7 research outputs found

    Analysis of eigendecomposition for sets of correlated images at different resolutions

    Get PDF
    Includes bibliographical references.Eigendecomposition is a common technique that is performed on sets of correlated images in a number of computer vision and robotics applications. Unfortunately, the computation of an eigendecomposition can become prohibitively expensive when dealing with very high resolution images. While reducing the resolution of the images will reduce the computational expense, it is not known how this will affect the quality of the resulting eigendecomposition. The work presented here gives the theoretical background for quantifying the effects of varying the resolution of images on the eigendecomposition that is computed from those images. A computationally efficient algorithm for this eigendecomposition is proposed using derived analytical expressions. Examples show that this algorithm performs very well on arbitrary video sequences.This work was supported by the National Imagery and Mapping Agency under contract no. NMA201-00-1-1003 and through collaborative participation in the Robotics Consortium sponsored by the U. S. Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0012

    PCA-SIFT: A more distinctive representation for local image descriptors

    Get PDF
    Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image deformations. This paper examines (and improves upon) the local image descriptor used by SIFT. Like SIFT, our descriptors encode the salient aspects of the image gradient in the feature point's neighborhood; however, instead of using SIFT's smoothed weighted histograms, we apply Principal Components Analysis (PCA) to the normalized gradient patch. Our experiments demonstrate that the PCAbased local descriptors are more distinctive, more robust to image deformations, and more compact than the standard SIFT representation. We also present results showing that using these descriptors in an image retrieval application results in increased accuracy and faster matching

    Parallelized Algorithms for Finding Similar Images and Object Recognition

    Get PDF
    The paper addresses the issue of searching for similar images and objects ina repository of information. The contained images are annotated with the helpof the sparse descriptors. In the presented research, different color and edgehistogram descriptors were used. To measure similarities among images, variouscolor descriptors are compared. For this purpose different distance measureswere employed. In order to decrease execution time, several code optimizationand parallelization methods are proposed. Results of these experiments, as wellas discussion of the advantages and limitations of different combinations ofmethods are presented

    Analysis of eigendecomposition for sets of correlated images at different resolutions

    Get PDF
    Includes bibliographical references.Eigendecomposition is a common technique that is performed on sets of correlated images in a number of computer vision and robotics applications. Unfortunately, the computation of an eigendecomposition can become prohibitively expensive when dealing with very high resolution images. While reducing the resolution of the images will reduce the computational expense, it is not known how this will affect the quality of the resulting eigendecomposition. The work presented here proposes a framework for quantifying the effects of varying the resolution of images on the eigendecomposition that is computed from those images. Preliminary results show that an eigendecomposition from low-resolution images may be nearly as effective in some applications as those from high-resolution images.This work was supported by the National Imagery and Mapping Agency under contract no. NMA201-00-1-1003 and through collaborative participation in the Robotics Consortium sponsored by the U. S. Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0012

    Visual object recognition and tracking

    Get PDF
    This invention describes a method for identifying and tracking an object from two-dimensional data pictorially representing said object by an object-tracking system through processing said two-dimensional data using at least one tracker-identifier belonging to the object-tracking system for providing an output signal containing: a) a type of the object, and/or b) a position or an orientation of the object in three-dimensions, and/or c) an articulation or a shape change of said object in said three dimensions

    Quadtree-based eigendecomposition for pose estimation in the presence of occlusion and background clutter

    Get PDF
    Includes bibliographical references (pages 29-30).Eigendecomposition-based techniques are popular for a number of computer vision problems, e.g., object and pose estimation, because they are purely appearance based and they require few on-line computations. Unfortunately, they also typically require an unobstructed view of the object whose pose is being detected. The presence of occlusion and background clutter precludes the use of the normalizations that are typically applied and significantly alters the appearance of the object under detection. This work presents an algorithm that is based on applying eigendecomposition to a quadtree representation of the image dataset used to describe the appearance of an object. This allows decisions concerning the pose of an object to be based on only those portions of the image in which the algorithm has determined that the object is not occluded. The accuracy and computational efficiency of the proposed approach is evaluated on 16 different objects with up to 50% of the object being occluded and on images of ships in a dockyard

    A Study on Human Motion Acquisition and Recognition Employing Structured Motion Database

    Get PDF
    九州工業大学博士学位論文 学位記番号:工博甲第332号 学位授与年月日:平成24年3月23日1 Introduction||2 Human Motion Representation||3 Human Motion Recognition||4 Automatic Human Motion Acquisition||5 Human Motion Recognition Employing Structured Motion Database||6 Analysis on the Constraints in Human Motion Recognition||7 Multiple Persons’ Action Recognition||8 Discussion and ConclusionsHuman motion analysis is an emerging research field for the video-based applications capable of acquiring and recognizing human motions or actions. The automaticity of such a system with these capabilities has vital importance in real-life scenarios. With the increasing number of applications, the demand for a human motion acquisition system is gaining importance day-by-day. We develop such kind of acquisition system based on body-parts modeling strategy. The system is able to acquire the motion by positioning body joints and interpreting those joints by the inter-parts inclination. Besides the development of the acquisition system, there is increasing need for a reliable human motion recognition system in recent years. There are a number of researches on motion recognition is performed in last two decades. At the same time, an enormous amount of bulk motion datasets are becoming available. Therefore, it becomes an indispensable task to develop a motion database that can deal with large variability of motions efficiently. We have developed such a system based on the structured motion database concept. In order to gain a perspective on this issue, we have analyzed various aspects of the motion database with a view to establishing a standard recognition scheme. The conventional structured database is subjected to improvement by considering three aspects: directional organization, nearest neighbor searching problem resolution, and prior direction estimation. In order to investigate and analyze comprehensively the effect of those aspects on motion recognition, we have adopted two forms of motion representation, eigenspace-based motion compression, and B-Tree structured database. Moreover, we have also analyzed the two important constraints in motion recognition: missing information and clutter outdoor motions. Two separate systems based on these constraints are also developed that shows the suitable adoption of the constraints. However, several people occupy a scene in practical cases. We have proposed a detection-tracking-recognition integrated action recognition system to deal with multiple people case. The system shows decent performance in outdoor scenarios. The experimental results empirically illustrate the suitability and compatibility of various factors of the motion recognition
    corecore