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Abstract— Eigendecomposition is a common technique
that is performed on sets of correlated images in a number
of computer vision and robotics applications. Unfortunately,
the computation of an eigendecomposition can become pro-
hibitively expensive when dealing with very high resolution
images. While reducing the resolution of the images will
reduce the computational expense, it is not known how this
will affect the quality of the resulting eigendecomposition.
The work presented here proposes a framework for quan-
tifying the effects of varying the resolution of images on
the eigendecomposition that is computed from those images.
Preliminary results show that an eigendecomposition from
low-resolution images may be nearly as effective in some
applications as those from high-resolution images.1

I. INTRODUCTION

Eigendecomposition-based techniques play an impor-
tant role in several computer vision applications, e.g.,
pattern recognition, image compression, image approxi-
mation, and object/pose detection. The advantage of these
techniques, also referred to as subspace methods, are that
they are purely appearance based and that they require few
online computations. Variously referred to as eigenspace
methods, singular value decomposition (SVD) methods,
principal component analysis methods, and Karhunun-
Loeve transformation methods [1], they have been used
extensively in a variety of applications such as face
characterization [2] and recognition [3], lip-reading [4],
[5], object recognition, pose detection, visual tracking, and
inspection [6]-[9]. All of these applications are based on
taking advantage of the fact that a set of highly correlated
images can be approximately represented by a small set of
eigenimages [10]. Once the set of principal eigenimages is
determined, online computation using these eigenimages
can be performed very efficiently. However, the offline
calculation required to determine both the appropriate
number of eigenimages as well as the eigenimages them-
selves can be prohibitively expensive.

1This work was supported by the National Imagery and Mapping
Agency under contract no. NMA201-00-1-1003 and through collab-
orative participation in the Robotics Consortium sponsored by the
U. S. Army Research Laboratory under the Collaborative Technology
Alliance Program, Cooperative Agreement DAAD19-01-2-0012. The U.
S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation thereon.

The resolution of the given correlated images, in terms
of the number of pixels, is one of the factors that greatly
affects the amount of offline calculation required to com-
pute an eigendecomposition. In particular, many common
algorithms that compute the complete SVD of a general
matrix require on the order of m2n2 flops, where m is
the total number of pixels in a single image and n is
the number of images. Most users of eigendecomposition
techniques would like to use as large a resolution as is
available for the original images in order to maintain as
much information as possible; however, this frequently
results in an impractical computational burden. Thus users
are typically forced to downsample their images to a
lower resolution using a “rule of thumb” or some ad hoc
criterion to obtain a manageable level of computation.
The purpose of the work described here is to quantify
the tradeoff between the resolution of correlated images
and the “quality” of their resulting eigendecomposition, in
terms of measures that are relevant to the user’s motivation
for preforming an eigendecomposition.

The paper is organized as follows. In Section II, the
fundamentals of applying eigendecomposition to related
images are reviewed. Section III describes a method for
preprocessing the singular values and singular vectors
calculated at different resolutions so that their meaningful
comparison can be performed. In Section IV, different
error measures to compare the SVD at different resolutions
are defined and the possibility of using a low-resolution
SVD to solve problems associated with high-resolution
images is explored. Section V explains the experimental
results on a variety of image data sets with concluding
remarks given in Section VI.

II. PRELIMINARIES

In this work, a grey-scale image is described by an h×h
square array of pixels with intensity values normalized
between 0 and 1. Thus, an image will be represented by a
matrix X ∈ [0, 1]h×h. Because sets of related images are
considered in this paper, it is convenient to represent an
image equivalently as a column vector, obtained simply
by “row-scanning”, i.e., concatenating the rows to obtain
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the image vector x of length m = h2 given by

x = vec(X T ).

The image data matrix of a set of images X 1, · · · , Xn is
an m × n matrix, denoted X , and defined as

X = [x1 · · ·xn],

where typically m � n. Only the case where n is fixed
is considered in this paper, as opposed to cases where X
is constantly updated with new images.

The SVD of X is given by

X = UΣV T , (1)

where U ∈ �m×m and V ∈ �n×n are orthogonal, and
Σ = [Σd 0]T ∈ �m×n where Σd = diag(σ1, · · · , σn)
with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 and 0 is an n by
m − n zero matrix. The SVD of X plays a central role
in several important imaging applications such as image
compression and pattern recognition. The columns of U ,
denoted ûi, i = 1, · · · ,m, are referred to as the eigenim-
ages of X; these are the eigenvectors of the correlation
matrix of the image vector. The eigenimages provide an
orthonormal basis for the columns of X , ordered in terms
of importance; the corresponding singular values measure
how “aligned” the columns of X are with the associated
eigenimage. The components of the ith column of V
measure how much each individual image contributes to
the ith eigenimage.

III. COMPARING THE SVD AT DIFFERENT
RESOLUTIONS

The singular value decomposition of correlated images
at different resolutions give different U , Σ and V matrices.
These different sets of matrices can be compared against
each other to study the effect of different resolutions on the
SVD. To perform a meaningful comparison, the singular
values and singular vectors of the low-resolution image
data matrix must be modified. To distinguish both the
resolution and the size of a singular vector, we will use
the notation (p)ui(q), where the preceding superscript p
denotes the fact that the vector is associated with images
of resolution p× p and the subscript q denotes the actual
dimension of the vector ui.

A. Singular vectors

Recall that each eigenimage ûi is an m-vector, where
m is the number of pixels in an image. As the resolution
of the images is varied, the dimension of each eigenim-
age will also change accordingly. Hence to compare the
SVD at different resolutions, the eigenimages at lower
resolutions must be enlarged to match in size with those
at higher resolution. For our study, this is performed by
using bicubic interpolation. Due to the enlargement and
interpolation, the resulting eigenimages no longer have

unit norm and they must be renormalized. This is done
using

(p)ûi(q) =
(p)ui(q)

||(p)ui(q)||
, (2)

where (p)ui(q) represents the ith low-resolution, i.e., p×p,
eigenimage enlarged to the size of the ith high-resolution,
i.e., q× q, eigenimage. (The bicubic interpolation also af-
fects the orthogonality of these singular vectors; however,
this effect is small. For the examples used in this study,
||I − UT U || is on the order of 10−3 for q = 128.)

Recall that each right singular vector v̂i is an n-vector,
where n is the number of images. Thus the change in the
resolution of the images does not affect the size of these
vectors and the respective right singular vectors can be
directly compared with each other, as long as the number
of images per object remains fixed for all resolutions.

B. Singular values

The matrix Σ in (1) containing the singular values of
X need not be resized before the comparison of singular
values at different resolutions. However, due to the lower
dimension of the low-resolution images, these values are
scaled-down versions of those for the high-resolution
images. Hence the singular values at low resolution must
be scaled up properly before they can be compared with
those at high resolution.

The singular values of the correlated image data set
determine the scaling of the associated eigenimages. As
indicated earlier in this section, the low-resolution eigen-
images are enlarged to the size of high-resolution eigen-
images. Hence each low-resolution singular value should
be scaled using

(p)σ̃i = (p)σi||(p)ui(q)||, (3)

where (p)σi represents the ith p × p resolution singular
value that is to be compared with a higher resolution q×q
singular value.

IV. DIFFERENCE MEASURES FOR SVD’S

Different measures are considered in this section to
compare the SVD of the images at different resolutions.
The error measures that directly compare the SVD at
different resolutions are defined and the effect of these
SVD’s on common applications, like reconstruction and
pose detection of the high-resolution images using their
preprocessed SVD’s at low resolution, is discussed.

A. Definition of error measures

• Difference between singular values: The simplest
error measure considered is the difference between
the corresponding singular values calculated for a
set of correlated images at different resolutions. As
described in Section III, the singular values at low
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resolution are scaled before calculating this measure,
which is given by

� σi = (q)σi − (p)σ̃i, (4)

where (q)σi is the ith singular value of the image
data set at the higher resolution and (p)σ̃i is the
corresponding (scaled) singular value of the image
data set at the lower resolution.

• Angles between singular vectors: Left and right
singular vectors calculated for a set of correlated
images at different resolutions can be compared
by calculating the angle between the corresponding
vectors. Right singular vectors at low resolution do
not need any preprocessing, but the left singular
vectors at low resolution need to be enlarged and
renormalized before their comparison with their high-
resolution counterparts. The angle between the two
unit vectors can be calculated by performing their
dot product. Thus the cosines of the angles between
the singular vectors are given by

� ui = (q)ûT
i(q)

(p)ûi(q) (5)

and
� vi = (q)v̂T

i
(p)v̂i, (6)

where (q)ûi(q) and (q)v̂i are the ith left and right
singular vectors, respectively, of the image data set
at the higher resolution, and (p)v̂i is the ith right
singular vector of the image data set at the lower
resolution.

• Rotation of subspaces: The previous error measure
calculates the angles between the individual singular
vectors. However the ith singular vector at low reso-
lution may not be aligned with the ith singular vector
at high resolution. On the other hand, the subspaces
containing the first k vectors may span the same
vector space. Hence another error measure is used to
calculate the rotation between these subspaces. The
possibility that the data matrix B ∈ �m×k can be
rotated into the data matrix A ∈ �m×k is explored
[11] by solving the problem

r = min
Q

||A − BQ||F , (7)

where || · ||F represents the Frobenius norm and Q ∈
�k×k is an orthogonal matrix. The Q that minimizes
||A − BQ||F can be calculated as follows:

– Form the matrix C = BT A,
– Compute the SVD of C, i.e., C = UcΣcV

T
c ,

– Find the orthogonal matrix Q = UcV
T
c ,

where Uc and Vc are the matrices containing the left
and right singular vectors of C, respectively, while

Σc is a diagonal matrix containing the singular values
of C in descending order. The smaller the norm r,
the closer A and B are to representing the same
subspace. In our experiments, the subspaces A and
B are given by

A = (q)Uk(q),

B = (p)Uk(q),

where Uk is the matrix containing the first k eigen-
images as its columns.

• Angles between subspaces: Two sets of eigenimages
that represent two subspaces, both having dimension
k, share k different principal angles [11] with the kth

principal angle giving the largest angle between the
subspaces. Because the matrices representing the sub-
spaces in our experiments are nearly orthogonal, this
measure is closely related to the previous measure
concerning the rotation of subspaces. In particular,
the Σc matrix containing the singular values of C
gives the principal angles between the subspaces, i.e.,

diag(cos(θ1), · · · , cos(θk)) = Σc, (8)

where θi is the ith principal angle. If the maximum
angle θk is close to 0, then the two subspaces are
considered to be closely aligned with each other.

B. Effect on common applications

The error measures explained earlier in this section
give a direct comparison between the SVD at different
resolutions. Another way of comparing them is to apply
them to real problems. Two such common applications,
namely reconstruction of images and pose detection, are
considered in this subsection.

• Reconstruction of images: The eigenimages cal-
culated using the SVD of correlated images are
sometimes used to form an approximation x̃(k) of
the original image vector x that is given by

x̃(k) =
k∑

i=1

(ûT
i x)ûi, (9)

where k is the dimension of the eigenspace. The
accuracy of this approximation can be evaluated
using

ρk =

√∑k
i=1 ‖ûT

i X‖2

||X||F , (10)

where ρk is referred to as the energy recovery ra-
tio [12]. The eigenimages at all resolutions (with
proper preprocessing) are used to approximate the
high-resolution images, with the results of using
low-resolution eigenimages being compared to those
when using the high-resolution eigenimages.
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Fig. 1. This figure shows two manifolds consisting of the normalized
training images (after subtracting the normalized average image from
each of them) projected onto the subspace spanned by the first three
eigenimages. The solid manifold represents the projection of the high-
resolution images onto their eigenspace, while the dash-dotted manifold
represents the projection of the same high-resolution images onto the
enlarged and renormalized eigenimages calculated at low resolution.

• Pose detection: The standard application of eigen-
decomposition to solve the pose-detection problem,
when the training and test images are considered
to have the same resolution, is explained in [12].
This procedure is modified in this paper so that the
pose of the object in a high-resolution test image
can be detected with the eigenspace representing all
its possible orientations in low-resolution training
images.
In any pose-detection problem using the SVD, a
reduced-order representation of the object’s orienta-
tion change is obtained by projecting the training im-
ages onto the space spanned by the dominant eigen-
images, interpolating to obtain a manifold. (Fig. 1
shows two such manifolds, where the high-resolution
images are projected onto two different subspaces
spanning the first three eigenimages.)
The estimated pose of the object, φ̂, in the test image
is given by

φ̂ = arg min
φ

||tφ − p||
||tφ|| , (11)

where tφ represents a point on the manifold of
training images at orientation φ, p represents the
eigenspace projection of the test image and ||tφ−p||

||tφ||
is the normalized distance from p to tφ.
A measure of the quality of this eigenspace for
solving the pose-detection problem is given by∑nt

i=1 |φi − φ̂i|, where φi represents the correct pose
of the ith orientation of an object and nt denotes the
total number of test images.

Fig. 2. The 20 objects used for the experiments in this section.

The results analyzing the above-mentioned error mea-
sures, reconstruction procedures and pose detection pro-
cedures are presented in the next section.

V. EXPERIMENTAL RESULTS

Several experiments were performed and the different
error measures (refer to Section IV) were used to compare
the SVD of the correlated images at different resolutions.
The reconstruction and pose detection procedures were
also carried out for the high-resolution images using their
preprocessed SVD at low resolution. A variety of objects
(see Fig. 2) were used to perform these experiments. For
each object, 360 training images were obtained by rotating
the object by 1 degree between successive images. All
training images were of size 128× 128 pixels with 8 bits
used to represent intensity. Two new image data sets were
generated by reducing the original image resolution to
64×64 and 32×32 by using bicubic interpolation. Three
different sets of SVD’s were then calculated for these
image data sets. The resultant singular values and singular
vectors for the low-resolution images were preprocessed
as described in Section III before they were compared with
those for the high-resolution images.

The first set of tests was designed to evaluate the
different error measures that compare the SVD at different
resolutions. Fig. 3 shows different plots for these error
measures calculated for object 2 (second object in the first
row of objects in Fig. 2). These plots show the general
behavior for most of the objects when comparing their
SVD’s. The plots of the difference between the singular
values in the first row show a very slow and steady
increase in the difference between the singular values at
128 × 128 and those at 64 × 64. Given that the first few
singular values are so large, the relative error is almost
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Fig. 3. This figure shows different plots of the error measures calculated
for object 2 that represents the general behavior for most of the objects
when the SVD at different resolutions were compared. The first row
shows the plot of the singular values for 128 × 128 resolution images
and its difference with the scaled singular values for 64×64 and 32×32
resolution images. The second row shows the plots for the angles between
the respective left and right singular vectors (after preprocessing the left
singular vectors at low resolution). The third row shows the maximum
principal angles between the respective singular vector subspaces, when
the subspace dimension was varied from 1 to 12, while the last row shows
the minimum norm of the rotation required to rotate a low-resolution
eigenspace into its corresponding high-resolution eigenspace, where the
subspace dimension was varied from 1 to 12. All angles are plotted in
degrees.

negligible. In particular, the relative error between these
values varies from 0.1% (k = 1) to 6.06% (k = 12)
indicating a good approximation of 128 × 128 singular
values using the scaled 64 × 64 singular values. For
32 × 32, the relative error varies from 0.5% (k = 1)
to 21.37% (k = 12); however, the relative error in the
first few singular values is again small enough for the
low-resolution eigenspace to be comparable to the high-
resolution eigenspace for the first few eigenimages.
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Fig. 4. This figure shows plots for the angles between singular vectors
and for the maximum principal angles between the respective singular
vector subspaces calculated for object 6. This example shows a case
where the plots were different than the general trend of the plots for the
objects as shown for object 2 shown in Fig. 3.

The angles between the respective singular vectors
(second row in Fig. 3) for 64 × 64 are small for both
the left and right singular vectors, while these angles for
32 × 32 are almost twice as big as those for 64 × 64.
There is a steady increase in the angles when the singular
vector index increases. However, the large increase in the
angle is not necessarily meaningful because the index is
ill-conditioned when the singular values are nearly equal.

The maximum principal angles between the subspaces
containing the singular vectors (third row in Fig. 3) show
that the maximum principal angle, when the subspace
dimension is twelve, is very close to the angle between
the 12th singular vectors. This indicates that these singular
vectors span the same vector space when the appropriate
dimension is used. The rotation indices between these
subspaces (fourth row in Fig. 3) exhibit similar behavior
to that of the maximum principal angles and show that the
rotation of the 64×64 vector subspace into the 128×128
vector subspace is much closer than the rotation of the
subspace associated with the 32 × 32 resolution images.

Fig. 4 gives an example of a set of subspace difference
plots that varies from the general trend of such plots.
These plots are for object 6 (first object in the second row
of Fig. 2). The first row of plots in Fig. 4 shows drastic
variations in the angles between the singular vectors after
the 9th vector. The angles for the 10th and 11th vectors
for 64 × 64 jump to high values before coming down
for the 12th vectors. This happens because the 10th and
11th vectors for the 64 × 64 case and the 128 × 128
case are swapped. This can be explained by looking at
the maximum principal angles plots in the second row of
Fig. 4. When the subspace dimension is ten, the maximum
principal angle is very large. However, after including the
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TABLE I

RELATIVE RECONSTRUCTION AND POSE DETECTION RATIOS

Reconstruction ratio Pose detection ratio
Object 64 × 64 32 × 32 64 × 64 32 × 32

1 0.9990 0.9967 0.9964 1.0000
2 0.9982 0.9938 1.0000 1.0000
3 0.9979 0.9921 1.0000 1.0035
4 0.9989 0.9955 1.0070 1.0000
5 0.9971 0.9916 1.0115 0.9885
6 0.9987 0.9950 1.0000 1.0000
7 0.9930 0.9861 1.1235 1.1070
8 0.9967 0.9915 0.9925 0.9887
9 0.9959 0.9891 0.9965 0.9965
10 0.9991 0.9973 1.0190 1.0190
11 0.9991 0.9966 1.0035 1.0035
12 0.9995 0.9973 0.9965 1.0000
13 0.9992 0.9962 1.0000 1.0000
14 0.9985 0.9941 1.0000 0.9965
15 0.9988 0.9958 1.0035 1.0035
16 0.9992 0.9956 1.0000 1.0000
17 0.9990 0.9958 1.0000 1.0000
18 0.9991 0.9953 1.0000 1.0000
19 0.9992 0.9970 1.0000 1.0000
20 0.9981 0.9925 1.0000 1.0000

Mean 0.9982 0.9942 1.0075 1.0053
Maximum 0.9995 0.9973 1.1235 1.1070
Minimum 0.9930 0.9861 0.9925 0.9885

11th vector, it drops down indicating that the first eleven
singular vectors for 64 × 64 essentially span the same
vector space as those for 128 × 128. On the other hand,
the 10th, 11th, and 12th vectors for the 32×32 resolution
images and those for the 128× 128 resolution images are
swapped. However, once again the maximum principal
angle decreases when the subspaces are compared with
twelve singular vectors. Thus, the singular vectors at
different resolutions span essentially the same vector space
as long as the dimension of the subspace is selected
appropriately.

This swapping of the low-resolution singular vectors is
not a significant issue when these vectors are used for
image reconstruction or pose detection. This is due to the
fact that the associated singular values are nearly equal.

Reconstruction of the 128 × 128 resolution images
was carried out using eigenimages at all resolutions.
The average energy recovery ratio using an eigenspace
dimension of twelve, i.e., ρ12, was calculated for the
image data matrices of all 20 objects. The first half of
Table I gives the ratio of ρ12 using preprocessed low-
resolution eigenimages to ρ12 using 128× 128 resolution
eigenimages. These ratios show that the reconstructions
using low-resolution eigenimages are almost as good as
those using high-resolution eigenimages. Fig. 5 provides
a visual example of the relative quality of these different
resolution reconstructions for object 2, which was selected
because it has the reconstruction ratio that is closest to
the mean value. The comparison plot in Fig. 5(a) shows
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Fig. 5. Part (a) of this figure shows the energy recovery ratio plot for
object 2. Parts (b), (c), and (d) show the reconstruction of a 128 × 128
image for object 2, image 1, using the first 12 eigenimages at three
different resolution, namely 128 × 128, 64 × 64, and 32 × 32. The
eigenimages at low resolutions are enlarged and renormalized before
using them for the reconstruction. This reconstruction represents the
average case from Table I.

that the plot for the energy recovery ratio using all three
resolution eigenspaces are very close together and the
actual reconstruction of a single image (Fig. 5(b), (c), and
(d)) indicates that all three reconstructions are visually
very close to the original image of this object shown in
Fig. 2.

The pose detection application was also evaluated for
all 360 orientations of all 20 objects. The preprocessed
64 × 64 and 32 × 32 resolution eigenimages were used
for pose detection of the 128 × 128 resolution images. A
set of 72 images (with successive orientations 5 degrees
apart) was used as training images for generating the
manifold shown in Fig. 1 with the remaining images used
as test images. Successful pose detection was defined as
identifying the training image whose pose was closest to
the pose of the test image. The total number of successful
pose detections over all test images and all objects is
thus a measure of how effective a given image resolution
is for solving the pose-detection problem. The ratio of
the number of successful pose detections at the lower
resolutions to that of the original 128 × 128 resolution is
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given in the second half of Table I. This table shows that
eigenimages at 64×64 and at 32×32 (with mean ratios of
1.0075 and 1.0053, respectively) actually perform better
than those at 128 × 128. This indicates that there is little
value in performing the more computationally expensive
eigendecomposition at the higher resolution in this case.

VI. CONCLUSION

This paper has presented a framework for quantifying
the tradeoff associated with performing eigendecomposi-
tion on correlated images at lower resolutions in order
to mediate the high computational expense of performing
these calculations at high resolutions. Although our initial
results are preliminary, it appears that the quantitative
difference between the SVD of image data matrices of
quite different resolutions is surprisingly small. It is
particularly encouraging that the resulting eigenspaces
are very similar, because this is the main factor that
determines the accuracy of such common applications as
image reconstruction and object/pose detection.2
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