

BiomedTK. Through this project, the authors collected performance data of many 

trained classifiers with Artificial Neural Network (ANN) and Support Vector Machine 
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(SVM), using features on the region of interest and comparing them in CC and MLO 

views. Their results showed accuracy values of 97.14% and  96.91% and values of area 

under ROC between 0.933 and 0.924,  for SVM and ANN respectively (43, 44). 

Valiente et al. (55) in 2013, reported a novel software suite for processing, analyzing 

and diagnosing mammography images, entitled Mammography Image Workstation for 

Analysis and Diagnosis (MIWAD). This work is a result of the on-going collaboration 

between CETA-CIEMAT (Spain) and INEGI - Faculty of Engineering and the Hospital 

of São João - Faculty of Medicine, at the University of Porto (Portugal) in the research 

of breast cancer diagnosis support (55). MIWAD software offers a user-friendly desktop 

application which feeds the first Portuguese Breast Cancer Digital Repository (BCDR) 

with data reviewed by specialists (56) . 

 In a large measure, the BreastIQ framework from Biomediq (8) offers automatic, 

computer-based analysis of mammograms for analysis of future risk of breast cancer. 

The BreastIQ framework is founded on a segmentation framework that locates the 

breast region in MLO and CC views. Based on localizing the chest-breast interface and 

the nipple location, a breast coordinate system is placed on the mammogram. This 

commercial CAD automatically estimates the breast density from mammograms and 

offers computer support for radiologists scoring of density percentage in a smooth 

workflow. 

The main goal of these projects, based on a grid infrastructure or software, is to be 

able to identify lesions on mammograms and compare them with a new one. The 

algorithms used on their CAD systems are constructed on SVM or ANN, and generally 

the features extracted to compare lesions are based on mass shape, mass margins, depth 

and size, among others. There are a few studies training texture analysis as quantitative 

measures, and those only use small measures such as correlation, contrast and entropy. 

CAD systems have been highly developed, although the algorithms used are 

practically the same as well as the features extracted from the mammography. Texture 

features have been proven to be useful in differentiating masses and normal breast 

tissues and have also been referenced as having a promising future for CAD methods, 

being that individual experiments have been already done (45, 57-61). 

Concerning extraction of texture features to detected lesion on mammograms, 

individual studies have been made (62, 63) and the majority of them apply grey level 

matrices using co-occurrence measures as the best approach. Some of the most 

important studies in this field are presented in Table 3.1. 
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Ferreira et al. (64) in 2011 create an online application (called Mamoclass) that 

allows anyone, with access to mammogram information, predict mass density and/or 

classify a mammography as benign or malignant according to a reduce set of input 

findings. 

Nevertheless, in a recent MSc Dissertation by Fonseca, in 2013 (40), the same 

database presented in our work was used, and the main goal was to distinguish 

abnormal mammograms in accordance to breast density types. For detection she used 

GLCM and LBP (Local Binary Pattern) features and some classifiers to identify classes, 

as k-NN, SVM and Random Forests, applied on MATLAB
®
. The results showed that 

GLCM features have the best outcomes for dense breasts represented on the 

mammograms, and LBP obtained better results for all classifiers. It is also reported that 

k-NN classifier achieved better results in dense tissue and the SVM classifier obtained 

higher accuracy for fatty tissues. The major conclusion was that separate mammograms 

by density do not reveal major advantages to this database. 

 

Table 3.1: Summary of work developed in the texture-feature analysis 

Texture-feature analysis 

 (authors of individual studies) 
Study intent 

 Karahaliou, 2006 (61) 

 

 Manavalan, 2012 (59) 

 Meselhy, 2012 (57)  

 

 Zulpe, 2012 (60)  

 Chikamai, 2013 (58)  

 Mohanty, 2013 (45) 

 Nanni, 2013 (63) 

 Gebejes, 2013 (62) 

 Fonseca, 2013 (40) 

→ To characterize microcalcifications on 

mammograms 

→ Applied to prostate cancer diagnosis 

→ To distinguish normal from abnormal tissue and 

the abnormality type on mammograms 

→ For brain tumor classification 

→ For classification of mammogram  images 

→ Applied to evaluate masses on mammograms  

→ Different approaches of extracting information 

→ Texture characterization 

→ Abnormal mammograms classification 

 

Table 3.2, includes a summary of the more recent work done in the area of CAD 

systems development. 

 

 

 



 

- 26 - 
 

Table 3.2: Summary of work developed for breast cancer diagnostic  

CAD System Author 

 CALMA project 

 Magic-5 project 

 BiomedTK 

 Biomediq 

 MIWAD 

→ Amendoilia et al, 2001 (36) 

→ Bellotti, 2004 (54) 

→ Raul Póllan, 2010 (43, 44) 

→ Mads Nielsen, 2011(8) 

→ José Valiente, 2012 (55) 
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Chapter 4 

 Methodology 

In order to be able to extract, select and classify textural features, to extract 

information about the breast lesion type, their malignancy and the breast density, we 

here present the methods and techniques applied to achieve that. 

 The methodology was based in seven major steps: Initial Data Comprehension and 

Preprocessing, Features Extraction and Selection, Data Set Organization, Classification 

Methods and finally the Evaluation Criteria. The block diagram with the approach used 

is presented in Figure 4.1.  

 

Figure 4.1: General block diagram of the proposed methodology 

Initial Data 
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In order to perform the steps proposed in the course of this work, the software used 

was MATLAB
®
, SPSS

®
 and WEKA

®
 which only the last one is an open source license. 

4.1. Initial Data Comprehension 

The images used in this work were taken from the repository INbreast (31), 

developed by multiple institutions of the University of Porto and available to the public 

with authors’ consent. The INbreast includes a total of 410 images (115 patients) from 

which 90 patients are women whose both breasts are affected (four images per case) and 

25 of the cases are mastectomy patients (two images per case). The sample also includes 

some types of findings (masses, calcifications, distortions and asymmetries) which were 

annotated by specialists. 

Medical reports associated with each case using BI-RADS classification and the 

levels of breast density for each image are also included. Due to the small number of 

breast distortions present in the database, this kind of lesion was not considered in the 

present study. 

The images are in DICOM format, and specify which breast and projection stands, 

for example, the case of an R_MLO image which indicates the right breast and a median 

lateral oblique projection, or an L_CC, representing the left breast and a cranium caudal 

projection. 

In Figures 4.2 and 4.3, some graphics alluding to the initial data are revealed, and 

some initial relations between the radiologist’s manual classifications are presented. 
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Figure 4.2: Initial data graphic with the percentage of findings reported for each breast density class. 
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Through the quick exploration of the graphs above it is possible to observe that the 

number of cases for each type of finding is not equal as well as the number of images 

with microcalcification and mass discrepancy. It is also important to note that among 

the classes of each group studied (ACR and BI-RADS) the levels are not linear with 

cases that have few occurrences for a particular lesion. 

 

4.2 Initial Data Preprocessing 

Mammograms are medical images frequently difficult to interpret because the pre-

processing is a necessary step to improve image quality and to ensure greater accuracy 

of result (23, 45, 65).  

Therefore, for a complete and effective analysis of the images’ characteristics, at first 

it was necessary to improve them by using Matlab®, because to process an image in 

"DICOM" format requires more time and becomes more exhaustive. Due to the total 

number of images, they were converted to Portable Network Graphics (png) format and 

inserted into Matlab
®

 (66).  

Using the described software, and existing functions (fspecial, imtophat, imadjust) 

the images were smoothed by applying a Gaussian filter to eliminate noise, and the 

discrete wavelet transform was then implemented, both with proven efficacy (45, 63, 

67). Wavelet transform is a sparse and efficient way to represent an image by improving 
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Figure 4.3: Initial data analysis graphic showing the percentage of findings reported for each BIRADS 

class. 
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Figure 4.4: Matlab selection of region of interest on a mammogram. 

the image quality multiresolution representation. The Wavelet transform is similar to 

filters that use a high pass filter and a low pass filter to decompose an image into sub 

frequency bands along the image’s rows and columns (57, 60) . 

After the previously described steps, the initial image with 5000 x 5000 pixels size, 

was converted into a 4-bit image (128 x 128 pixels corresponding to 16 gray levels) 

with the purpose of increasing the effectiveness of the feature extraction process and 

reduce computational time and cost, since this process relies on the analysis of the 

image gray levels (23).  

Each image was individually processed, so that the selected region of interest (ROI) 

with the lesion turned out to be as reliable as possible to the associated medical report 

and the data is incrementally directed to Microsoft Excel® until all the images are 

processed (Figure 4.4). In case of normal images, without ROI indication, this selection 

was not taken in consideration. 

In this way, a total of 410 images were processed, and in some cases several lesions 

were observed on a single mammogram, giving a total of 439 images and respective 

characteristics, with respect to the multiple lesions found in a single image. 

The functions applied to the image quantified to 4 bits and to computing the gray-

level run length matrix were obtained from a program developed by Karunanithi 

Rajamanickam (68) and is available to the public. On the other hand, the gray-level co-

occurrence matrix was obtained from Matlab® functions (graycomatrix and 

graycoprops).  
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4.3 Features Extraction 

Feature selection is a key point that should be taken into account in the 

implementation of a decision support system, in recognizing breast tissue by selecting 

the most important features, and also due to the ability to describe and maximize 

differences in tissues and/or lesions (57) . 

Texture is an important image characteristic that has been widely used in medical 

image analysis especially in their automatic classification (45, 69). 

According to Haralick (70) texture is an innate property of virtual surfaces and 

contains relevant information on their structural arrangement and their relationship with 

the surrounding environment. Haralick highlighted texture independence relative to the 

image tones, as far as different shades may have the same texture and vice versa. 

Texture features can be extracted by various methods using models based on 

statistical information or structure models based on image processing. It has been 

proven by several authors that texture-based features are useful in the differentiation of 

lesions and normal tissue on mammograms (45, 65, 71-74). 

In this work, two of these feature-based matrix were used: GLCM (Gray-level co-

occurrence matrix), applied before ROI selection and GLRLM (Gray-level run length 

matrix) applied after ROI selection and both later described in detail. 

 

4.3.1 GLCM  

The GLCM is a statistical method of texture examination that considers the spatial 

relationship between the image pixels. This matrix is created by the observation of 

image cell pairs at a distance, d, from each other and with the increase in the position 

corresponding to the gray level of both cells (Figure 4.5) (45, 63, 75).  
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For this work, in order to obtain the GLCM matrices, the default values of spatial 

relationship horizontal adjacent were maintained and performed with Matlab® 

functions, being a distance of 1 and direction of 0º.  

The graycomatrix function creates the GLCM by calculating how often a pixel with a 

certain grey value i occurs adjacently to pixels with a value j in each one of previously 

mentioned directions. In the resultant matrix, each element (i, j) is the sum of the 

number of times that the value i has occurred in the spatial direction with the other pixel 

value j, as showed in Figure 4.5. 

In the GLCM the number of rows and columns equals to the number of grey tones in 

the image (G). The element P (i, j | Δx, Δy) is the relative frequency between pixels 

separated by distance (Δx, Δy). 

The matrix element is also represented by P (i, j | d, θ), which contains the second-

order probability of change between grey levels in a range of i and j at a distance d and 

a θ angle. 

 

𝑝𝑥(𝑖) = ∑ 𝑃(i, j) 𝑒 

𝐺−1

𝑗=0

𝑃𝑦(j) =  ∑ 𝑃(i, j) 

𝐺−1

𝑖=0

 

 

As a result, Equation 1 shows how the array is constructed, in which the value of 

px(i) is the input value i in the matrix, obtained by the rows of P(i, j) summation (60) 

(1) 

Figure 4.5: GLCM construction, a) Example of a 4-gray level image; b) GLCM 

distance 1 and direction 0º (44). 
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Another used function was graycoprops which allowed us to extract the features 

originally calculated by Haralick (70) which were described in the  present work, as 

follows:  

 

 Contrast 

The measure of intensity between a pixel and its border pixel.  The contrast is 

higher in strong and colorful images (approximately 1), than in white or very 

constant images, which have lower value (approximately 0). 

 Correlation 

The measure of linear dependency between gray levels. In horizontal readings of 0 

degrees, the correlation values will be the highest. In a clear image, the gray values 

are more constant and less correlated.  These values range from [-1, 1], with 1 being 

a perfectly positive correlation.  

 Energy 

Also referred as angular second momentum (ASM) or uniformity, this feature refers 

to the proximity of the distribution of elements in the array (65). There are uniform 

images where few transitions of gray levels exist. Thus, in a clearer image and with 

small gray value, this feature will be higher; on the other hand, in a sanded image 

with many gray values to oscillate, the value will be smaller.  The value of 1 in this 

field represents a steady state.  

 Homogeneity 

Calculated from the IDM (Inverse Difference Moment), this feature measures the 

distribution of gray levels in a diagonal image. If the values decrease along the 

diagonal, the result will be higher, and the image will reveal little contrast. In 

return, lower values show very intense images, somewhat homogeneous and 

therefore with greater contrast. A value of 1 is equivalent to a completely 

homogeneous image on its diagonal (66). 

 

Each feature is taken from the entire image and the equations are described in the 

Table 4.1.  
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Table 4.1:  Haralick features equations (66) 

Feature Equation 

Contrast 

∑ 𝑛2{∑ ∑ 𝑃(𝑖, 𝑗)

𝐺

𝑗=1

},   |𝑖 − 𝑗

𝐺

𝑖=1

𝐺−1

𝑛=0

| = 𝑛 

Correlation 

∑ ∑
{𝑖 × 𝑗) × 𝑃(𝑖, 𝑗) − {𝜇𝑥 × 𝜇𝑦}

𝜎𝑥  × 𝜎𝑦

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

Energy 

𝐴𝑆𝑀 = ∑ ∑{ 𝑃 (𝑖, 𝑗)}2

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

Homogeneity 

𝐼𝐷𝑀 = ∑ ∑
1

1 + (𝑖 − 𝑗)2
 𝑃 (𝑖, 𝑗)

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

 

 

4.3.2 GLRLM  

Another set of features based on the texture are GLRLM which are based on 

computerizing the number of lines of grey levels at various angles (57, 59, 63). Chu 

(76) and Dasarathy (77) introduced different features representatives of the lengths of 

arrays of gray lines.  

A grey line is a set of collinear and consecutive points with the same pixel grayscale 

value for a specific linear orientation (0 degrees). For a given image, the run length of 

the line P (i, j) is defined as a number of lines with pixels of grey-level value i and line 

length value j (57, 59, 63)  

Being n as the total number of lines in the image, M as the number of grey levels and 

N the maximum line length, the authors (76) and (77) defined the following 

characteristics (Table 4.2). 
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Table 4.2: Characteristics extracted from GLRLM   

Feature Expected values Equation 

Short run emphasis 

(SRE) 

Higher values  

for soft textures. 

1

𝑛
∑ ∑

𝑝 (𝑖 , 𝑗)

𝑗2

𝑁

𝑗=1

𝑀

𝑖=1

 

Long run emphasis 

(LRE) 

Higher values for higher and 

denser textures. 

1

𝑛
∑ ∑ 𝑗2𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑀

𝑖=1

 

Gray level non-

uniformity 

(GLN) 

Lower values for homogeneous 

shades 
1

𝑛
∑ (∑ 𝑝(𝑖, 𝑗)

𝑁

𝑗=1

)

2
𝑀

𝑖=1

 

Run length non-

uniformity 

 (RLN) 

Lower values for lines with 

homogeneous sizes 
1

𝑛
∑ (∑ 𝑝(𝑖, 𝑗)

𝑀

𝑖=1

)

2𝑁

𝑗=1

 

Run percentage 

 (RP) 

Value nearest to 1indicates short 

lines 

∑
𝑛

𝑝(𝑖, 𝑗)𝑗
𝑖,𝑗

 

Low Gray Level Run 

Emphasis 

(LGRE) 

High values show ROI with 

lower gray values 

1

𝑛
∑ ∑

𝑝(𝑖, 𝑗)

𝑖2

𝑁

𝑗=1

𝑀

𝑖=1

 

High Gray  Level 

 Run Emphasis  

(HGRE) 

High values show ROI with 

higher gray values  

1

𝑛
∑ ∑ 𝑖2𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑀

𝑖=1

 

 

The values of each feature mentioned above are extracted twice, the first for a ROI 

with a lesion finding, SRE_L, for example, and the second for a clean/normal ROI, such 

as SRE_N, at the same image. It is important to notice that, for normal mammograms, 

the ROI selection was also made, in order to extract texture features for further 

comparison. 

The total number of eleven features, referring to both matrices, was saved in a file for 

later feature selection. 

 

4.4 Features Selection 

With the purpose of selecting the most relevant characteristics for the study, after 

collecting the eleven values presented above, they were inserted in statistical analysis 

software by IBM ®, SPSS version 20® for Microsoft Windows®. With the support of 
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the tools available a statistical analysis of what values most significantly distinguish 

masses of microcalcifications was performed. 

The dataset introduced corresponding to each feature (GLRLM features) refers both 

to ROI and to the area without lesion on the image, being called the lesion and the 

normal, respectively. In SPSS
®
 the ratio of these two values (lesion/normal as 

represented in table 4.3) was calculated in order to reveal the relative value of the 

difference caused by the injury on the tissue. 

On this dataset a new section was also added containing the found characteristic for 

each case described. Using this field we incremented the value 1, 2 or 3 representing 

masses, microcalcifications and normal/clean findings, respectively.  

After the normal distribution was confirmed, in the majority of cases, we performed 

an Independent-Sample t-test that allowed us to test whether two samples mean values 

were statistically different from each other (mass and microcalcification). Through the 

test output we evaluated the sample sizes (N), means, standard deviations, and the 

standard error of the mean (the standard deviation divided by the square root of N) for 

the continuous variable, separate for each group (masses and microcalcifications). 

For a significance level of 5%, if p-value is greater than 0.05, then we can assume 

that group variances are equal and if the p-value is 0.05 or less, then we should assume 

that the group variances are not equal (78). Our case study revealed that the majority of 

variances are equal, showing a significant level (2-tailed) approximately to 0.001, which 

reveals that in addition to having significant correlation (p < 0.05) they also revealed 

significant interest (p ≈ 0.00). 

The complete list of SPSS outputs with 95% confidence intervals, are present on the 

Table 4.3, with reference to each p-value. Though SPSS refers to a significance level of 

0.000, it is generally inappropriate to report it as such, and reporting 0.001 is the 

preferred method (78). 
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Table 4.3: Significance level for each characteristic, obtained in SPSS t-test outputs 

Characteristic 
p-value 

(t-test) 

SRE Lesion 0,001 

Lesion/Normal ratio 0,001 

LRE Lesion 0,001 

Lesion/Normal ratio 0,001 

GLN Lesion 0,733 

Lesion/Normal ratio 0,397 

RP Lesion 0,001 

Lesion/Normal ratio 0,001 

RLN Lesion 0,001 

Lesion/Normal ratio 0,001 

LGRE Lesion 0,001 

Lesion/Normal ratio 0,001 

HGRE Lesion 0,001 

Lesion/Normal ratio 0,001 

 

4.5 Data Set Organization  

In a following step, still using the SPSS 
®
 software, we added two more classes 

representing BI-RADS classification. At this point, and confirming all the process with 

medical reports’ analysis, for each case presented at SPSS
®
 file, we incremented the 

respective value of BI-RADS classification and the value of breast density (BrD), both 

in accordance with chapter II. 

In order to create separate files that could be used as an input for another program, 

the SPSS
®
 output was organized into three initial records. This procedure is extremely 

important since by doing this we were able to evaluate the influence of different 

classifications at the same dataset.  

The first file has the BI-RADS classification with GLRLM outputs for each case 

described, and was named BI-RADS file. The second comprehends the breast density 

classification made by radiologists and the GLCM matrix, due to the fact that it was the 

only matrix related to the complete image analysis (without ROI selection) that we 

called BrD file. Finally, the last one was created in order to relate the finding type 

(mass, microcalcification or normal) with GLRLM, for every image finding described 
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(Characteristic file). By doing this we were able to create three major scenarios that will 

be the input files on WEKA
®
 (Bi-rads.arff; BrD.arff and Characteristic.arff).   

 

4.6 Classification Methods 

As mentioned in Chapter 3.2, classification is a fundamental task in data mining 

techniques and is one of the most important steps for constructing a system for 

computer aided detection.  

In this work, for each of the three different files previously constructed in Chapter 

4.5, several classification methods were used, such as: k-nearest Neighbor Support 

Vector Machine, Decision Tree (J48), Random Forest and Naive Bayes. The application 

of these different scenarios was prepared in order to better understand which the most 

efficient classifier for each case was. To apply them we use WEKA
®
 software version 

3.6.11, Explorer module, developed from Waikato University, and the cross-validation 

k-folds test option with ten-folds. The main principles related to this validation method 

are based on a data subdivision into k identical subsets (10 for this specific case), that 

are trained for each subset k-1 (training) and the prediction is verified at the 

correspondent k subset (test). 

4.6.1 Random Forest 

Random Forest (RF) was one of the chosen classifiers due to its suboptimal 

performance in cases of strongly unbalanced data that is, being almost an optimal level 

when class sizes differ considerably, as shown in recent studies (79, 80).  

In the RF algorithm several individual decision trees are combined to make a final 

prediction. Each tree represents a random sample of observations from the original 

sample. The ones that are not used to construct the tree are called as out-of-bag (OOB) 

observations (79). By aggregating the predictions of the OOB data across all trees it is 

possible to determine an internal estimate of the general error of the method (47). For 

each node or split in a tree, features are randomly selected from the entire dataset. The 

selection of the best node in a tree is acquired by a conditional inference test in an 

unbiased way. For each node, each candidate predictor from the random subset is 

globally tested for its association with the response, yielding a global p-value. The 

selected one has the smallest p-value and the best node is finally chosen (Figure 4.6). 
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For the present work, the arguments chosen to be altered from the default values 

were the number of attributes used in random selection (K) and the number of trees (I) 

to be generated. For each case studied, those parameters can be different, due to the 

variability of the class. 

4.6.2 SVM 

As explained in Chapter 3.2.3, SVM classifier is based on the idea of minimizing the 

generalization error when the classifier is applied to test samples that do not exactly 

match any training sample used to train (42).  

In this case, SVM was used because it provides a good generalization, contributing to 

the effectiveness of the methodology during the classification of segmented structures. 

In WEKA
®
 a library was available for SVM, which was LibSVM, and it was used for 

training and testing each group file described in Chapter 4.5. The parameters altered on 

SVM default settings were: the seed to be used, the degree of the kernel and the kernel 

type. This last parameter specifies the type of the kernel function used by the function to 

map the training data into the kernel space and it can be:  linear, quadratic, polynomial, 

Gaussian radial basis function or sigmoid. On this work each one was tried, in order to 

find which performed the best results. 

The SMO function that implements a sequential optimization algorithm for training 

SVM was used, in order that with this function we could specify the method used to 

separate the hyperplane. In SMO the kernel chosen was the polykernel with default 

values. Throughout this task SVM or SVM-SMO was used, depending on which of 

them revealed a better result, for each case studied. 

 

Figure 4.6 – Illustration of Random Forest nodes (56). 
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4.6.3 k-nearest Neighbor 

This classifier was chosen because it is a very simple algorithm to understand and 

implement. Due to this, it should always be considered in classification tasks, despite 

the fact that it can take longer to make a prediction since it requires a large amount of 

memory. In spite of these disadvantages, this was the first classifying method 

implemented in this study being compared to the others afterwards.  

This method relies on two basic steps: first, to find the k instances in the training set 

that are similar to the instances on the testing set, according to some metric, and 

afterwards there is a majority vote of the k nearest instances to the test instance in order 

to find the test class of that test instance. 

K-NN that can be found on WEKA® as IBk on lazy classifier group was used, and 

the algorithm chosen for the nearest neighbour search was linear, using the Euclidean 

distance formula (35) to calculate the distances between the train and test instances. The 

k value was tested from 1 to 10, but above k=4 the TN rate started to get lower. 

 

4.6.4 Decision Tree  

As mentioned in Section 3.2.4, a DT has the advantage of visualizing the data 

classification more easily. In the same section some studies using C4.5 DT as the 

classifier were also presented. Both C4.5 and the improved versions use information 

gained as a measure of purity, which is based on the notion of entropy (45). 

For this reason, the DT chosen for the present work relies on C4.5 model. However, 

this model has been eliminated from WEKA
®

, where J48 became the substitute method 

as an open source Java
®
 implementation of the C4.5 decision tree algorithm. All 

parameters used were the default ones. 

 

4.6.5 Naïve Bayes  

This method was mainly used for comparison with the other classifiers, given that 

there were few studies in the area that justify its use. Nevertheless, as we previously 

mentioned NB guarantees an excellent performance for low-dimensional features 

spaces.  
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Even though, this method has fewer parameters to be chosen, we preferred to keep 

them on the default values, once it was decided only to compare it with the other 

classifier’s results. 

 

4.6.6 Ensemble Methods  

Ensemble methods in machine learning aim to induce a collection of diverse 

predictors which are both accurate and complementary, so that, better prediction 

accuracy on previously unseen data is obtained when the decisions of different learners 

are combined (81).  

For this purpose three ensemble methods were built using DT’s as a base classifier. 

The chosen DT’s were already used in individual tests, in order to be possible to 

analyze the ensemble methods’ efficiency. 

Three different ensemble classifiers were used: 

 Bagging 

Also known as bootstrap aggregating, it is usually applied to decision trees 

classifiers, and the improvement of generalization errors is made by reducing the 

variance of the base classifier (81). Bagging applies the learning scheme to each 

one of artificially derived dataset, and the classifiers generated from them vote 

for the class to be predicted (35). 

 AdaBoost 

Adaptive Boosting is a technique that, to simplify matters, assumes that the 

learning algorithm can handle weighted instances, where the weight of an 

instance is a positive number. The presence of instance weights changes the way 

in which a classifier’s error is calculated. This error is the sum of the weights of 

the misclassified instances divided by the total weight of all, instead of the 

fraction of misclassifiers. Throughout this task, the algorithm can be forced to 

concentrate on a particular set of instances, those with high weight (35).   

 MultiBoosting 

This is a technique that is an extension to the highly successful Adaptive 

Boosting for forming decision committees. In general terms it combines 

Bagging and AdaBoost methods (81). 

More detailed information about these methods can be found at (35) . 
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Chapter 5 

Results and Discussion 

In this section the results of our work are presented including both data provided by 

SPSS
®
 and WEKA

®
 software’s, as well as the different scenarios that were considered. 

We will also analyze the results described by making comparisons between all the 

methods applied and taking in consideration all the scenarios tested.  

In order to distinguish the best performance obtained in each scenario, we first 

analyzed each of them separately and then compared the global results, in order to find 

both the best predictor and the best method for breast cancer diagnosis.  

 

5.1.  SPSS
® 

outcome 

As presented in Table 4.3 (Chapter 4.4), 0.001 was the value considered as a 

significant interest level, allowing us to recognize that all correlations are statistically 

significant, in order that the increase or decrease of one variable will affect the others. 

This fact is extremely important for this work since we aimed to find dependencies 

related to each lesion and normal tissue for each texture characteristic extracted from 

the two matrices.  

At this point, any finding characterized as normal or clean was dismissed since the 

matrix obtained was obviously different because they did not have a lesion report field. 

Besides that, some assumptions can be made, such as the identification of the most 

relevant variables, and the removal of the GLN variable due to the fact that it is the only 

one that does not have a significant correlation with the lesion discrimination (p > 0.05). 
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5.2.  WEKA
®
 outcome 

In order to better analyze the performance of the tested methods applied to different 

classification standards, WEKA
®
 results were divided into three major scenarios, 

related to the classification attributed to each one. 

 Scenario 1 

In the first scenario we related the BI-RADS
® 

classification with features extracted 

from GLRLM. At first, and considering all five classification groups mentioned in 

Chapter 2, the results showed that some of the groups were not correctly classified. To 

control this fact, the classification was made considering two major groups. The data 

was rearranged into two subclasses (benign and malignant) according to the risk 

reported by each on the BI-RADS
® 

lexicon. For this purpose, the benign group has the 

1, 2 and 3 categories (with a total of 239 cases) and the malignant group includes the 4, 

5 and 6 categories from BI-RADS
®
 (with 258 cases considered).  

In Table 5.1 the results from each classifying method used for this dataset are 

presented, showing their PPV, AUC, sensitivity, specificity and global accuracy.  

 

Table 5.1: Results for GLRLM with BI-RADS
® 

subclass classification. 

Classifier 
BI-RADS® 

subclass 
PPV AUC Sensitivity Specificity 

Global 

Accuracy 

Naïve Bayes Benign 0.205 0.486 0.538 0.532 
53.3 % 

Malignant 0.837 0.486 0.532 0.538 

SVM-SMO 

 

Benign 0.050 0.508 0.571 0.523 
52.5 % 

Malignant 0.965 0.508 0.523 0.571 

k-NN Benign 0.657 0.789 0.724 0.707 
71.4 % 

Malignant 0.767 0.789 0.707 0.723 

J48 

 

Benign 0.427 0.604 0.634 0.592 
60.6 % 

Malignant 0.771 0.604 0.592 0.633 

Random Forest   Benign 0.757 0.831 0.757 0.775 
76.7 % 

Malignant 0.775 0.831 0.775 0.757 

 

Using the classifiers mentioned above, some parameters were changed in order to 

find the best performance for each case. On the one hand, the first two methods, as well 

as the J48, were used without any change to their default values. On the other hand, to 

use the k-NN we choose a k value of 1 and for Random Forest classifier, the k and I 
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parameters were changed into 2 and 15, respectively. Besides that, the cross-validation 

option was changed and used with fifteen-folds instead of the ten-folds that were used 

for all the other cases. 

To ensure the best results ensemble methods were also tested on the same dataset. 

The methods used with the ensemble classifier (Random Forest) have the same 

parameters previously stipulated (k and I). The results are showed in Table 5.2. 

Table 5.2: Results of Ensemble Methods to GLCM with BrD. 

Method  PPV AUC Sensitivity Specificity 
Global 

Accuracy 

Bagging       

J48 Benign 0.665 0.791 0.697 0.703 
70.0 % 

Malignant 0.733 0.791 0.703 0.697 

Random Forest Benign 0.724 0.809 0.709 0.739 
72.4 % 

Malignant 0.725 0.81 0.739 0.709 

AdaBoost   

J48 Benign 0.565 0.693 0.652 0.641 
64.6 % 

Malignant 0.721 0.693 0.641 0.652 

Random Forest Benign 0.728 0.798 0.719 0.745 
73.3 % 

Malignant 0.736 0.798 0.745 0.719 

MultiBoosting   

J48 Benign 0.582 0.730 0.685 0.660 
67.0 % 

Malignant 0.752 0.730 0.660 0.685 

Random Forest  Benign 0.724 0.814 0.712 0.740 
72.6 % 

Malignant 0.729 0.814 0.740 0.712 

 

On the subject of predicting if a mammographic finding was benign or malignant and 

considering the global percentage of correctly classified instances, the best results were 

achieved by Random Forest classifier, with 76.7% accuracy, followed by k-NN with 

71.4% accuracy. These two classifiers also presented the highest values for sensitivity 

and specificity. 

In spite of this, and regarding PPV, which is the value with the most interest in 

clinical practice recognition, for malignant lesions identification, the SVM-SMO and 

Naïve Bayes classifiers showed the higher values, 96.5% and 83.7%, respectively 

compared with 77.5% for Random Forest. However, when we took into consideration 
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the mean value of PPV, Random Forest had the best result having less false-positive for 

both classes. 

Moreover, when comparing the results of both decision trees (J48 and Random 

Forest) with their results for ensemble methods, we were able to determine that these 

methods showed improvements on the J48 classifier with an increase of 9.0% global 

accuracy for bagging method however, this was not observed for Random Forest 

classifier. Even with this factor Random Forest was still the best predictor. 

The results of this scenario also show that the Naïve Bayes and SVM-SMO revealed 

the worse percentages in terms of mean values for all measures. 

On the figures (Figure 6.1 and Figure 6.2) it is possible to observe and compare the 

best results in relation to other methods for benign and malignant classes separately. 
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Figure 6.2: Graphic of results extracted from scenario 1 for malignant class. 

Figure 6.1: Graphic of results extracted from scenario 1 for benign class. 
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For this scenario, grouping the classes became an effective technique and the use of 

GLRLM, even though only a few works use them, and this was a good model for this 

class’ distinction. 

While conducting our study we concluded that the results were good for the chosen 

parameters to each classifier, but the best predictor method was the Random Forest. 

With this classifier we were able to achieve values around 76.0% PPV, both for benign 

and malignant findings, which led us to conclude that this method has a good success 

rate as well as AUC (0.831), sensitivity and specificity (approximately 0.700 each). We 

also realized that ensemble methods at this scenario did not represent any improvement. 

 

 Scenario 2 

The second scenario was a multiclass problem that was tested considering the GLCM 

features’ extraction related to the four levels of BrD, in accordance to ACR. On a 

previous step the complete set of features was tested and analyzed however, the BrD 

values only showed positive results when related to the GLCM, as discussed later. 

The complete list of results from this scenario is presented in Table 5.3. For each of 

the classification methods, PPV, AUC, sensitivity and specificity values for each class 

are presented, as well as the classifier global accuracy (Table 5.3). 
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Table 5.3: Results of GLCM with BrD. 

Classifier 
BrD by 

ACR 
PPV AUC Sensitivity Specificity 

Global 

Accuracy 

Naïve Bayes 

 

1 0.592 0.725 0.534 0.791 

34.5 % 
2 0.206 0.480 0.276 0.615 

3 0.165 0.596 0.250 0.753 

4 0.538 0.750 0.182 0.959 

SVM-SMO 

 

1 0.633 0.782 0.679 0.828 

49.7 % 
2 0.817 0.594 0.418 0.786 

3 0.000 0.666 0.000 0.753 

4 0.000 0.500 0.000 0.929 

k-NN 

 

1 0.792 0.820 0.638 0.886 

54.9 % 
2 0.557 0.647 0.514 0.743 

3 0.363 0.712 0.500 0.808 

4 0.038 0.651 0.091 0.930 

J48 

 

1 0.625 0.784 0.658 0.823 

51.6 % 
2 0.557 0.655 0.507 0.741 

3 0.429 0.722 0.429 0.812 

4 0.115 0.612 0.158 0.934 

Random 

Forest 

 

 

1 0.725 0.829 0.690 0.864 

58.7 % 
2 0.603 0.715 0.556 0.770 

3 0.516 0.785 0.553 0.844 

4 0.115 0.704 0.200 0.935 

 

Despite the fact that the majority of the methods used to classify this scenario have 

the default parameters established as the best ones, for the k-NN case, we have changed 

the k value to 3 in order to improve the results obtained. 

In Table 5.4 the results from the ensemble methods tested for this scenario are 

presented. 
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  Table 5.4: Results of GLCM with BrD. 

Method  PPV AUC Sensitivity Specificity 
Global 

Accuracy 

Bagging       

J48 

 

1 0.717 0.830 0.623 0.857 

53.5 % 
2 0.527 0.663 0.519 0.712 

3 0.429 0.748 0.470 0.819 

4 0.115 0.720 0.214 0.936 

Random Forest 

 

1 0.717 0.838 0.637 0.854 

55.7 % 

 

2 0.513 0.696 0.543 0.756 

3 0.462 0.762 0.488 0.826 

4 0.077 0.686 0.222 0.933 

AdaBoost   

J48 

 

1 0.633 0.799 0.613 0.820 

52.9 % 
2 0.519 0.674 0.511 0.732 

3 0.538 0.736 0.516 0.846 

4 0.077 0.579 0.125 0.932 

Random Forest 

 

 

1 0.642 0.812 0.636 0.826 

54.3 % 
2 0.588 0.684 0.524 0.756 

3 0.473 0.735 0.231 0.829 

4 0.115 0.618 0.532 0.935 

 MultiBoosting   

J48 

 

1 0.650 0.788 0.650 0.831 

55.4 % 
2 0.603 0.717 0.534 0.764 

3 0.484 0.763 0.524 0.834 

4 0.115 0.637 0.188 0.935 

Random Forest 

 

1 0.692 0.818 0.659 0.847 

54.6 % 

 

2 0.55 0.702 0.503 0.738 

3 0.505 0.725 0.511 0.838 

4 0.000 0.740 0.000 0.928 

 

The results obtained for GLCM features related to BrD show that for each BrD class 

there was a completely different value of prediction, and because of that the global 

accuracy values are not as promising as we were expecting. Despite this, we were able 

to verify that the SVM-SMO method did not consider the last two classes (3 and 4), as 

shown by PPV value. By the global accuracy percentage, we also distinguished Naïve 
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Bayes and SVM-SMO as the worst classifiers (34.5% and 49.7%, respectively) and k-

NN and Random Forest as the best ones (54.9% and 58.7%). 

The best AUC represented were between 0.704 and 0.829 and were achieved with 

Random Forest that has also shown the best sensitivity and specificity values. 

In terms of PPV percentage, for this scenario the best results were found in classes 1 

and 2 however, considering the mean values of all four classes, the Random Forest 

classifier achieved the best performance, being the only one with the value of 50.0% for 

PPV. 

Comparing the classifiers’ performance, when represented with ensemble methods, 

we were able to determine those that had better results when combined. The Random 

Forest classifier did not show any improvement however, the J48 method have slightly 

increased the global accuracy for all the ensemble methods, having the best 

performance by applying MultiBoosting method. 

In the figures presented next (Figure 6.3 to Figure 6.6) the values of PPV, AUC, 

sensitivity and specificity for each class are represented. 
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Figure 6.3: Graphic of results extracted from scenario 2 related to class 1 of BrD. 
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Figure 6.5: Graphic of results extracted from scenario 2 related to class 3 of BrD. 

Figure 6.4: Graphic of results extracted from scenario 2 related to class 2 of BrD. 

Figure 6.6: Graphic of results extracted from scenario 2 related to class 4 of BrD. 
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Concerning classification methods we found that global accuracy values were not as 

good as we were expecting for all classifiers, although the best result was achieved, 

once again, by Random Forest method. Using the ensemble method, the accuracy 

reached by J48 was increased, although it did not pass the Random Forest value which 

was 58.7%. 

Although, comparing our results with the ones obtained in (40) using the same 

database, we realized that for k-NN and SVM methods the results are similar for 

correctly classified instances (approximately 55%) according to fatty tissue, that 

corresponds to our 1 and 2 classes which are the ones with highest instances overall. In 

terms of Random Forest we obtained the best results, comparing to (40), since in this 

work, the accuracy for fatty and dense tissue was around 52.0% while in our study we 

obtained an improvement, with 59.0% accuracy. 

 

 Scenario 3 

The last scenario analyzed was related to the type of finding for each case. In the 

chosen database, there was a conclusion made by a clinical expert who classifies the 

mammogram according to mass (101 cases), microcalcification (267 cases) or normal 

findings (67 cases). In order to find the best predicting method, those findings were 

grouped into three subsets (3a, 3b and 3c further described).  

 

→ Subset 3a 

The first subset represents the previously given classification in the database.  

The results obtained by combining this information with the GLRLM features 

extracted are present in Table 5.5. The only parameter that changed from the results 

presented was the k value at the k-NN classifier that we considered equal to 3 in order 

to achieve better results. 
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Table 5.5: Results of 3a subgroup. 

Classifier Subclass PPV AUC Sensitivity Specificity 
Global 

Accuracy 

Naïve Bayes 

 

Mass 0.911 0.700 0.348 0.949 

58.7 % Micro 0.356 0.774 0.913 0.487 

Normal 1.000 1.000 1.000 1.000 

SVM-SMO 

 

Mass 0.000 0.605 0.000 0.770 

76.9 % Micro 1.000 0.705 0.726 1.000 

Normal 1.000 1.000 1.000 1.000 

k-NN  

 

Mass 0.228 0.636 0.315 0.787 

70.8 % Micro 0.813 0.737 0.736 0.653 

Normal 1.000 1.000 1.000 1.000 

J48 

 

Mass 0.000 0.600 0.000 0.770 

76.9 % Micro 1.000 0.703 0.726 1.000 

Normal 1.000 1.000 1.000 1.000 

Random Forest 

 

Mass 0.257 0.628 0.280 0.783 

67.6 % Micro 0.749 0.729 0.727 0.591 

Normal 1.000 1.000 1.000 1.000 

 

 

In the Table 5.6 the results for ensemble methods, using J48 and Random Forest, for 

subset 3a are presented. 
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Table 5.6: Results of 3a subgroup with ensemble methods. 

Method PPV AUC Sensitivity Specificity 
Global 

Accuracy 

Bagging       

J48 

 

Mass 0.010 0.663 0.333 0.771 

76.7 % Micro 0.993 0.749 0.726 0.973 

Normal 1.000 1.000 1.000 1.000 

Random Forest 

 

Mass 0.050 0.630 0.128 0.760 

70.4 % Micro 0.873 0.724 0.708 0.691 

Normal 1.000 1.000 1.000 1.000 

AdaBoost   

J48 

 

Mass 0.000 0.677 0.000 0.770 

76.9 % Micro 1.000 0.762 0.726 1.000 

Normal 1.000 1.000 1.000 1.000 

Random Forest 

 

Mass 0.158 0.607 0.203 0.764 

66.3 % Micro 0.764 0.713 0.706 0.580 

Normal 1.000 1.000 1.000 1.000 

 MultiBoosting   

J48 

 

Mass 0.030 0.632 0.214 0.769 

75.2 % Micro 0.959 0.731 0.723 0.871 

Normal 1.000 1.000 1.000 1.000 

Random Forest 

 

Mass 0.188 0.617 0.268 0.777 

69.5 % Micro 0.805 0.728 0.724 0.634 

Normal 1.000 1.000 1.000 1.000 

 

By analyzing the results obtained from  subgroup 3a, in terms of global percentage of 

correctly classified instances in distinguishing between mass, microcalcification and 

normal tissue, our tests revealed that for all classifiers, normal tissues show a percentage 

of 100.0% correctly classified instances. Despite this fact, classifiers such as Naïve 

Bayes or Random Forest revealed low values at the level of overall effectiveness and 

the best results were obtained by using SVM-SMO and J48 both representing 76.9% 

accuracy. Even though these last two methods have shown better global performance, 

by analyzing their results for each class individually, we found that none of them have 

correctly classified a single mass, and achieved 100.0% of PPV for microcalcifications. 

In turn, k-NN with an accuracy of 70.8% has classified every class, even though for 

masses it did not reveal promising results (PPV = 0.228 and sensitivity = 0.315). 
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Another interesting fact regarding this scenario was that Naïve Bayes was the only 

classifier that achieved a better performance in classifying masses rather than 

microcalcifications. With this method and only concerning masses classification, the 

percentages of PPV obtained were 99.1% and AUC, sensitivity and specificity also 

revealed the best results with values of 0.700, 0.348 and 0.949, respectively.  These 

results can be observed in the Figure 6.7 and Figure 6.8, where values of PPV, AUC, 

sensitivity and specificity are compared for mass and microcalcification classification. 

In these figures the normal class was not considered due to the invariance of the results.  
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Figure 6.8: Graphic of results extracted from scenario 3a related to microcalcification class. 

Figure 6.7: Graphic of results extracted from scenario 3a related to mass class. 
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When comparing the results with the ensemble ones, we were able to identify that 

best performances were obtained using Random Forest methods and the best result in 

terms of global accuracy was obtained using bagging methods. In spite of this, the mean 

percentages for PPV, AUC, sensitivity and specificity did not present better results. 

 

→ Subset 3b 

The second subset created is only related to one type of reported lesion – 

microcalcification. At this point, we categorized the classes previously referred as 

microcalcification or no microcalcification, excluding all the normal findings. The 

results for each classifier method and for the ensemble ones are presented at Table 5.7 

and 5.8, respectively.  

Table 5.7: Results of 3b subgroup. 

Classifier Subclass PPV AUC Sensitivity Specificity 
Global 

Accuracy 

Naïve Bayes Micro 0.352 0.630 0.879 0.337 
49.5 % 

No micro 0.871 0.630 0.337 0.879 

SVM-SMO  Micro 1.000 0.500 0.000 --- 
72.5 % 

No micro 0.000 0.500 0.726 0.725 

k-NN  Micro 0.798 0.573 0.727 0.280 
63.8 % 

No micro 0.208 0.573 0.280 0.727 

J48 Micro 1.000 0.492 0.726 --- 
72.5 % 

No micro 0.000 0.492 0.000 0.671 

Random Forest  Micro 0.798 0.577 0.753 0.752 
66.3 % 

No micro 0.307 0.577 0.365 0.365 

  

In terms of acquiring better results, for k-NN the preferred k was 3 and for Random 

Forest classifier we used k=2 and cross-validation with fifteen-folds. 
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Table 5.8: Results of 3b subgroup with ensemble methods. 

Method PPV AUC Sensitivity Specificity 
Global 

Accuracy 

Bagging       

J48 

 

 Micro 1.000 0.534 0.726 --- 
72.5 % 

No micro 0.000 0.534 0.000 0.725 

Random Forest   Micro 0.880 0.618 0.737 0.347 
68.5 % 

No micro 0.168 0.618 0.347 0.737 

AdaBoost   

J48  Micro 1.000 0.559 0.726 --- 
72.5 % 

No micro 0.000 0.559 0.000 0.725 

Random Forest   Micro 0.764 0.539 0.731 0.292 
62.5 % 

No micro 0.257 0.539 0.292 0.731 

 MultiBoosting   

J48  Micro 0.993 0.599 0.724 0.000 
72.0 % 

No micro 0.000 0.599 0.000 0.724 

Random Forest   Micro 0.787 0.610 0.739 0.322 
64.4 % 

No micro 0.267 0.609 0.321 0.739 

 

The best global accuracy in this subset was found using the SVM-SMO and J48 

classifiers with 72.5% accuracy for both cases. Likewise previously presented in subset 

3a, these two methods have only correctly classified microcalcification with 100.0% of 

PPV. 

In order to better understand the analysis of these results, in Figure 6.9 and Figure 

6.10, two graphic related to each subclass (micro, no micro) and their independent 

results are presented.  
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Figure 6.9: Graphic of results extracted from scenario 3b related to microcalcification class. 
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Through analysis of Figure 6.9 and Figure 6.10, we were able to recognize that there 

is no classifier that seems to be better at all evaluated levels. Regardless of this result 

and considering the PPV, the best performance achieved for micros’ identification was 

made by J48 and SVM-SMO but for other lesions, in this case, mass identification, the 

results were the worst, Naïve Bayes being the best test.   

By improving the results with applying ensemble methods, we have concluded that 

every result was improved by J48 classifier, but by using Random Forest we found an 

increase in the value of AUC from 0.577 to 0.618, as well as a slight increase of the 

global accuracy from 66.3% to 68.5%. 

 

→ Subset 3c 

The final subset that was studied concerns a general approach that reveals the 

presence of a lesion (mass or microcalcification) on the tissue, no matter its type. This 

subset contains two classes, lesion and normal, and the results for individual classifiers 

are presented in Table 5.9. 
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Figure 6.10: Graphic of results extracted from scenario 3b related to no micro class. 
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Table 5.9: Results of 3c subgroup.  

Classifier Subclass PPV AUC Sensitivity Specificity 
Global 

Accuracy 

Naïve Bayes 

 

Normal 1.000 1.000 1.000 1.000 100% 

Lesion 1.000 1.000 1.000 1.000 

SVM-SMO 

 

Normal 1.000 0.993 1.000 1.000 100% 

Lesion 1.000 1.000 1.000 1.000 

k-NN  Normal 1.000 0.987 1.000 1.000 100% 

Lesion 1.000 1.000 1.000 1.000 

J48 

 

Normal 1.000 1.000 1.000 1.000 100% 

Lesion 1.000 1.000 1.000 1.000 

Random Forest 

 

Normal 1.000 1.000 1.000 1.000 100% 

Lesion 1.000 1.000 1.000 1.000 

 

As observed, there was no need to apply the ensemble techniques on the 3c subset 

since all the individual methods accomplished the maximum value for prediction.  

 

According to our global study on scenario 3 we found that to the identification of 

masses, even between masses, microcalcifications and normal tissue (subset 3a), or 

between masses and microcalcifications (subset 3b), the best performance was achieved 

by Naïve Bayes with PPV values of 91.1% and 87.1%, respectively. In all subsets using 

normal findings for distinguishing them from lesion tissues we concluded that normal 

ones have a percentage of 100.0% correctly classified instances.  

Taking into consideration all of these conclusions, we can state that the best 

performance in distinguishing the type of mammographic lesion was obtained at 3a 

scenario using k-NN classifier (77.0% global accuracy) with PPV percentages of 81.3% 

for microcalcification and 22.8% for masses (also having the normal class with 100.0% 

PPV), and with Random Forest classifier at 3b scenario with a global accuracy of 66.0% 

and percentages of 79.8% and 30.7% for micro and masses classification, respectively. 

Concerning to AUC values, the best results were achieved by means of k-NN 

(considering mass, microcalcification and normal findings), and also showed the best 

specificity. In terms of sensitivity standards the best value was for microcalcifications 

(approximately 0.70) comparing to the masses results of approximately 0.30. 
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Chapter 6 

Conclusions and Further Work 

 During the development of this project and based on the study conducted in the state 

of the art (Chapter 3) it was possible to understand that several studies have recently 

been done in order to improve breast cancer diagnose. In this sense, the idea behind this 

thesis was based on finding the best data mining method which allows the linking the 

different scenarios experienced with matrices considered. 

By using the INbreast
®
, a recent database but with the disadvantage of not being used 

in many works yet, making it more difficult to compare among different algorithms, we 

aim to extrapolate the knowledge and create new conclusions which might be useful for 

a more accurate diagnosis. Thereby, we intended to contradict the repetitiveness of tests 

done in other databases, in order that all the previous projects described in this 

document are based on public databases as MIAS
®
 or BCDR

®
. It is also important to 

underline that the results obtained by those works cannot be fully compared to ours, due 

to details previously mentioned.  

The aim is to compare the PPV, AUC, sensitivity and specificity values obtained, 

since these are the values  which health professionals will be aware of when choosing a 

system for decision support. 

As we have described throughout this document, three different scenarios were 

selected for the purpose of identifying which is the best predictive method for each 

scenario and also which is the best predictor overall.  

From scenario 1 analysis, we can conclude that using BI-RADS
®
 classification for 

prediction has a large disadvantage because of their 5 classes. Due to this and to avoid 

inconsistencies derived from the different weight for each class we adopted the method 

of dividing BI-RADS
®

 classes into benign and malignant, according to some studies 
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conclusions (32, 33). On this test group, the best method was the Random Forest with 

PPV values around 76.0% and a AUC value greater than 0.8. 

Through scenario 2 we observed that in terms of density distinction, using GLCM 

the results from classes’ prediction presented a huge range, maybe due to the different 

number of initial data in each class and also related to the similarities of features 

extracted to neighboring classes as 1-2, 2-3 and so far. For Random Forest classifier, as 

the better one, the PPV and sensitivity values were not invariants according to each 

class, ranging from 72.5% to BrD 1 and 11.5% to BrD 4. Once again the reason for 

these results could be related to the features’ similarities or to the size of each class 

represented in the database. An effective approach to improve these results could equal 

the number of instances in each class or by grouping those four classes into half by way 

of creating a cutoff point at 50.0% of the glandular tissue. Therefore, we can conclude 

that even though the results obtained for this scenario were not the best ones, we were 

able to guarantee a superior performance than a previous work that used the same 

database. 

The conclusions made over scenario 3 were interesting for the reason that masses are 

in less number (267 micros and 101 masses), a fact emphasized in global accuracy 

percentages, which are 59.0% on subset 3a and 50.0% on subset 3b, approximately. 

Even though this global percentage was not optimal, it represents an interesting point 

for future investigation, since it contradicts other studies which concluded that 

microcalcification are a more predictable lesion than masses (36, 54). We can conclude 

that, for the scenario 3, in distinguishing the type of mammographic lesion the best 

performance was obtained for scenario 3a by the use of k-NN classifier and for Random 

Forest classifier in scenario 3b.  

Unlike other studies previously presented on Chapter 3, by doing this work we 

obtained results for a range of methods taking into account different types of data 

organization and providing a wide perception using different lexicons as BI-RADS
®
 and 

BrD by ACR. 

The major conclusions that were made by this work are summarized as: 

- GLRLM is an excellent matrix to extract lesion features, and reveals great results 

when combined with Random Forest classifiers;  

- Grouping BI-RADS
® 

class into benign and malignant is an effective way to 

improve results on predicting breast cancer; 
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- GLCM without ROI selection can achieve results on classifying breast density 

types. 

 

Further work can be done to improve the results presented here. 

In order to better understand if the global accuracy values are reliable, other 

databases should be used and the models here applied to compare results. The 

techniques used on image pre-processing step can also be improved and ROI selection 

for GLRLM extraction features could be automatically selected in order to avoid 

misclassifications. To implement these improvements some other software must be 

considered, because there was a need for faster and more efficient processing using 

language such as C++. Other findings should also be considered, such as bilateral 

asymmetry and architectural distortion. 

In terms of the methods used to classify, other tests must be done to improve results 

using breast density discrimination, possibly by grouping classes. To improve the 

prediction of the tested models, a combination of clinical data (e.g. age and radiologist’s 

observations) could also be implemented, as described in Moura et al. work (82).  

 

Towards this project, we thought that the implementation of a similar system based 

on the one presented, would be an asset to health professionals in the area of breast 

cancer diagnosis, especially in Hospital São João (since the images are taken from 

there). Through the use of sensitivity and specificity values, professional could ensure 

better diagnoses and essentially faster diagnostic methods. The consolidation of models 

like the ones here described with the online application work developed by Ferreira et 

al. (64) could be an important step for the creation of an effective toolkit that could help 

on reducing misdiagnosis and shortening the detailed and handmade study of each case, 

guaranteeing more diagnoses made in the same space of time and essentially more 

efficient. 
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